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Abstract Recently a regular (unconditional) decision process has been mathematically formulated from 
the multistage decision process in Bellman and Zadeh's paper "Decision-making in a fuzzy environment". 
According to  the available information on total fuzziness, we propose two types of conditional decision 
process for regular decision process. One is an "a posteriori conditional decision process" and the other is 
an "a priori conditional decision process." The a posteriori process is formulated through taking at each 
stage backward conditional expectation of remaining process after performing take-action for the regular 
decision process. The a priori is through taking at each stage backward conditional expectation before 
take-action. We derive recursive equations for both a posteriori and a priori processes with numerical 
illustrations. 

1. Introduction 
Since Bellman and Zadeh have published their seminal paper [5], a large amount of 

efforts has been devoted to the study of fuzzy theory of mathematical programming. Of 
course, fuzzy theory of dynamic programming has been studied ([I], [G], [7], [l5], [16], [l71 
and others). Bellman and Zadeh [5] have proposed an essentially same recursive formula for 
both deterministic process and stochastic process. Their recursive formula for deterministic 
process is valid. However, their derivation of recursive formula for stochastic process lacks 
a mathematical consistency : their dynamic programming solution does not coincide with 
an enumerative solution. Recently pointing out this inconsistency, Iwamoto and Fujit a [l 21 
have proposed an invariant imbedding method, whose solution assures the enumerative one 
(see also Iwamoto and Sniedovich [13]). Bellman and Zadeh [5], Iwamoto and Fujita [l21 and 
Iwamoto and Sniedovich [l31 are, of course, dynamic programming methods. Any dynamic 
programming - whatever its style may be - should yield a solution of the original problem. 

A motivation of this paper is to consider an inverse problem to [5, $51, that is, to derive 
an optimization problem whose recursive formula yields Bellman and Zadeh's stochastic re- 
cursive formula. (There are several kinds of inverse problem. See [2] ,[3] for inverse problems 
in this Bellman's sense). 

In Section 2, we consider a regular (unconditional) decision process with associative 
binary relation. We show two approaches to the regular process. One is a direct approach. 
The other is an invariant imbedding approach ([4], [8], (91, [10], [18], [l 91, [20], [21]). In Section 
3, we propose two types of conditional decision process for regular process. One is an "a 
posteriori conditional decision process" and the other is an "a priori conditional decision 
process.77 

It makes a difference to the decision-maker whether or not the information on asso- 
dating a current membership with the remaining total fuzziness is available to hirn/her. 
The a posteriori process is formulated through taking at each stage backward conditional 
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expectation of remaining process after performing take-action for the regular decision pro- 
cess. The a priori is through taking at each stage backward conditional expectation before 
take-action. We derive recursive equations for both a posteriori and a priori processes. The 
recursive equation for a posteriori process is identical with the desired Bellman and Zadeh's 
stochastic recursive formula, which at the same time results in having given a solution to 
the inverse problem. In the last section, we illustrate numerical examples of a posteriori 
and of a priori processes. The example for a posteriori process is nothing but Bellman and 
Zadeh's stochastic example. 

2. Regular Decision Process 
Throughout the paper, the following data is given : 

N > 2 is an integer; the total number of stages 

X = {sl, s2,. . . , S;} is a finite state space 
U = {al, a2, . . . , ak} is a finite action space 
fin : X X U -+ [O, l] is an n- th  membership function (1 < n < N) 
~ N + I  : X -+ [O, l] is a goal membership function 
o : [O, l] X [O, l] -+ [O, 11 is a associative binary relation 

with a left-identity element L 

: A o ( p o v )  = (Aop)ov ,  L O A  = A  VA ? [O, l] 

p is a Markov transition law 

First, 

: p(y\x, U) ^ 0 V(x, U, y) E X X U X X, ^ p(ylx, U) = 1 V(x, U) ? X X U 
YEX 

y N p(* \ X ,  U) denotes that next state y conditioned on state X and action U 

appears with probability p(ylx, U). 

we consider as a regular decision process the following optimization problem subject 
to a successive constraint : 

where Eu denotes the expectation (summation) operator on X X X X X (N-times) 
induced from the conditional probability functions p(xn+i\Xn, un), a general policy o- = 

{ol, 0 2 ,  ..., ON} and an initial state XI. 
2.1. Direct approach 
In this section, we use the following notation : 

First, we derive directly a recursive formula for the process (2.2). Let us consider for any 
given n (1 < n < N + l), hn = (xi, ul, x2, u2, . . . , xn) E Hn the maximization problem : 
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where the sequence of action and state ( U ^ ,  xn+l, 'Un-*. . . , 'UN, xN+i) after starting state hn 
is governed stochastically by a primitive policy v = {h vn+l; .. ., UN} consisting of decision 
functions 

h : H m - - + U  n < m < N  (2.5) 

as follows : 

