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Abstract Recently a regular (unconditional) decision process has been mathematically formulated from
the multistage decision process in Bellman and Zadeh’s paper “Decision-making in a fuzzy environment”.
According to the available information on total fuzziness, we propose two types of conditional decision
process for regular decision process. One is an “a posteriori conditional decision process” and the other is
an “a priori conditional decision process.” The a posteriori process is formulated through taking at each
stag'e‘ backward conditional expectation of remaining process after performing take-action for the regular
decision process. The a priori is through taking at each stage backward conditional expectation before
take-action. We derive recursive equations for both a posteriori and a priori processes with numerical
illustrations.

1. Introduction

Since Bellman and Zadeh have published their seminal paper [5], a large amount of
efforts has been devoted to the study of fuzzy theory of mathematical programming. Of
course, fuzzy theory of dynamic programming has been studied ([1], [6], [7], [15], [16], [17]
and others). Bellman and Zadeh [5] have proposed an essentially same recursive formula for
both deterministic process and stochastic process. Their recursive formula for deterministic
process is valid. However, their derivation of recursive formula for stochastic process lacks
a mathematical consistency : their dynamic programming solution does not coincide with
an enumerative solution. Recently pointing out this inconsistency, Iwamoto and Fujita [12]
have proposed an invariant imbedding method, whose solution assures the enumerative one
(see also Iwamoto and Sniedovich [13]). Bellman and Zadeh [5], Iwamoto and Fujita [12] and
Iwamoto and Sniedovich [13] are, of course, dynamic programming methods. Any dynamic
programming - whatever its style may be - should yield a solution of the original problem.

A motivation of this paper is to consider an inverse problem to [5, §5], that is, to derive
an optimization problem whose recursive formula yields Bellman and Zadeh’s stochastic re-
cursive formula. (There are several kinds of inverse problem. See [2],[3] for inverse problems
in this Bellman’s sense).

In Section 2, we consider a regular (unconditional) decision process with associative
binary relation. We show two approaches to the regular process. One is a direct approach.
The other is an invariant imbedding approach ([4],[8],[9],[10],[18],[19],[20],[21]). In Section
3, we propose two types of conditional decision process for regular process. One is an “a
posteriori conditional decision process” and the other is an “a priori conditional decision
process.”

It makes a difference to the decision-maker whether or not the information on asso-
ciating a current membership with the remaining total fuzziness is available to him/her.
The a posteriori process is formulated through taking at each stage backward conditional
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expectation of remaining process after performing take-action for the regular decision pro-
cess. The a priori is through taking at each stage backward conditional expectation before
take-action. We derive recursive equations for both a posteriori and a priori processes. The
recursive equation for a posteriori process is identical with the desired Bellman and Zadeh’s
stochastic recursive formula, which at the same time results in having given a solution to
the inverse problem. In the last section, we illustrate numerical examples of a posteriori
and of a priori processes. The example for a posteriori process is nothing but Bellman and
Zadeh’s stochastic example.

2. Regular Decision Process
Throughout the paper, the following data is given :

N > 2 is an integer; the total number of stages
X = {s1, 82,..., 5} is a finite state space
U ={ai, ag,...,ar} is a finite action space
Un : X x U — [0, 1] is an n-th membership function (1 <n < N)
pun+1: X — [0, 1] is a goal membership function (2.1)
o:[0, 1] x [0, 1] — [0, 1] is a associative binary relation

with a left-identity element ¢

Ao(pov)=(Aop)ov, rod=X VAe]0,1]

p is a Markov transition law

p(ylz,u) >0 V(z,u,y) € X xU x X, > pylz,u) =1 Y(z,u) € X xU
yeX
y ~ p(* |z,u) denotes that next state y conditioned on state z and action u

appears with probability p(y|z,u).

First, we consider as a reqular decision process the following optimization problem subject
to a successive constraint :

Maximize EJ [p10 g0+ 0 iy 0 fin41]

subject to  (i)n Zni1 ~p(*| Tn,up), un €U 1 <n <N (2.2)
where E° denotes the expectation (summation) operator on X X X --- x X (N-times)
induced from the conditional probability functions p(z,+1|Zn,us), a general policy o =
{01,092, ...,0n} and an initial state x.
2.1. Direct approach
In this section, we use the following notation :

H,=XxUxXxUx---xX ((2n— 1)-times).

First, we derive directly a recursive formula for the process (2.2). Let us consider for any
givenn (1 <n < N+1), h, = (21, u1,Z2,U2,...,%,) € H, the maximization problem :

va(h) = Max BY, [ 0+ 0 iy © st | (Jn 7 <m0 < N (2.3)
hn € Hyy, 1<n<N

UN+1(hN+1) = (fﬂl,ul) Q-0 #N($N,UN) O UNH1 ($N+1) hni € Hyy (2-4)
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200 S. Iwamoto, K. Tsurusaki & T. Fujita

where the sequence of action and state (upn, Tpi1, Uni1, - .., Un, Tys1) after starting state h,
is governed stochastically by a primitive policy v = {v,, V41, ..., vn} consisting of decision
functions

Up :Hpy —>U n<m<N (2.5)

as follows :

