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Abstract In this paper, a class of stable and coalitionally nonmanipulable social choice correspondences 
is presented. Each correspondence in this class, called the hypercore, is induced from a social choice 
function with restricted domain of preference profile. I t  is proved that the correspondence is the intersection 
of cores over an equivalent class of profiles. On the contrary to Demange's max-max criterion, max- 
min criterion is adopted for defining a coalitional nonmanipulability. Although the core induced from a 
coalitionally nonmanipulable social choice function with a restricted domain does not necessarily satisfy the 
nonmanipulability in the max-min sense, it is shown the hypercore does. 

1. Introduction 
By a society, we mean a set N = {l, 2, n}, consisting of the n agents. It is assumed 

that each agent z G N has a linear preference order >-i over a set of m possible social 
alternatives, A = {al, 0 3 , .  . . , am}. Let -C be the set of all linear preference orders on A. A 
preference profile of the society is defined by >-N= (>-l, >"2, + .  , h). The set of all profiles 
is denoted by ,CN. 

The focus of social decision problem initially was to identify a 'rational' rule for combining 
agents7 profiles into an ordering >-G C. Formally, a rule is described by a social welfare 
function, which is a mapping from P to C. ARROW [l] showed that there exists no social 
welfare function satisfying Pareto optimality, independence of irrelevant altern,atives and 
nondic t atorialness. 

This fact led us to the studies of social choice problem instead of the social welfa,re prob- 
lem. In a social choice problem, we seek to identify a rational rule for combining agents' 
preferences into an alternative a E A. That is, the requirement of finding a linea,r order 
is relaxed. The rule is described by a social choice function (SCF) which is a mapping h, 
from ,CN to A. However, GIBBARD-SATTERTHWAITE theorem [5,8] claims that any individ- 
ually nonmanipulable SCF defined over all possible profiles is either dictatorial or satisfies 
1 h ( / ^ )  1 5 2. This result hinders a naive attempt to find a, reasonable solution to the social 
choice problem. 

Several alternative paths have been explored to circumvent the negative results mentioned 
above. We review some of them here. BARBERA, SONNENSCHEIN and ZHOU [2] considered 
a problem of the approval voting. Since the approved set of alternatives can t,ake any subset 
of A including the emptyset, it is necessary to assume that each agent, has a linear preference 
order on the power set 2 A  of A. They showed that, when the preference orderings on 2A are 
separable7, a voting scheme satisfies both individual nonmanipulability and 'sovereignty' if 
and only if the voting scheme is 'voting by committees'. This result is strong but is only 
applicable to a specific scheme of a,pproval choice. 

MOULIN and PELEG [6] explored another path by introducing the effectivity function 
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(EF). EF indicates the power of each subset of N on the result of social choice when all 
agents of the subset cooperate together. They defined the consistency condition that is a 
relaxation of individual nonmanipulability, and studied the core of EF. 

The concept of nonmanipulability employed in the above two approaches is rather weak 
in the sense that it leaves no room of manipulation only for individuals but is susceptible to 
coalitional manipulation. Also, note that the result of BARBERA, SONNENSCHEIN and ZHOU 
[2] holds true under the restriction of domain . One promising way to go around these 
problems appears to be the use of social choic orrespondence (SCC), which is a, mapping 

to  2A. SCC relaxes the requirement of the definite value property imposed on 
nder this setting, DEMANGE [4] introduced optimistic coalitional nonmanipulability. 

CC is optimistically coalitionally manipulable to S C N if the following two 
satisfied: (1) All agents in S prefer some alternative to every alternative in 

the current SCC value. Here the current SCC value is the value of SCC when all agents 
reveal their true preferences. (2) Agents in S can insert the preferred alternative into the 

CC value by presenting their preferences strategically. The qualifier "optimistic9' is added 
to coalitional manipulability si e the coalition members are interested only in inserting 
the preferred alternative into t SCC value, and not in excluding a disliked one. That 

ition members opti ically hope that their favorite alternative in SCC would 
be eventually selected. Demange introduced a condition called strong stability for EF. 
This condition includes the convexity of EF and furt assures the nonemptiness of the 
core. It was shown that  the strong stability of EF lies the optimistically coalitional 

ility of the induc ore. Her result has a wide range of applicability since she 
eneral class of S . Unfortunately, no actual example of voting rule which 

induces her strong sta,bility EF was shown. 
aper is to  construct a class of SCCs each of which satisfies the 
nd the coalitional nonrnanipulability based on rnax-min criterion. 