The maximization is taken for all primitive policies v for a subprocess starting from state 
hn E Hn a t  stage n and terminating at  state hN+1 E -HN+i. Note that any primitive policy 
v = {Un, vrI-kl, .. . , UN} for the subprocess yields the expected value in (2.3) defined by the 
multiple summation : 

Then we have the recursive equation between value vn(h) and two-variable function 
~ n + l  (h, - 7  -) 
Theorem 1 

vn(h) = Max ~ n + l ( h , ~ , y ) p ( y \ ~ , ~ )  h E Hn, T L =  1 , 2 , . .  . , N  
ueu (2.8) 

YGX 

Proof The addition a + b : R1 X R1 --+ is commutative, associative, and monotone. 
These properties imply the validity of recursive formula (2.8). 

Solving the recursive equation (2.8), we have a primitive optimal policy 

v* = {v;, v;, . . . , v; 1. 

By successively projecting the optimal decision function v; : Hn + U onto the original state 
space X X X X (n-times), we obtain a general optimal policy 

as follows : 
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2.2. Invariant imbedding approach 
Second, we derive an important recursive formula for this process by imbedding the problem 
(2 .2 )  into the following relatively large family of pararneterized problems. Let us consider 
for any given n ( 1  < n < N + l), Xn E X and An G [O, l ]  the maximization problem : 

Here the maximization is taken for all Markov policies n- for a subprocess starting from 
one-dimensionally augmented state ( x n ,  An) E X X [O, l ]  at  stage n and terminating at state 
( X N + ~ ,  AN+i).  Note that any Markov policy TT = {xn ,  TTn+1, ..., TTN} on the augmented state 
space X X [O, l] is specified by a sequence of decision functions : 

Further we remark that the expected value in (2 .11)  is defined by the multiple summation : 

where the alternating sequence of action and one-dimensionally augmented state 

is stochastically generated through the Markov policy TV and the starting state ( x n ,  An) as 
follows : 

However, note that the sequence of the latter halves of the states {An+ l ,  An+2, . . . , AN+I } 
behaves deterministically in (2 .15) .  

Then we have the recursive equation between value u n ( x ;  A)  and two-variable function 
vn+l ( S ;  -)I 
Theorem 2 
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Proof By replacing the binary relation A in proof of Theorem 6.2 of ([14]) with the 
associative relation 0, we can derive the recursive formula (2.16) in a same way as in ([14]). 

Solving the recursive equation (2.16) yields an n-th optimal decision function n-* : X X 

[O, 11 -+ U. Hence, as a whole, we have a Markov  optimal policy 

o n  the  one-dimensional ly  extended state space X X [O, l ] .  By projecting the optimal policy 
TT* onto the original history space 

with starting state (xi ,  L ) ,  we obtain a general optimal policy 

o* = {oh a;, ..., o]v} 

on the state space X. At the same time, the desired optimal value is given by v1 (xi; L ) ,  which 
is attained by the policy a* ([14]). 

3. Conditional Decision Processes 
In this section, we propose two conditional optimization problems subject to  the successive 
constraint; one is an a posteriori conditional decision process (cdp) and the other an a priori 
cdp. 

Throughout this section, we consider the class of all Markov policies on the original 
state space X. Note that any Markov policy TT = {xl, m, ..., n-N} is specified by a sequence 
of Markov decision functions : 

We assume that the binary relation o is monotone : 

However, we do not assume the associativity of the relation 0. 
Then we are concerned with optimization of expected value of the backward accumulated 

returns : 

where the sequence of controls is determined through Markov policy TT : 

The multiple summation (3.3) is not necessarily decomposed into an iterative (or repeated) 
summation. We show two types of decomposition by taking backward conditional expec- 
tation. In the following subsections, we optimize such decomposed forms in the class of 
Markov policies. 
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3.1. A posteriori conditional decision process 
First, at  each stage we take backward conditional expectation of remaining process after 
performing take-action for regular decision process (Figure 1). This generates an a posteriori 
cdp as follows: 

Here we note that 
E  ̂ = Y, P ( Y ) P ( Y \ ~ ,  U) for 11 = P(-)- 

Y(=X 

For the sake of simplicity we use the following short notations : 

Thus the objective function in (3.4) is written as follows : 

We should remark that Markov policy TT is implicit in the notation En in (3.8). That is, 

Thus the resulting a posteriori conditional expected value from Markov policy TT is one 
backward iterative summation : 

On the other hand, the so-called expected value is the multiple summation : 

We note that in general the equality 
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Figure 1 Conditional expectation after take-action 

Figure 2 : Conditional expectation before take-action 

does not hold. However, two typical processes admit the equality (3.12). One is the additive 
process : 0 = +. The other is the multiplicative process : o = X .  Throughout the remainder, 
we are mainly concerned with the class of processes which do not admit the equality (3.12). 