Vn(hn) = Up — P(' Iwna un) ~ Tn+1
= Vpi1(bng1) = Unpr = p( [ Tngr, Ungr) ~ Tugo
— e — VN(hN) =uy — p(' I.’I,'N, ’ILN) ~TN41. (26)

The maximization is taken for all primitive policies v for a subprocess starting from state
h, € H, at stage n and terminating at state hy,; € Hyyq. Note that any primitive policy
v = {Vp, Vpt1,...,Vn} for the subprocess yields the expected value in (2.3) defined by the
multiple summation :

Ey [mo-—opnopny|(i)m n<m <IN

= ZEZ pr(z1,ur) 0o un(zn, un) © pni1(Tnit)

(zn+[,...,IN+1)€XX---XX
XP(-Tn+1|33m Up) - - 'p(iUN-HfiEN, uy). (2.7)

Then we have the recursive equation between value v, (h) and two-variable function
'Uﬂ-l-l(ha K )
Theorem 1
vn(h) = MCaUx > vpi(bu,y)p(ylz,u)  heH, n=12,...,N (2.8)
YT yex

ons1(h) = (@1, w) o -+~ o pn (TN, un) © pny1(TN41) R € Hypa. (2.9)

Proof  The addition a 4+ b: R' x R! — R! is commutative, associative, and monotone.
These properties imply the validity of recursive formula (2.8). O
Solving the recursive equation (2.8), we have a primitive optimal policy

vt ={v], vy, N}

By successively projecting the optimal decision function v : H,, — U onto the original state
space X X .-+ X X (n-times), we obtain a general optimal policy

* % * *
o* ={o7,05, ..., 0N}
as follows :

oi(z1) = vi(h1) (hi=m1)
03(w1,22) == vi(h2) (ha = (21, u1,22), vy =vi())
U;(.’El,iﬂg,l‘g) = I/;(h,g) (hg = (hg,’dz,l‘g,), Uy = l/;(hg)) (210)

O’TV(.Z‘l,.Ig, e ,.’L’N) = l/}kv(hN) (hN = (hN_l,uN_l,xN), UN—_1 = V;,_l(h]v_l) )
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2.2. Invariant imbedding approach

Second, we derive an important recursive formula for this process by imbedding the problem
(2.2) into the following relatively large family of parameterized problems. Let us consider
for any given n (1 <n < N +1), z, € X and )\, € [0,1] the maximization problem :

Un(Znj An) = ng Ef s [Anoppo--opuyopuyi|(i)m n<m<N|  (2.11)
1<n<N

UN4L(TN1 1 AN 1) = Avg o pvii(@vg)  0< Ay < L (2.12)

Here the maximization is taken for all Markov policies m for a subprocess starting from
one-dimensionally augmented state (z,, A,) € X x [0, 1] at stage n and terminating at state
(xn+1, An+1). Note that any Markov policy 7 = {7y, Tni1, ..., Tn} on the augmented state
space X x [0,1] is specified by a sequence of decision functions :

Tm: X X[0,1] U n<m<N. , (2.13)
Further we remark that the expected value in (2.11) is defined by the multiple summation :

E; s Anopgo--opyopuniy|(im n<m< N
= Zz .. Z {[/\n 0 pn(Tp, Up) 0+ 0 un(TN, uy) 0 ,U«N+1($N+1)]
(1 ZN41)EX XXX
Xp($n+1|$m Un) ot 'p(-TN+1|$N, UN)} (2-14)

where the alternating sequence of action and one-dimensionally augmented state

{uﬂ) (IE”+1, )‘n+1)7 Up41, ($n+2, )\n+2)7 <.+ UN, (xN-H? /\N-H) }

is stochastically generated through the Markov policy 7 and the starting state (z,,\,) as
follows :

p(' |xn;un) ~ Tn+1

Wn(x'nJ A”) =Un = { An o /J:n(mna un) = An-i—l

p(' Ixn+1, Un+1) ~ Tp+2
- T T A =u —
n—H( n+l, n+1) n+1 { /\n+1 o Nn+1(-77n+1, un~|—1) — /\n+2

— (2.15)

p( |33N,UN) ~ TN+1

— a)‘ = —
7TN($N N) un { AN © ,UN(xNa ’LLN) = AN41-

However, note that the sequence of the latter halves of the states {An41, Mt2, -- -5 Ani1}
behaves deterministically in (2.15).

Then we have the recursive equation between value v,(z;\) and two-variable function
Unp1(550):
Theorem 2

vn (23 0) = Max 3 vn11(y; A © pn(z, u))p(yl2, u) (2.16)
yeX

zeX, 0<A<1 n=12,...,N
vtz A) =Aopunii(z) z€X, 0<ALL. (2.17)
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202 S. Iwamoto, K. Tsurusaki & T. Fujita

Proof By replacing the binary relation A in proof of Theorem 6.2 of ([14]) with the
associative relation o, we can derive the recursive formula (2.16) in a same way as in ([14]).
im]

Solving the recursive equation (2.16) yields an n-th optimal decision function 7 : X X
[0, 1] — U. Hence, as a whole, we have a Markov optimal policy

T =, Ty, e T}

on the one-dimensionally extended state space X x [0, 1]. By projecting the optimal policy
m* onto the original history space

XxXx--xX (N+1)-times
with starting state (z1,¢), we obtain a general optimal policy
o* ={0},05, .., 0N}

on the state space X. At the same time, the desired optimal value is given by v; (z1; ¢), which
is attained by the policy o* ([14]).