stic and pessimistic coalitional nonmanipulability, 
h is similar to our coalitional nonmanipulability in max-min sense, she 

focused her discussion only on the properties concernin the former. We would like to 
ur approach is not b 

defined on the whole is defective with 
ility as stated in GIBBARD-SATTERTHWAITE [5,8]. We thus introduce 

function (RSCF) f which is a ction from a nonernpty subset 
is nonrnanipulable in its domain 'Dr. construct an SCC by assigning 

ain of f, keeping its stability and coalitional 
one of reasonable candidates for such SCCs. 

coalitionally nonmanipulable in the 
ionally nonmanipulable SCCs in the 
m RSCF f and is called hypercore 
n among others that is a subset 
longs to the domain of /, then H{ 
introduced a condition on f called 

ich is a sufficient condition for the coalitional nonmanipulability of f. In 
stability, it is easily shown that a class of restricted majority 

with noncovering property. It is proved that the 
isfies the noncovering property. 

and Basic Concepts 
2.1. Restricted social choice function and noncovering property 
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Let N = {l, 2 ,  - , n} be a society, the set of agents, n 2 2 ,  and A = { a l ,  a2 , .  . . , am} be 
the set of al ternatives,  m 2 2. A coalition is a nonempty subset of N. By 2 A  we denote 
the set of all subsets of A, and let P(A)  = 2A - {g}. A preference ordering of each 
agent i E N, denoted by +;, is assumed to be a linear ordering on A, namely, an irreflexive, 
transitive and connected binary relation. Let C be the set of all linear preference orderings 
on A. An n-tuple >fi= .. ,h) (+;E C , i  6 N )  is called a preference profile, 
and C^ denotes the set of all possible preference profiles. For any coalition S ,  +S denotes 
the projection of +" over S ,  and F;) denotes the profile in which preference of S is 
replaced by G. 

Given +;E C and B E P(A) ,  let E ( B ;  +;) (&(B; +;)) denote agent i's best(worst) alterna- 
tive among B under +;, i.e., 

a $i a{B; >-t) for every a G B and 
a ( B ;  +i} $, a for every a E B. - 

We abbreviate E ( A ;  +;),^(A; +;) as E(>^),^(+;) respectively. Given an alternative a G A 
and a profile + 6 p, let S ( a ;  denote the set of agents, called suppor ters ,  whose best 
alternative under >-̂  is a ,  i.e., 

S ( a ;  b) = { i  E N 1 a = E(+;)} .  

Also define S' ( a ;  >{,) = N - S ( a ;  +"). 
We first consider nonmanipulable restr icted social choice functions(RSCFs). Each 

RSCF either attains an alternative in A or produces no outcome according to profiles in C N .  
By D f  we denote the domain of an RSCF f .  It is assumed that T>f is a nonempty subset 
of C". An RSCF f is formally defined as a mapping f : V ,  -+ A. An RSCF f is said to be 
nonmanipulable,  if there exists no coalition S ,  profiles +N and +h= (>-^-S, +L) E T>f 
such that f (G) + i  f (F") for every i ? S. 

By 1 f (m1 we denote the cardinality of its range. Let F be the class of all RSCFs that 
produce at least two distinct outcomes of A, i.e., F = {f : 'Df + A \ l f ('D,)! 2 2 } .  

We shall state a property of RSCF, which plays an important role through this paper. 
Definition 1 An RSCF f E 7 has  the noncovering property(NC, for shor t )  i f  f satisfies 
the following condition: 

For every >{,, >%, - - , +h? V, and 
for every se t  of distinct alternatives a l ,  a2, .  . . , ar ( 1  5 r 5 m) such that  

a~ # f (>v) for every j = 1 , 2 ,  - , r ,  
U',sl S ( a j ;  >-y) # N .  