Let us consider for any given n (1  < n < N + l ) ,  xn E X the maximization problem : 

W ( x n )  = Max 7-r [/-L, 0 E " [ / - L ~ + ~  0 0 E"-' [/-L" 

o ~ N ~ ~ + i ]  I (i)m n < m < N ] (3.13) 

WN+I  ( x N + ~ )  = P N + ~  (%"+l) (3.14) 

where maximization is taken for all Markov policies TT = {TT^ ,  ..., K"}. Then we have the 
recursive equation between value wn(x)  and one-variable function wn+i{-): 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Conditional Decision -ma king 

Theorem 3 

Proof This is the recursive formula for a deterministic dynamic program under mono- 
tone relation 0. U 

The validity of recursive formula (3.15) is equivalent to the validity of equality 

M ~ x [ ~ o ~ ~ [ p ~ o - ~ ~ o ~ ~ - ~ [ p ~ ~ ~ ~ ~ ~ + ~ ] - . ~ ] ]  

= [pl o E' Max [p2 0 0 E""~ Max [pN o ~ ~ p ~ + ~  ] - 1  ] 
7T2 T N  

(3.17) 

(Un = TTn(xn) 1 < n < N). 

3.2. A priori conditional decision process 
Second, before in turn performing take-action for regular decision process, we take at  each 
stage backward conditional expectation of remaining process (Figure 2). This generates the 
following a priori cdp : 

Maximize E; [pl (xi, u1) 0 E a d x 2 ,  u2) 0 - 
OE;~PN (XN, UN) O PN+I ] . ] ] 

subject to (i)n xn+l p(* 1 xn, U,), un G U 1 5 n 5 N. (3.18) 

Here we note that 

We use the following short notations : 

Henceforth, the objective function in (3.18) is written as follows : 

In the above, the relevant Markov policy TT is compressed into the notation En : 

Thus the a priori conditional expected value is the other backward iterative summation : 
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We remark that the a priori conditional expected value (3.23) is not always identical with the 
a posteriori (3.11). It may also different from the so-called expected value (3.3). However, 
three expected values (3.3),(3.10),(3.23) are identical both for the additive process and 
for the multiplicative process. The reason is nothing but the linearity of the expectation 
operator. 

Let us consider for any given n (1 n < N + l), xn E X the maximization problem : 

Then we have the recursive equation between value Wn(x) and one-variable function 
Wn+ 1 ( S )  : 

Theorem 4 

Proof This is also the recursive formula for a deterministic dynamic program under 
monotone relation o. U 

The recursive formula (3.26) with (3.27) states the equality 

Now let us consider the difference between the two cdps from a practical viewpoint. 
Throughout the a priori cdp, the conditional expectation is taken prior to take-action. Thus 
the a priori cdp is available when the decision-maker knows the remaining total fuzziness 
before take-action (possesses an a priori information on associating the current membership 
with the remaining total fuzziness). For instance, when the decision-maker gets an advance 
notice that the tot a1 fuzziness is associatively evaluated through the immediate membership 
and the remaining fuzziness, he/she chooses the a priori cdp. Otherwise, he/she has to draw 
a lottery for the remaining future, which enables him/her to choose the a posteriori cdp. 

4. Examples 
In this section, we illustrate two approaches and two cdp's on a three-state, two-action and 
two-stage process with Bellman and Zadeh's data [5, pp. B1541: 
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Since the invariant imbedding approach is discussed in [12], we give only the direct 
approach. 
4.1. Direct recursive equation 
Then the resulting optimal equation (2.8) reduces to the recursive equations : 

where 

First, we have u3(h3) = u3(xl, UI ,  x2, u2, ~ 3 ) :  

Second we calculate v2 (h2) = v2 (xi, ul ,  x2): 

Here we note that 

~ 2 ( x l , ~ l , x 2 ) = ~ t ( x ~ 7 ~ 1 7 ~ 2 )  v x l , x ; E X m  

Finally, we get 
u1(sl) = 0.795, u1(s2) = 0.595, vl(s3) = 0.583. 

v; (sl) = a2, U: (s2) = 0 2 ,  v; (s3) = al .  

This result is also verified in Figures 3,4 and 5. The optimal primitive policy v* = {G, v*>\ 
yields an optimal general policy a* = {e, G}: 

Note that this optimal general policy a* is Markov. 
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hist orv I ter. I rnin sub. 