3. Conditional Decision Processes
In this section, we propose two conditional optimization problems subject to the successive
constraint; one is an a posteriori conditional decision process (cdp) and the other an a priori
cdp.

Throughout this section, we consider the class of all Markov policies on the original
state space X. Note that any Markov policy m = {m, 73, ..., 7y} is specified by a sequence
of Markov decision functions :

X U 1<n<N. (3.1)
We assume that the binary relation o is monotone :
pu<v = Adopu<Aor. (3.2)

However, we do not assume the associativity of the relation o.
Then we are concerned with optimization of expected value of the backward accumulated
returns :

Ef [poluzo---opnopnit] 1]
- ZZ“Z{[’“(%’“” o [pa(za, up) 0 -+ o [un(xn, un) o pnr(Tng1)] 1]

(1:2,.‘.,11:N+1)EXX--'XX
X p(x2|z1, w1)p(xs|22, uz) - P(Tni1]TN, un)} (3.3)

where the sequence of controls is determined through Markov policy 7 :
Uy = Tp(x,) 1< n <N

The multiple summation (3.3) is not necessarily decomposed into an iterative (or repeated)
summation. We show two types of decomposition by taking backward conditional expec-
tation. In the following subsections, we optimize such decomposed forms in the class of
Markov policies.
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3.1. A posteriori conditional decision process

First, at each stage we take backward conditional expectation of remaining process after
performing take-action for regular decision process (Figure 1). This generates an a posteriors
cdp as follows:

Maximize p1(21,u1) o Byt [pa(zg,ug) o - -+ 0 EZN-! [un(zN, un)

| B 1] ]
subject to () Zni1 ~ P(*| Tnyup), un €U 1<n<N (3.4)
Here we note that
Ejp=Y py)p(ylz,v) for p=p(). (3.5)

yeX

For the sake of simplicity we use the following short notations :

E'w = Ej"p (3.6)
im0 B = pm(smun) o B 1<n<N. (3.7

Thus the objective function in (3.4) is written as follows :

,uloEl[,u2o---oEN"l[,u,NoEN'uNH]...]
= (w1, ) o Byt [pa(wg,ug) 0 -+ 0 Eg¥-Hun(zn, un) 0 Ex¥ pvia ] -] (3.8)

We should remark that Markov policy 7 is implicit in the notation E™ in (3.8). That is,
E'uw=E;"n, up=mp(z,) 1<n<N. (3.9)

Thus the resulting a posteriori conditional expected value from Markov policy 7 is one
backward iterative summation :

#1OE1[M2O"'OEN—I[MNOEN;LN+1]---]

= Ml(ﬂfl,ul) ° Z [M2($2,U2) A [MN—l(fUN—l,UN—l) ©
T2€X

Z [un(zNn,un) o Z pN+1(TN+1)P(TN41]T N, un) |
TyeX TN+1€X

p(en|en-1,un-1) ] |p(z2|z1, 1) (3.10)
(up = mp(z,) 1< n<N).

On the other hand, the so-called expected value is the multiple summation :

Ef[molpgo---ofunopunia] -]

= Z Z .Z{[Ml(xl,ul) o ['u,2(x2,'u2) 0---0 [MN(iUN,UN) o /~LN+1($N+1)]' . ]]

(Zz,...,mN+1)EX)<-'-XX
Xp(za|T1, u1)p(z3|T2, u2) - - - P(TN 1 |T N, un) } (3.11)
(un, = mp(z) 1< mn<N).

We note that in general the equality
Eglmolpgo---olunvopni]---]]
— wo B uzo -0 BV [uy 0 EN ]+ ] (3.12)
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Figure 1 : Conditional expectation after take-action
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Figure 2 : Conditional expectation before take-action

does not hold. However, two typical processes admit the equality (3.12). One is the additive

process : o = +. The other is the multiplicative process : o = x. Throughout the remainder,

we are mainly concerned with the class of processes which do not admit the equality (3.12).
Let us consider for any given n (1 <n < N + 1), z, € X the maximization problem :

’wn(l'n) = Mﬂax[‘un o En[”n—H O memO EN_l[,LLN
oEVunt1] ]| (Jm n<m < N | (3.13)

WN41(ZN41) = Un+1(TN11), (3.14)

where maximization is taken for all Markov policies 7. = {my,...,7x}. Then we have the
recursive equation between value w,(z) and one-variable function w41 (-):

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Conditional Decision-making 205

Theorem 3

wp(z) = Max [tn (2, u) © > Woir (¥)D(y |2, uw)] (3.15)
yeX
reX, n=12,...,N
wyi1(z) = pya(z) zeX. (3.16)

Proof This is the recursive formula for a deterministic dynamic program under mono-
tone relation o. 0
The validity of recursive formula (3.15) is equivalent to the validity of equality

Mﬁx[ﬂl o E'fugo--o BN uyo ENpuyya]---]]
= Max|[m o E*Max [pg 0 --- 0 EN " Max [uy o ENpuyy1]-++]] (3.17)
™ 2 TN
(up = mp(z,) 1< n<N).