This property means that any set S ( a ;  +L) such that a # f (+L) does not have relatively 
many agents. 

Note that if f satisfies NC, then f (h) # a for every >f,& Â£Â and a E A such that 
S ( a ;  > N )  = 0. 
Proposit ion 1 T h e  NC condition i s  a sufficient condition for f to  be coalitionally nonma-  
nipula ble. 

Proof : Suppose there exists a coalition S and profiles +JV and >>) such that 
f ( + N - S ,  >'s) >t f ( + N )  = al for every i E S. Since al # a(+;,) for every i G S ,  we have 
S ( a l ;  F;)) 3 S ( a 1 ;  > N ) .  Set +h= (+"-S, +;) and +$=+Ã for j = 2 , 3 ,  - - , m. 
Then we have U,"sl S ( % ;  >-y) = S ( a 1 ;  (h-S, F;)) U U,".2 S ( a j ;  h) = S ( a 1 ;  (+^ / -S ,  >s 
)) U SÂ¡(% >n) = N ,  which means that f does not satisfy NC. 

Let F* be the class of all RSCFs in F satisfying NC. 
It should be noted that F* is nonvacuous. The following example provides a simple 

subclass of F*. 
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Example  1 W e i g h t e d  M a j o r i t y  ru l e s  
f ( > v ) = a j * f o r e v e r y k ( f i ) 6 { 1 , 2 , + . , m } ,  p i<qk,  

i â ‚ ¬ S ( a k ; >  

w h e r e  pi,  pa, . . . , pn a n d  q l ,  q2,  . . . , qm are pos i t ive  coef f ic ients  ass igned t o  t h e  agen t s  a n d  
a l t e r n a t i v e s  respect ive ly  s a t i s f y i n g  E L  pi = 1 a n d  zl qj = 1. N o t e  t h a t ,  w e  h a v e  0 # 

+ N I  for  every  k W  j) E {l,  2 ,  . . 7 m}9 E S ( < . ~ ; F ~ )  P. < qk].  

Indeed, every f satisfies NC condition. For every 6, +%, - - - , +h? 'Df and for every 
distinct alternative ai ,  a2, . . . , a, (1 & r S m) such that a, # f (+L) for every j = 1,2, . , r ,  

i6S(a,;+i) pi < for every j = 1, 2, - - - , r .  Summing up the inequalities for 

2, * ,  r ,  we get ~ i e s ( a , f r ~ )  pi < q j  S; 1. Since EielJr- s(aj;&) pi 

a 3 '  j N 9 we ha el~',, S(.,:>{) P' < 1, which means that U;sl S(aj ;  ;-L) # 
N .  

When p1 = p2 = . = pn = 1/n and ql  = q2 = . - -  = q̂ i = 1/m, the weighted majority 
rule becomes the (m - l)/m-majority rule, i.e., 

m - 1  
f(h) = a * \S(% h)\>- - n. 

m. . .  - 
Indeed, if f (sN) = a j  then for every alternative ak # a,, we have lS(ak; >n}\ < An, that 

1 is, l l s (ak;  >Ãˆ) < 5 = qt. Thus we get Ei6S(ak;h)~. = ; < qn ,  which is the 
condition of the weighted majority rule. 

Finally, if q1 = 03 = = qm = 1/m, pi* = 1 - 1/m + 1/mn and pi = 1/mn for every 
z # i*, then the agent i* is a dictator. 
2.2. Social choice correspondences 

A social choice correspondence(SCC) G is a mapping from LN to 2A. When G ( b  
) # 0 for every >,/E L ,  the SCC G is said to be stable. 

The most famous example of SCC is the core. In our context, the core is induced from f 
as follows: 
Definition 2 L e t  f be a n  RSCF. T h e  SCC core i s  

Cf (+Ãˆ {a 6 A 1 f o r  e v e r y  b(# a) A, S C [z E NI6 +i a} a n d  +>, 
( ~ N - s ,  >'s) # o r  f (FN-S, S;) # h } -  

Now, we define the hypercore Hf for a given RSCF f .  
Definition 3 L e t  f be a n  RSCF. An SCC Hf,  called hypercore, i s  

Hf (h) = {a E A 1 f o r  e v e r y  +h? D f ;  S(a;  +h) 3 S(a; +N),  f (+h) = a}. 