0.38 

0.57 

total 

Figure 3 : All two-stage behaviors from si and selection of maximum branch 

4.2. Bellman and Zadeh's process 
As an example of a posteriori cdp, we cite Bellman and Zadeh's stochastic model 15, p- 
p. B1541. They have got a head start on decision-making in a fuzzy environment. After- 
wards, some related models [6], [7], [15], [12] have followed [5]. We consider Bellman and 
Zadeh's model as the following a posteriori cdp : 
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history ter. 1 min 1 xp2  1 sub. total 

0.583 

0.595 

Figure 4 : All two-stage behaviors from 52 and selection of maximum branch 

Then, (3.17) reduces to 

This is equivalent to the recurrence equations : 
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history ter. min xp2 
0.3 0.3 0.24 

sub. 

0.38 

0.57 

Figure 5 : All two-stage behaviors from s 3  and selection of maximum branch 

w 3 ( x 3 )  = ^ 3 ( ^ 3 )  

Bellman and Zadeh [5, pp. B1541 give the following optimal solution through the backward 
equations : 
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w2(s l )  = 0.6, w2(s2)  = 0.82, w2(s3)  = 0.6 (4.11) 

~ 2 ( s i )  = a1 7 1 - 2 ( ~ 2 )  = a1 112 ( 3 3 )  = 0 2 ,  (4.12) 

wi (s1)  = 0.8, w l ( s2 )  = 0.62, wl (s3)  = 0.62 (4.13) 

~ i ( s i ) = a i ,  71-1(s2)=a1 or 0 2 ,  71-l(s3)=aia (4.14) 

However, Iwamoto and Fujita [l21 have given an exact expression of wl ( x i ) ,  T T ~ ( X ~ )  as 
follows : 

wi(s1)  = 0.798, w l ( s2 )  = 0.622, w l ( s3 )  = 0.622 

This fact is also verified in Figures 6 ,  7 ,  8 and 9. 

1 history ter. rnin 

0.42 

Figure 6 : One-stage a posteriori conditional decision tree from s l ,  5 2  and s3 
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history ter. 1 xp2 1 E2 min 

0.42 

0.6 

0.82 

0.42 

Min 

0.622 

0.798 

Figure 7 : Two-stage a posteriori conditional decision tree from si 
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Min 

0.622 

0.622 

min 

0.42 

history ter. 1 xp2 

-m-pm 

Figure 8 : Two-stage a posteriori conditional decision tree from s2 
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"J2  
X 2  

history ter. - - 
0.3 
l .o 
0.8 
0.3 
1.0 
0.8 - 
0.3 
l " 0  
0.8 
On3 
1.0 
0.8 

xp2 1 E2 1 rnin Min 

0.622 

Figure 9 : Two-stage a posteriori conditional decision tree from s3 
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4.3. A priori process 
As an a priori cdp for Bellrnan and Zadeh's process (4.8), we consider the following problem : 

For the preceding data, the corresponding recursive equations 

have the solution 
W 3 ( s 1 )  = 0.3, W 3 ( s 2 )  = 1.0, W 3 ( s 3 )  = 0.8, 

W 1 ( s l )  = 0.795, W l ( ~ 2 )  = 0.595, W l ( ~ 3 )  0.583 

7r; ( s l )  = a2, r: ( s2 )  = a2, (s3) = al.  

This solution is also illustrated in Figures 10, 11, 12 and 13. (Figures 12 and 13 are omitted.) 

ter. 

0.3 
1.0 
0.8 
0.3 
l .o 
0.8 
0.3 
1.0 
0.8 
0.3 
1.0 
0.8 
0.3 
1.0 
0.8 
0.3 
1.0 
0.8 

Figure l 0  : One-stage a priori conditional decision tree from s l ,  s2 and s3 

E 2  

0.42 

0.57 

0.82 

0.36 

0.42 

0.57 

min 

0.3 
1.0 
0.8 
0.3 
0.6 
0.6 
0.3 
1.0 
0.8 
0.3 
0.6 
0.6 
0.3 
1.0 
0.8 
0.3 
0.6 
0.6 

x p  
0.24 
0.1 
0.08 
0.03 
0.54 
0.0 
0.0 
0.1 
0.72 
0.24 
0.06 
0.06 
0.24 
0.1 
0.08 
0.03 
0.0 
0.54 
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1 

min 

0.57 

0.7 

Figure l1 : Two-stage a priori conditional decision tree from sl 
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5. Concluding Remarks 
We remark that for the case o = A 

and that for the case o = V 

We note that the equality 

holds for a real constant A,  a function g : X -+ R' and a probability function p. However, 
for any binary relation 0, the equality 

does not always hold. (For further dctails7 see [ll].) 
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