3.2. A priori conditional decision process

Second, before in turn performing take-action for regular decision process, we take at each
stage backward conditional expectation of remaining process (Figure 2). This generates the
following a priori cdp :

Maximize E;[p (21, u1) o B2 [1a(wa, up) 0

oEgN [un(zN, un) © NN+1] 1]
subject to  (i)n Tny1 ~ p(*| Tn,un), up €U 1< n < N. (3.18)
Here we note that
Eg [ (2, u) o p] = ;{[Nn(% w) o p(y)lp(ylz,u) for p= pu(). (3.19)
y
We use the following short notations :
E™pn 0 pt] := E3" [pin(Tn, un) o] 1< n <N (3.20)

Henceforth, the objective function in (3.18) is written as follows :

E'{p o B*[ugo -0 EN[uy o NN+1] -]
= Bt [ (71, u1) 0 B2 [pa(za, us) 0 -+ 0 Eg¥[un(zn, un) o pvia ]+ -]]. (3.21)

In the above, the relevant Markov policy 7 is compressed into the notation E" :
E™ i 0 pi] = Er [tn (T, un) o p1],  Up = Tn(ws) 1< <N (3.22)
Thus the a priori conditional expected value is the other backward iterative summation :

E'p o B*[pgo-- 0 EN[uy o pyyr]--+]]
Z [p1(z1,u1) © Z [ (w2, ug) 00 Z [ uv—1(zn—1,un—1)

I

z2€EX z3€eX zNEX
o Y [pun(zyn,un)o pyii(zyir) Ip(@NilzN, un)
TN+1€X
Ip(@N|TN-1,un-1) - P(T3|Ta, u2) Ip(22|21, u1) |- (3.23)

(up, =7p(z,) 1< n<N)
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206 S. Iwamoto, K. Tsurusaki & T. Fujita

We remark that the a priori conditional expected value (3.23) is not always identical with the
a posteriori (3.11). It may also different from the so-called expected value (3.3). However,
three expected values (3.3),(3.10),(3.23) are identical both for the additive process and
for the multiplicative process. The reason is nothing but the linearity of the expectation

operator.
Let us consider for any given n (1 <n < N +1), z, € X the maximization problem :

Wh(z,) = M,?X[En[ﬂn © En+1[:“fn+1 Or-+0 EN[FLN
ouv+1] ]| Dy (i)m n <m <N (3-24)
Wiii(zn41) = piv41(Tn4). 3.25)
Then we have the recursive equation between value W, (z) and one-variable function

Wn+1('):
Theorem 4
W) = Max 3 [in(,u) © Wi (4)lp ]2, u) (3.26)
yeX
reX, n=12,...,.N

WN+1(.’L') = ,LLN+1(.’L') re X. (327)

Proof  This is also the recursive formula for a deterministic dynamic program under

monotone relation o. O
The recursive formula (3.26) with (3.27) states the equality

Max E'[u1 0 E*[pg 0 -+ 0 ENuy o g1 ]-++]]
= Max E'[u; o Max E*[py 0 -+ o Max EN[uy o pyy1]--+]]- (3.28)
71 2 ™

Now let us consider the difference between the two cdps from a practical viewpoint.
Throughout the a priori cdp, the conditional expectation is taken prior to take-action. Thus
the a priori cdp is available when the decision-maker knows the remaining total fuzziness
before take-action (possesses an a priori information on associating the current membership
with the remaining total fuzziness). For instance, when the decision-maker gets an advance
notice that the total fuzziness is associatively evaluated through the immediate membership
and the remaining fuzziness, he/she chooses the a priori cdp. Otherwise, he/she has to draw
a lottery for the remaining future, which enables him/her to choose the a posteriori cdp.

4. Examples
In this section, we illustrate two approaches and two cdp’s on a three-state, two-action and
two-stage process with Bellman and Zadeh’s data [5, pp. B154]:

ps(s1) = 0.3 us(s2) =1.0  ps(s3) =0.8 (4.1)
pz(ar) = 1.0 pz(az) = 0.6
p(ar) = 0.7 p (az) = 1.0

Uy = a1 Uy = Qo
L\Tip1 | 51 S2 Sy L\ Ty1 | S1 S2 S
5 08 01 01 51 0.1 0.9 0.0
89 0.0 0.1 0.9 So 0.8 0.1 0.1
S3 0.8 0.1 0.1 S3 0.1 0.0 0.9
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Since the invariant imbedding approach is discussed in [12], we give only the direct
approach.
4.1. Direct recursive equation
Then the resulting optimal equation (2.8) reduces to the recursive equations :

v(ha) = pa(u1) A pa(uz) A ps(zs3)

'U2(h2) = 1\/{3){203(]7,2,u2,$3)p(x3|x2,u2) (44)
xr3
Ul(iﬂl) = ML?XZU2($1,U1,$2)I7($2]$1,U1)
)
where
Max = Max , = . 4.5
Un un€{a1,a2} :L; zne{g,:sms;;} ( )
First, we have vs(hs) = vs(z1, u1, T2, g, 3):
'US(':ﬂ) ',U;Q,.’Eg) 03('704_2_7 ‘,U2,$3)
U2\$3|31 S2 83 U2\$3l51 S2 83
ay 03 0.7 0.7 a, 0.3 1.0 0.8
Qs 0.3 0.6 0.6 Qs 0.3 0.6 0.6

Second we calculate vy (hg) = vo(z1, U1, T2):

'Ug(',’Uq,.Tz), V;('7u17x2)
u \ 2| s S9 S3
ai 057, (45 07, ay 057, a9
a; | 057, ag 0.82, a; 0.57, ag

Here we note that
—_ !/ !/ v ! !
U3(1171, Uy, Tg, U, 153) = v3($1,u1,m2,u2,13) T1,T2, T, Ty € X

Vo (21, ur, T2) = va(2h, ug, 22) leaxll € X.