Example  2 Reca l l  t h e  weighted  m a j o r i t y  ru l e  m e n t i o n e d  i n  Example 1. T h e  hypercore Hf 
of t h e  RSCF f cor respond ing  t o  t h e  weighted  m a j o r i t y  ru le  is as  fol lows: 

H/(^) 3 {aj â ‚  1 Â £ i E ~ ( a , ; ~ ) p i  qj}- 

Because for every alternative a, such that Eies(aj;>-N) pi S qh ^(aj; +h) 3 S(aj; + N )  implies 

E ies (a j ;+~)  P. 2 V,- It means that &# Df or f (G) = a,. Thus we have a, E H*̂}. 
If the weighted majority rule f satisfies f (h) = aj  for every k (#  j )  6 {l, 2, - . . , m},  

Ei6S(ai;>N)Pi < q k ,  we have H f ( > - ~ )  = E A 1 E i â ‚ ¬ ~ ( a , ; > ~ )  qj}' Because every 
alternative a, such that EiES(<i,.;-Ãˆ pi < qj ,  the following profile +> Df satisfies that 
S(aj ;  +h) = S(aj;  h) and f (G) # aj: 

+:=h if i 6 S(aj; +h= a(>-',} = a@ a,) otherwise. 
When the RSCF f is the (m - l)/m-majority rule, the hypercore of f is as follows: 

^(h) 3 {a 6 A 1 lS(a; ̂ )l 2 h}. 
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The nonmanipulability based on max-min criterion for SCC is as follows: 

Definition 4 A stable SCC G i s  coalitionally nonmanipulable if for  e v e r y  > n G  C.11 , 
t here  does n o t  ex is t  a coali t ion S, a profile >-+ >"L) and  a n  al ternat ive  a ? G(>-^) 
sa t i s f y ing  t h a t  

a' >-i a f o r  e v e r y  a' E G(>-^) and  every  i G S. 

If an SCC G is coalitionally manipulable, i.e., for some profile +JV, there exists an a G G(+^ 
and S, >-L satisfying that a' >-i a for every a' G +L) = G(+>) and Â¥ G S, we say 
that the coalition S can manipulate G(+N) through the strategy G. Since the alternative 
a satisfies a >, a.(G(>n)',>i) or a = a.(G(>s); h), we have Q ( G ( G ) ;  >.) >-i ~(G(>-N) ;  >-i) 

for every i E S. This fact implies that if S can manipulate G(+^) through '̂g then for 
each member of S, G(>-h) is more preferable than G(>-^) in the max-min sense. On the 
contrary, we have a(G(>-'^); >-i) >-i iZ(G(>-N); S;) for every i E S if the coalition S can 
manipulate the SCC G through the strategy >>-L in DEMANGE'S definition [4] which is based 
on the max-max sense. 

Next examples demonstrate the manipulability of the core and the nonmanipulability of 
the hypercore in the max-min sense. 
Example 3 C o n s i d e r  t h e  3 1 4 - m a j o r i t y  rule  w i t h  N = { 1 , 2 , . - - , 5 }  a n d  A = {a, b,c,d}. S e t  
t h e  profile >-AT a n d  as  follows: 

a > - l b > f c > - i  , a>-2b>-> .d>Â¥->c  a > - 3 c > - 3 b + 3 d 7  b > - 4 d h a > - 4 c 7  
d > - 5 c + 5 b > - 5 a  a n d a > [ c > [ b > [ d ,  a > - c > ' ^ b > ' d .  

