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Abstract Suppose we are given a partially ordered set, a real-valued weight associated with each element 
and a positive integer k.  We consider the problem which asks to find an ideal of size k of the partially 
ordered set such that the range of the weights is minimum. We call this problem the minimum-range ideal 
problem. This paper shows a new and fast 0 ( n  log n + m) algorithm for this problem, where n is the number 
of elements and m is the smallest number of arcs to  represent the partially ordered set. It is also proved 
that this problem has an ^2(n log n + m) lower bound. This means that the algorithm presented in this 
paper is optimal. 

1. Introduction 
In loading k containers into a ship out of a pile of containers, a problem of considerable 
importance is how to select the k  containers. Each of the containers has a different weight. 
To keep the balance of the ship, each of the k  containers should be as equal in weight 
as possible. However, the need to save time and ensure safety impose some restrictions. 
For example, we can never carry a container into the ship until we have carried every 
container located above it; there might be slope constraints that prevent the walls of a 
pile of containers from being too steep. I n  short, there are precedence restrictions to the 
selection of k  containers. 

To formalize our mathematical model, we consider an arbitrary finite set E and prece- 
dence constraints  between two elements e ,  e' E E: the element e  precedes the element e', 
denoted by e -< e', means that we must select e if we decide to select e'. This precedence 
constraint 5 is a partial order on E since it satisfies reflexivity, antisymmetry and tran- 
sitivity. We call the pair P = (E, 5 )  a partially ordered set  or a poset for short. For a 
poset P = (E, 5) a subset I of E is called an ideal if e 5 e' E I always implies e E I .  
Furthermore, assume that there is a real-valued weight W ( e )  associated with each element 
e E E. For a nonempty ideal I of P, the range of I is defined to be the maximum difference 
among weights of elements in I ,  i.e., maxeE~  w(e) - minecI w ( e ) .  Here, assume the range 
of the empty ideal to be 0. Namely, the objective of our mathematical model is to find an 
ideal of size k in which the range of the ideal is as small as possible. We call such an ideal 
a min imum-range  ideal ( o f  size k )  and this problem the min imum-range  ideal problem. 

The optimization problem on the ideal is valuable because many applications in real- 
life are formalized as the ideal problem, including the so-called closure problem (see [8]). 
Therefore, various types of problems have been well researched. Recently for the cardinality- 
restricted ideal problem including our problem some results were studied by [2]. To the 
author's knowledge, no one has ever considered the minimum-range ideal problem. We 
lope that an efficient algorithm for this problem serves as a subroutine of algorithms for 
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another combinatorial optimization problems such as stable marrige problems, scheduling 
plannings and so on. 

The minimum-range problem is also an interesting combinatorial optimization problem. 
Several researchers have studied minimum-range problems, including the minimum-range 
assignment problem [6], the minimum-range spanning tree problem [l] and [4], and the 
minimum-range cut problem [5]. For these problems, a general algorithm has been proposed 
in [6]. Essentially, the above three problems use general algorithm approach with their 
particular property. Simply applying the general algorithm in [6], the minimum-range ideal 
problem can be solved in 0 ( ( m  + n)n) time, where n is the number of elements of a given 
poset V and m is the smallest number of arcs to represent P .  

However, we propose a faster O(n log n + m) time algorithm by a new approach. There 
are two major differences. One is that the general algorithm approach essentially makes 
use of a sorted list of the weights, whereas, instead of it, our algorithm makes use of two 
new ordered lists introduced here as a preprocessor scheme. The other is that the general 
algorithm approach requires the feasibility-check procedure, whereas, our algorithm does 
not use it. Instead, it has two procedures, each of which solves the minimax ideal problem 
and the maximin ideal problem, respectively. Furthermore, the point we wish to emphasize 
is that our algorithm solves the minimum-range problem as a sequence of a pair of the 
minimax ideal problem and the maximin ideal problem in such a way that the total running 
time is comparable to the time to solve a pair of them once. This approach leads us to an 
O(n logn + m) time algorithm. This is optimal because we prove that the minimum-range 
ideal problem has an 0 ( n  log n + m) lower bound. 

This paper is organized as follows. Section 2 presents descriptions of the minimum-range 
ideal problem and some definitions. Section 3 considers the minimax ideal problem and the 
maximin ideal problem, which play an important role to solve the minimum-range ideal 
problem. Section 4 introduces new two orders, minimax-order and maximin-order, defined 
on a poset. Section 5 gives an O(n1ogn + m) algorithm. Finally, Section 6 proves that 
the minimum-range ideal problem has an O(n1ogn + m) lower bound and our improved 
algorithm is optimal. 