Finally, we get
v1(s1) = 0.795,  w1(s2) = 0.595, wy(ss3) = 0.583.

l/ik(Sl) = a9, I/T(Sg) = a9, I/T (83) = a.

This result is also verified in Figures 3,4 and 5. The optimal primitive policy v* = {v§, 13}
yields an optimal general policy o* = {o%,05}:

oi(s1) = az, 0i(s2) =@, 0i(s3) = (4.6)

U;(Slasl) = a2, 02(32’31) = @2, 03(33;31) = a2
05(81,82) = a1, 05(82,82) = a1, 03(s3,82) = ay (4.7)

0;(81,83) = Q1,02 03(32,33) = Qag, 03(33, 33) = a2.

Note that this optimal general policy o* is Markov.
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history [ ter. fmin { XPo } sub. ’ Xpy l total l
s1] 0.3 [ 0.3 [ 0.24
s | 1.0 | 0.7 | 0.07 |0.38
ss| 0.8 | 0.7 | 0.07 0.456
s; | 03 [ 0.3 | 003
ss | 1.0 | 0.6 | 0.54 | 0.57
ss| 08 | 06 | 0.0
si| 03 ] 03 | 00
s | 1.0 | 0.7 | 0.07 | 0.7
ss| 0.8 | 0.7 | 063 0.07 | 0.583
s1] 03 [ 03 | 024
L sy ] 1.0 | 06 | 0.06 |0.36
ss| 0.8 | 0.6 | 0.06
si| 03 | 03 | 0.24
s | 1.0 | 0.7 | 0.07 |0.38
ss| 0.8 | 0.7 | 0.07 0.057
si| 03 [ 03 | 003
ss| 1.0 | 06 | 00 |[0.57
s3] 08 | 0.6 | 0.54
si| 03 ] 03 | 024
so| 1.0 | 1.0 | 0.1 |0.42
s3| 0.8 | 0.8 | 0.08 0.057
si| 03 | 0.3 | 0.03
s | 1.0 | 06 | 054 |0.57
ss| 0.8 | 0.6 | 0.0
s;] 03 [ 03 | 00
ss | 1.0 | 1.0 | 01 |0.82
ss| 08 | 0.8 | 0.72 0.738 | 0.795
si] 03 ] 03 | 024
L g, ! 1.0 | 06 | 0.06 |0.36
ss| 0.8 | 0.6 | 0.06
si| 03 1 03 024
ss | 1.0 | 1.0 | 01 |0.42
s3| 0.8 | 0.8 | 0.08 0.0
si| 03 [ 03 | 0.03
ss| 1.0 | 06 | 00 |0.57
s3| 0.8 | 0.6 | 0.54

Figure 3 : All two-stage behaviors from s; and selection of maximum branch

4.2. Bellman and Zadeh’s process

As an example of a posteriori cdp, we cite Bellman and Zadeh’s stochastic model [5, p-
p. B154]. They have got a head start on decision-making in a fuzzy environment. After-
wards, some related models [6], [7], [15], [12] have followed [5]. We consider Bellman and
Zadeh’s model as the following a posteriori cdp :

Maximize [y (u1) A Eg! [pa(uz) A Ey2pg]]
subject to (i) Zni1 ~ Pl Tn, un), un € {a1,a2} n=1,2 (4.8)
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[ ter._l min [ X Do [ sub. | X P1 I total |
s1] 0.3 0.3 | 0.24
ss | 1.0 0.7 | 0.07 | 0.38
s3 | 0.8 0.7 | 0.07 0.0
s1| 0.3 0.3 | 0.03
s | 1.0 0.6 0.54 | 0.57
s3 | 0.8 0.6 0.0
s1 1 0.3 0.3 0.0
se | 1.0 0.7 | 0.07 | 0.7
ss | 0.8 0.7 | 0.63 0.07 | 0.583
sy | 0.3 03 | 0.24
ss | 1.0 0.6 | 0.06 | 0.36
s3 | 0.8 0.6 | 0.06
sy | 0.3 0.3 | 0.24
se | 1.0 0.7 | 0.07 |{0.38
s3 | 0.8 0.7 | 0.07 0.513
s1] 0.3 0.3 | 0.03
sy | 1.0 0.6 0.0 | 0.57
ss i 0.8 0.6 0.54
s1| 0.3 03 | 0.24
ss | 1.0 1.0 0.1 |0.42
s3| 0.8 0.8 | 0.08 0.456
s1| 03 0.3 | 0.03
se | 1.0 0.6 | 0.54 | 0.57
s3 | 0.8 0.6 0.0
s1| 0.3 0.3 0.0
s2 | 1.0 1.0 0.1 {0.82
ss | 0.8 0.8 | 0.72 0.082 | 0.595
s1 | 0.3 0.3 | 0.24
se | 1.0 0.6 | 0.06 | 0.36
s3| 0.8 0.6 0.06
s1 | 0.3 0.3 0.24
se | 1.0 1.0 0.1 |0.42
s3 | 0.8 0.8 | 0.08 0.057
s1| 0.3 0.3 | 0.03
s | 1.0 0.6 0.0 | 0.57
sz | 0.8 0.6 | 0.54