T h e n  w e  h a v e  Cf (h) = {a, b }  a n d  Cf (>-h2}, >{3,4,5j) = {a}, t h a t  is, t h e  coali t ion {l, 2} can  
m a n i p u l a t e  t h e  core through  the  s trategy T h u s  t h e  core i s  manipu lab le  in o u r  con tex t  
as  th i s  e x a m p l e  shows.  O n  t h e  contrary ,  w e  h a v e  Hj(>-y) = {a} a n d  Hf(+b,2-i,  +{3,4,5j) = 

{a}. T h i s  e x a m p l e  suggests  t h e  hypercore of th i s  e x a m p l e  can  n o t  be manipu la ted  by a n y  
coali t ion.  
When the agent 5 uses the strategy b >-v +;-" c >-h, we have Hf (>-{1,2,3,41, >-9 = {a, b}. 
Since b = a{{a, b}; s5) >-5 ~({a};  = a ,  the agent 5 can manipulate the hypercore in the 
max-max sense. However, any coalition can not manipulate the core in the max-max sense. 
If the coalition S can manipulate C * i f }  in the max-max sense, then it must satisfy 1 S1 2 4 
and there must exist an alternative X f C^(>-^) such that X >i y for every i G S, where 
y = a(Cf (F^); >.} for every i G S. By the definition of the core, we have y f Cf (F^) which 
is a contradiction. 

3. Properties of the Hypercore 
From the definition of the hypercore, we can immediately see that the hypercore is included 

in the core for every profile. Moreover, we can see the following properties of the hypercore. 
Lemma 1 L e t  f be a n  RSCF. If f(h) = a t h e n  Hf(>^) C {a}. 

Proof : For every b # a, f(h) = f(>-~(~.~, >-scCtr.N)) = a # b. From the definition of 

Hf (>-NI, b i Hj(+Nl. 
This property expresses when a profile +^ belongs to the domain of a given RSCF f ,  the 
hypercore Hf of the profile does not include any alternative except f (>N). 
Lemma 2 L e t  f E F .  If  S(a;  = 0 t h e n  a $ Hf (>-^). 
Proof : We see that for every 6, S(a;  >-L) 3 S(a; >-d. Since 1 f ('Pf)[ 2 2, there exists 
>-h such that f (>'n} = b # a. From the definition of Hf , a f Hf (>-^). c l  
This lemma means that if an alternative has no supporter at a profile, then the alternative 
is not included in the hypercore for any f at the profile. 

We consider the monotonicity of SCC with respect to supporters. 
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Definition 5 An SCC G is said to be monotonic, i f  a  S  G(&) for every >-L? ,CN such 
that S ( a ;  >L)  3 S ( a ;  >n) whenever a  E G(>-f,). 

Lemma 3 Let f  be an RSCF. The hypercore H f  is monotonic. 

Proof : Since a S Bf(>s), for every +>sub that S{a; >",} 3 S ( a ;  +h), we have f (+> 
ence a E H f  (>L). D 

emma 4 Let f  be an RSCF. If a <f. B f ( s f i )  then a  ff. H$(>',,) for every P such 
that S [ a ;  >-y) C S ( a ;  F N ) .  

(>s), there exists +$ such that S ( a ;  F$) 3 S ( a ;  >[,) and /(+c) = b # 
; kJv)  implies that S ( a ;  >'̂ ) 3 S ( a ;  G). Hence a ff. H f  (a. 0 
4 means that H{ is monotonic with respect to the decrease in supporters. 

et f be an RSCF. For every profiles S ^ ,  ̂.,E Â£ such that S ( a ;  >Â¥}, = 
S{a;  >-L) for every a  E A, &(h) = H f  (+',,). 

: For every a 6 Bf ( + N ) ,  since S ( a ;  >h) 3 S ( a ;  + N ) ,  we have a E H f  (+L)  from 
or every a <f. H f ( k N ) ,  since S ( a ;  + L )  C S ( a ;  + N ) ,  we have a if. H f  (+h) from 

D 

is property enable us to divide the profiles into equivalent classes according to the values 

oreover, we can see the following relation between the core and the hypercore. The 
ypercore stems from following result. 