Figure 4 : All two-stage behaviors from s, and selection of maximum branch

Then, (3.17) reduces to

Max [ p1(u1) A Eg} [p2(uz) A EZZps]]
= Max[pi(u) A By Max|ps(uz) A B2 ps | ] (4.9)
(up = mn(zn) n=1,2).

This is equivalent to the recurrence equations :
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history | ter. | min [ xp, [ sub. [ xp | total |
s1] 03 | 03 | 0.24
ss| 1.0 | 0.7 | 007 |0.38
s3| 0.8 | 0.7 | 0.07 0.456
si| 03 | 0.3 | 0.03
s3| 1.0 | 0.6 | 054 |0.57
s3| 0.8 | 0.6 | 00
si| 03 | 0.3 | 00
ss| 10 | 0.7 | 007 |07
s3] 08 | 0.7 | 0.63 0.07 |0.583
si| 03 ] 0.3 | 024
s3] 1.0 | 0.6 | 0.06 |0.36
ss| 0.8 | 0.6 | 0.06
si[ 03 | 03 | 024
so| 1.0 | 07 | 007 |0.38
s3] 0.8 | 0.7 | 0.07 0.057
si| 03 | 0.3 | 0.03
ss| 1.0 | 06 | 0.0 |0.57
s3] 0.8 | 0.6 | 0.54
73 08— s1| 03 | 03 [ 024
1.9/% s3] 10 | 1.0 | 01 |042
y §1.-7 01 s3] 0.8 | 0.8 | 0.08 0.057
\ <06 0. si| 03 | 0.3 | 0.03
104 “ﬁ% s3| 1.0 | 0.6 | 054 | 0.57
oot ~ s3| 0.8 | 0.6 | 0.0
\ 00— 51| 03[ 03 [ 00
1_@/% s2| 1.0 | 1.0 | 01 |0.82
g .- m ss| 0.8 | 0.8 | 0.72 0.0 | 057
$2°~0.6 0.8 S1 0.3 0.3 0.24
“2“% s | 10 | 06 | 0.06 |0.36
ss| 0.8 | 0.6 | 0.06
0.9 0.8 S1 0.3 0.3 0.24
1.(1/% s 10 | 1.0 | 01 |o042
JPrach s3] 0.8 | 0.8 | 0.08 0.513
$5°~06 04— 5| 03 | 03 | 0.03
ai‘% s3] 10 | 06 | 00 |0.57
s3] 08 | 06 | 0.54

Figure 5 : All two-stage behaviors from s3 and selection of maximum branch

’wg(SL’g)
’U)Q(.TQ)

Il

w; (1)

p3(z3)
ML?Z}X[M(W) A D ws(23)p(x3|T2, ug) |

z3

(4.10)

Max[ i (ur) A D wa(z2)p(z2|z1, us) |-

Bellman and Zadeh [5, pp. B154] give the following optimal solution through the backward

equations :
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wo(s1) = 0.6, wa(sg) =0.82, ws(s3) =0.6 (4.11)
7F2(S1) = aq, 7T2(S2) = aq, 7T2(33) = ‘127 (4-12)
’UJl(Sl) = 08, ’U)1(82) = 062, ’lUl(Sg) = 0.62 (413)
mi1(s1) = a1, mi(se) =a1 or as, mi(s3) = ar. (4.14)

However, Iwamoto and Fujita [12] have given an exact expression of wy(z1), mi(71) as

follows :
wi(s1) = 0.798, wi(s2) = 0.622, wy (s3) = 0.622 (4.15)

m1(s1) = az, m(s2)=a; or as, Ti(s3)=a. (4.16)

This fact is also verified in Figures 6, 7, 8 and 9.

M pa(e) A 3 s p(asl )|

history | ter. |><p1 | E? |min |
s ] 03 ]0.24
% s5| 1.0 |01 |042] 042
A0 01 5| 0.8 |0.08
51 0.6 0.1 s; | 0.3 [0.03
I~ 0.9 s, | 1.0 |09 |093|0.6
20 o | 08 |0.0
S1 0.3 0.0
V257 o1 1o o1 |os2 o082
L0 9 5| 08 |0.72
%27~ 0.6 0.8 sp| 03 [0.24
dQ‘\% s2| 1.0 [01 [042 042
0L o1 08 |0.08
s, [ 03 [0.24
,,% s2| 1.0 |01 | 042|042
- ’1;0,0—11’ 0.1 S3 0.8 0.08
53 0.6 0.1 sy | 0.3 [0.03
i~ 0.0 s,| 1.0 |00 |0.75] 0.6
%9 5. | 08 |o0.72

Figure 6 : One-stage a posteriori conditional decision tree from s;, s and s3
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Mo r) A 3= Max{ o) A Y- psms)p(as o, ) p(oalsr, )|
z2 3

history | ter. | xp, | E* [min [ xp; | E* | Min |

0.3 |0.24
1.0 | 0.1 | 0.42 | 0.42
0.8 | 0.08
0.3 | 0.03 0.48
1.0 | 0.9 |0.93 0.6
0.8 { 0.0
0.3 | 0.0
1.0 { 0.1 | 0.82]0.82
0.8 | 0.72
0.3 10.24 0.082 | 0.622 | 0.622
1.0 | 0.1 | 0.42|0.42
0.8 { 0.08
0.3 | 0.24
1.0 1 0.1 | 0.42 ] 0.42
0.8 | 0.08
0.3 {0.03 0.06
1.0 | 0.0 | 0.75] 0.6
0.8 | 0.72
0.3 |0.24
1.0 | 0.1 | 0.42|0.42
0.8 1 0.08
0.3 | 0.03 0.06
1.0 {09 |0.93|0.6
0.8 | 0.0
0.3 | 0.0
1.0 { 0.1 | 0.82]|0.82
0.8 | 0.72
0.3 10.24 0.738 | 0.798 | 0.798
1.0 { 0.1 | 0.42 | 0.42
0.8 | 0.08
0.3 |0.24
1.0 | 0.1 | 0.42 | 0.42
0.8 | 0.08
0.3 | 0.03 0.0
1.0 {00 |0.75| 0.6
0.8 | 0.72

Figure 7 : Two-stage a posteriori conditional decision tree from s;
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Max [ul (u1) A %: %@X{MQ(UQ) A %: p3(x3)p(w3|22, us) }p($2|82a Ul)]

r history iter. | szl E? ‘min {Xpl | El l Minj
s1] 0.3 ]0.24
L% 57 s, 110 |01 |o042] 042
e g”-f ss | 0.8 |0.08
511 031]0.03 0.0
st ad8 1 0Lyg o110 |09 |093]0.6
0.0 0.0 551 0.8 | 0.0
p_ 5103100
Lo { % sy | 1.0 0.1 |0.82]0.82
0.1 .(1,1 7 s3¢ 0.8 0.72
Sy 06 gg_ 51|03 024 0.082 | 0.622 | 0.622
a’~d =201 s, | 1.0 | 0.1 |0.42 | 0.42
{0,1 s3 | 0.8 | 0.08
s, 0.3 10.24
0.9 L %8457 sp | 1.0 [ 0.1 |0.42 | 0.42
0.7/a, Lo <0-1 s3 | 0.8 | 0.08
S5~06 g 51|03 |0.03 0.54
as~&L="710.0 s5 | 1.0 | 0.0 |0.75| 0.6
09 5,1 0.8 | 0.72
S2 0.8 s1 1031024
01 s, | 1.0 | 0.1 | 042 0.42
R8T 5| 0.8 | 0.08
5,1 03]0.03 0.48
10%2 st as8 L 855 o 1 1.0 109 | 093] 0.6
0.4 00 ¢, 1 0.8 | 0.0
0 51| 0300
. 4 % sy | 1.0 | 0.1 |0.82 ] 0.82
v 0.1 < 7 53| 0.8 |0.72
06 gg 51|03 ]02 0.082 | 0.622 | 0.622
azxiéé' 0.1 55| 1.0 | 0.1 |0.42|0.42
2 5,108 |0.08
s1 103 (024
0.1 L9855 s 110 |01 | 042|042
e 2 53| 0.8 | 0.08
S:~0.6 g 51|03 [0.03 0.06
as 0.0 s5 | 1.0 | 0.0 |0.75| 0.6
09 5,108 | 0.72

Figure 8 : Two-stage a posteriori conditional decision tree from so
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Max [ul(ul) A % %§X{u2(U2) A ; p3(3)p(23] %2, u2) }p(z2|83, “1)}

history | ter. | Xpy | E? [min | xp; | E' | Min |

0.3 0.24
1.0 | 0.1 |o0.42|0.42
0.8 | 0.08
0.3 [0.03 0.48
1.0 |09 |093 0.6
0.8 | 0.0
03 0.0
1.0 |01 |0.82|0.82
0.8 | 0.72
03 1024 0.082 | 0.622 | 0.622
1.0 |01 |o042|0.42
0.8 | 0.08
0.3 [0.24
1.0 | 0.1 | 0.42 | 0.42
0.8 | 0.08
0.3 [ 0.03 0.06
1.0 100 |0.75 | 0.6
0.8 | 0.72
0.3 024
1.0 |01 | 042|042
0.8 | 0.08
s, 037003 0.06
1.0 | 0.9 |0.93|0.6
ss| 0.8 00
s, 037100
1.0 |01 |082|0.82
. 0.8 | 0.72
: s, (03024 00 | 06 | 06
01 s, | 1.0 |01 | 042|042
1 5,1 0.8]0.08
s; (03024
0.9 L9857 s | 1.0 101 | 042|042
Lo 5,1 0.8 | 0.08
s, 031003 0.54