For every profile + N E  ,CN, H f  ( + N )  coincides with the intersection o f  C f  (+h) 
over all profiles >wâ C^ such that S ( a ;  +L)  = S ( a ;  kAr) for every a  6 A, That is, for every 
profile > - N E  P ,  we have the following equation: 

{( ' ! -NI  = n~(.;;-*~.;!-;.) of (++L)- 
Proof : For every >NE P, we have { i  â N \ b  >-; a }  C S c ( a ;  > - N )  for every alternative 
b(# a )  S A. That is, for every b(# a )  A, S C {i N \ b  +. a }  and +L= G), we 
have S ( a ;  6) 2 S ( a ;  h). 

a E H,(>N) holds, then, from the definition of the hypercore, for every b(# a )  E A, 
S C { i  E N l b  >. a }  and +h= (+N-s,+k),  we have +'s'f D f  or f(>-h) = a. Thus 
a S  G(*). 

Since a E H f  (>-L) holds from Lemma 5, for every +LE C" such that S(@;  + L )  = S(*; +N 

ave a E C,(+',,). Thus we have H,(+N) C Cj(>-h) for every ;-',,E ,CN satisfying 
S(f;>'u) = S(*-, + N ) .  

On the other hand, if a $!- H f ( + ~ )  holds, then there exists a profile +LE D f  such that 
S ( a ;  +L) 3 S ( a ;  +s) and f (>-L) = b # a.  

For every i E s C ( a ;  + N )  = T ,  choose a preference ordering >Ã‘ satisfying a{>!) = a 
and a(+;') = E(>,). Then the profile +c= (>-&c, >$) satisfies S(@;>-;)  = S ( * ;  + N ) .  

Furthermore, since there exists a coalition {z  6 N \ b  +>} = S c ( a ;  h) = T such that 
f ( + ; C ,  >&) = f (+h) = 6, we have a <f. C&). D 

Next example demonstrates this property. 
Example 4 Consider the 213-majority rule with N = {l, 2,3 ,4}  and A = { a ,  b ,  c } ,  Define 
+JV and >-w by 

a +l 6 >-l c ,  a  ;-2 b  >-2 c ,  b >3 c  +3 a ,  c >-4 b  >-4 a and 
a  >', C >, b,  i = 1,2,  <=>-j, J' = 3,4. 

Then we have >s, >',,g V,, Cf  (h) = { a ,  b} ,  C f  (+L)  = { a ,  c }  and H j ( > n )  = H f  (+h) = 

{ a }  c cf ( > N )  n c,(&). 
Next, we consider the relation between the domain of RSCF f and the value of the 
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Proposition 2 Let f ,  f  be RSCFs, and V f ,  V r  be the domains of f ,  f such that V f  3 Vf1 
and f  ( k N )  = f ' ( + ~ )  for every Tip. Then H f  (>n) C Hf i (>n)  for every h<: L". 
Proof : From the definition of Hi, for each a  E H f ( > n ) ,  f (>m) = a  for every >-LE V, 
such that S ( a ;  +h) 3 S ( a ;  >y}. From the condition of f and f ' ,  + N $  V f  implies >N̂  Vfl 
and f ( + N )  = a  implies f ' ( + ~ )  = a  or >s$ Vf1. Thus we have a  E H f 1 ( h ) .  

Recall the weighted majority rule mentioned in Example 1 again. If the weighted major- 
ity rule f  satisfies f (h) = U j  Â¥ for every k(# j )  â {l, 2, - - .  , m}, Zi6S(Bi;;-y) pi < ft, then 
f  has the maximal domain among the rules having the same coefficients. Since f has the 
maximum domain, the value of the hypercore H f  becomes minimal set. Thus H f  is exactly 
defined in Example 2. 

For some H f ,  if there exists a profile +^ such that ] H f ( + N ) ]  2 2, then H*") 3 a  # 
a(+;) for each i E N.  Therefore, such H f  satisfies weak nondictatorialness. Let us now 
discuss stronger nondictatorialness. We say the RSCF f  is nondictat orial if for every 
agent i E N ,  there exists a profile +$E V ,  such that / (+L)  # E(*:). Furthermore, we say 
the SCC G is nondictatorial if for every agent i N ,  there exists a profile +LE ,CN such 
that ~ ( + ' u }  9 a(+',). 
Proposition 3 An RSCF f  E F is nondictatorial if and only i f  H f  is nondictatorial. 
Proof : From Lemma 1, f ( + N )  # a  implies Hf{>-N} C A- {a} .  Thus, if f is nondictatorial, 
then for every i E N,  there exists a profile >LE V f  such that H,(+',,) -f a(+;). 

From the definition of the hypercore, if Hf{>-if} -f a  then there exists a profile +LE V f  
such that f (G) # a. Thus, if H f  is nondictatorial, then for every i E N, there exists 
+h E V f  such that f (+h) # E(+:). D 

Furthermore, we can see a theorem that claim the stability of hypercore. 

Theorem 2 An RSCF f E F belongs to F* if and only i f  H f  is stable. 
Proof: 
(Necessity.) Suppose that there is a preference profile ,CN such that H  f{^ff} = 0. 
Then for each aj ,  j  = 1,2, + - , m, there exists >-G such that f  (>-L) = b j  # a, and S ( a j ;  +L 
) 3 S ( a j ;  h). Since { S ( a j ;  +N)}j=l,il...,m is a partition of N ,  S ( a j ;  G) = N .  Thus f 
does not satisfy NC. 
(Sufficiency.) Suppose that f does not satisfy NC. Then, without loss of generality, there 
exists G, G, , >h such that f (F$) = 6 ,  # aj and U;=l S ( a j ;  >-G) = N .  Set S, 

S ( a j ;  4) - UU S(a i ;  F'},), j  = 1, 2, , r ,  then {Sj}j=1,21...,T is a partition of N.  For each 
i E N, choose a preference ordering +, satisfying E(>,) = aj if and only if 6, 3 i. Now, 
suppose that there exists an a; ? H f ( + ~ ) .  Then we have 15 r ,  since, by Lemma 2, 
S ( a l ;  + N )  = 0 implies a; $ H f ( > { / ) .  From the definition of Hi, for every ;-h such that 
S ( a ; ;  >L) 3 S ( a ; ;  h) = S;, we have f (G) = a, or +L$Vf .  As S ( a , ; + Ã £  3 S ; ,  we have 
f  (+h) = a; or +h$ V f  . However, from the assumption on f ,  f  (+h) = b; # a;,  which is a 
contradiction. Therefore H f  ( + N )  = 0. D 

If an RSCF f  satisfies NC, then we obtain the following property of the hypercore. 

Proposition 4 Let f  6 F'. If f  ( + N )  = a  then H f ( > s )  = { a } .  
Proof : From Lemma 1 we have Hi ( + N )  C { a } .  Since f satisfies NC, from Theorem 2, 
the hypercore is stable. It  follows that H/- (+^)  = {a} .  U 

Theorem 3 Let G be an SCC. If G is monotonic then G is coalitionally nonmanipulable. 

Proof : Suppose this is false. Let S  be a coalition which can manipulate G ( > - N )  through 
+h, i.e., there exists profiles + N ,  >h= ( + N - ~ ,  +;), an alternative a  c G ( + ^ )  such that 
a' >-i a  for every a  E G(+h) and every i â S. 

Since a  6 G(+h), a  # S(+,) for any i E S. This implies S  C S C ( a ;  > N ) ,  that is, 
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S(a;  >-h) 3 S(a;  F ~ ) .  Since G is monotonic, we have a E G(>-^). This is a contradiction. 
D 

Proposit ion 5 For every f (E F ,  Hf is coalitionally nonmanipulable. 

Proof  : As mentioned in Lemma 3, Hf is monotonic. Thus Hf is coalitionally nonmanip- 
ulable. D 

4. Concluding Remarks  
We obtained a class of SCCs each of which is stable and coalitionally nonmanipulable by 

introducing the hypercore. 
Once an RSCF f is given, we can easily construct the hypercore Hf by a simple polynomial 

time algorithm. Furthermore, to know whether or not a given RSCF f satisfies the NC 
condition, it suffices to check the stability of Hf . 

It is clear that the smaller cardinality of the value an SCC has, the better it behaves. 
Indeed, if the value of an SCC is the set A itself for every profile, then the SCC is evidently 
nonmanipulable in any sense but it is meaningless. If we choose an RSCF having the 
maximal domain, we obtain 'minimal hypercore' according to Proposit ion 2. This situation 
is indicated in Examples 1 and 2. 
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