837 \06
2195570 s, 1 1.0 100 | 075 | 0.6
09 s, 1 0.8 1{0.72

[y
o)
Q
l\)
/
(.._
S
Y
)
o
¥
N

\\'._l
@
275
*_
S
)
SIS =[S
O~ S
»w O
w N

Figure 9 : Two-stage a posteriori conditional decision tree from s3
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4.3. A priori process
As an a priori cdp for Bellman and Zadeh’s process (4.8), we consider the following problem :

Maximize E3{p(u1) A Eg2[pa(uz) A pa]]

2

subject to  ()n Zni1 ~ ("l Tnyun), up € {a1,02} n=1,2. (4.17)
For the preceding data, the corresponding recursive equations

Wi(23) = pa(z3)
Wa(w2) = Max } [ p2(us) A Ws(25) [p(23]22, ua) (4.18)

Wi (z1) = Max 3 [ i (u1) A Wa(z) p(ealer, u)

have the solution

W3(81) = 03, W3(.5‘2) = 10, W3(83) = 08, (419)
WQ(Sl) = 057, WQ(SQ) = 082, Wz(Sg) = 0.57 (420)
m5(s1) = aa, 73(s2) =a1, m5(s3) = ay, (4.21)
Wi(s1) = 0.795, Wi(sy) = 0.595, Wi(ss) = 0.583 (4.22)
7'(';(81) = ag, WI(SQ) = a9, 7T1((83) = aj. (423)

This solution is also illustrated in Figures 10, 11, 12 and 13. (Figures 12 and 13 are omitted.)

ng [%{Mz(uz) A pa(z3) yp(z3| 22, “2)]

} history [ ter. [min [ xp | E* |
0.8 s.] 03] 03 ]0.24
% 59| 1.0 1.0 |01 | 0.42
Mg 0L o 10808 |0.08
51 0.6 0.1 s1[0.3 | 0.3 [0.03
az 0.9 s,|10 | 06 |0.54 | 0.57
0.0 4. 108 |06 |00
. % s9| 1.0 1.0 |01 |0.82
—U1 : s | 0.8 0.8 | 0.72
527~-.0.6 03] 03 |0.24

=0 0.8 81

a2~\% 5| 1.0 | 0.6 | 0.06| 0.36
0L o108 06 |0.06

s3] 1.0 1.0 |01 | 042

s3] 08| 0.8 |0.08

1| 03] 03 |0.03

s | 1.0 | 0.6 | 0.0 | 0.57
s3| 08 | 0.6 | 0.54

Figure 10 : One-stage a priori conditional decision tree from s, s3 and s3
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Max [Z{“l (uy1) A N{f;x ;{,UQ (u2) A ps(x3) }p(xslz,, u2)}P(3§2|81, m)]

Z2

history | ter. [min | xp, [ E* [min [ xp, [ ET |
s1 103103024
1.0 | 1.0 ; 0.1 0.42

e
\
\
S
\
2
S
Co
S
i
»n O»n
o [\

0.8 | 0.8 |0.08
C06 gy 51|03 [037]003 0.57 | 0.456
51 "l 60'982 1.0 | 0.6 | 0.54 | 0.57
0.8 00 55 ] 0.8 | 0.6 | 0.0
51| 0303700
Lo < 01s,| 10| 1.0 0.1 |0.82
oy LS 0.9 s, | 0.8 ] 0.8 | 0.72
: s; | 0303024 0.7 |0.07 | 0.583

527~.0.6 .8

1.0 | 0.6 | 0.06 | 0.36
s3 | 0.8 | 0.6 | 0.06
! s11 03103 ]0.24
’ 1.0 | 1.0 [ 0.1 | 0.42

/.
M

/7
S
S
L Y
W

[\~

o]
e\
QT ~ o
ER
)
—
\
2
21
S
Qo
SIS
LN LS
W O
w [\~

, 0.8 | 0.8 |0.08
K S 06 5 51| 0370371003 0.57 | 0.057
/ as ~ <0.0 1.0 | 0.6 | 0.0 |0.57
29 551 08| 0.6 |0.54

0.3 03 (024

1.0 | 1.0 |01 | 042

0.8 | 0.8 | 0.08

0.3 | 0.3(0.03 0.57 | 0.057

1.0 | 0.6 | 0.54 | 0.57

0.8 | 0.6 0.0

0.3 0.3 [0.0

1.0 [ 1.0 |01 |0.82

0.8 | 0.8 | 0.72

03103 (024 0.82 | 0.738 | 0.795

1.0 | 0.6 [ 0.06 | 0.36

0.8 | 0.6 | 0.06

0.3] 0.3 |0.24

10| 1.0 [01 | 042

0.8 | 0.8 | 0.08

0.3 0.3 ]0.03 0.57 | 0.0

1.0 | 0.6 100 |0.57

0.8 | 0.6 | 0.54

Figure 11 : Two-stage a priori conditional decision tree from s;
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5. Concluding Remarks
We remark that for the case o = A

and that for the case o =V

We note that the equality

2 og@lp@) =Xo 3 glx)p(x) o=+ x

zeX reX

holds for a real constant ), a function g : X — R! and a probability function p. However,
for any binary relation o, the equality

> [Nog@)lp(x) = Ao > g(z)p(z)

zeX zeX

does not always hold. (For further details, see [11}.)
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