2. Preliminaries 
We consider the minimum-range ideal problem for a poset V = (E, 5)  and a positive integer 
k as follows: 

Prange : Minimize max W ( e )  - min W (e) 
e â ‚  e e I  

subject to I E Z(V), 

III = k ,  

where Z(V) is the set of all the ideals of P, and \X\ is the cardinality of a finite set X. 
For convenience, let 10) denote the set of all the feasible ideals of P,̂ ,,. Without loss 
of generality, we assume throughout this paper that &(P) # 0 and for each element e E E 
there exists an ideal including e in Zk (P). We claim that the cardinality constraint, 1 I1 = k, 
is essential to this problem since the range is nondecreasing with respect to k .  Hence, an 
ideal of size 0 or 1 becomes optimal when the cardinality constraint is dropped or replaced 
with 1 I1 < k. Furthermore, we can easily understand from above that the solution for 1 I1 = k 
also gives the one for 1 I1 > k . 

The important observation for the minimum-range ideal problem is that we can transform 
it to an enumeration problem. For a closed interval [a,  /?l with a < /?, suppose that there 
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is an ideal I such that w(e) 6 [a, Q] for all element e E I. If there is no closed interval 
[a', Q'] properly included in [a, Q], then the closed interval [a, ,B] is called critical. We call 
such an ideal a critical ideal. Thus, we can reduce the minimum-range ideal problem to the 
problem of finding a critical interval [a, Q] such that ft  - a is minimum. Therefore, if we can 
enumerate all critical intervals, then we can identify a minimum-range ideal in the critical 
ideals. 

The general approach to enumerate all critical intervals is described as follows. First, 
we sort all distinct values in weights. Then, for all distinct intervals, we apply a feasibility 
check-which there exists an ideal in the interval or not. To find all critical intervals it is 
necessary to do the feasibility check 0 (n )  times by the systematic approach [6].  For the ideal 
problem one feasibility check requires (m + n) times. Therefore, we can solve the problem 
in O ( ( m  + n)n) times by general approach. 

On the other hand, We improve this time bound to O(n log n + m) by a new approach. 
Before discussing the new algorithm, we introduce some technical terms. For an element 
e c E an element e' is an lower neighbor of e if e' 5 e and there exists no element t? such 
that e 5 2 5 et. If an element e E E has no lower neighbor, then we say that e is minimal. 
For a subset H C E we call P(H) = (H, -&) a subposet o f P  induced by H if --& is the set 
of all the partial orders between e and e' such that {e ,  e'} C H .  

3. The Minimax(Maximin) Ideal Problem 
In this section we consider the minimax ideal problem and the maximin ideal problem which 
play an important role to solve Prangem For a poset P = [E, 5) and a positive integer k ,  
each problem is defined respectively as follows: 

Pminimax : Minimize max W (e) 
ePI 

subject to 1 E &(P), 

Pmaximin : Maximize min W (e) 
eel (3.3) 

subject to 1 E ZJP). (3.4) 

An optimal solution of Pminiinax (resp., Pmaximin) is called a minimax ideal (resp., maximin 
ideal) of P .  A minimax ideal is found by applying the following algorithm based on a 
"greedy" principle - that is, it makes the cheapest choice at each step. 

Algorithm MINIMAX(P, k) 
Step 1: Put  J := 0 and C := {ee  is a minimal element of P}. 
Step 2: Repeat the following (g) k times. 

( )  If C # 0, then find a minimum-weight element t? in C ,  and update J := J U { E }  
and C := {ele is a minimal element of P(E - J)}; else stop (there is no feasible 
ideal of P ) .  

Step 3: Stop. The current J is a minimax ideal. 

The validity of this algorithm is shown below. 
Theorem 3.1: MINIMAX(P, k) computes a minimax ideal of P in O(n log n + m). 

(Proof) For an ideal I found by MINIMAX(P, k), let t? be a maximum-weight element in 
I, and let C' and J' be the set C and J, respectively, in MINIMAX(P, k) just before E 
is chosen. Similarly, for a minimax ideal I*, let e* be a maximum-weight element in I* .  
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Suppose w(E) > w(e*). If e* $! J', then I* n C' # 0, i.e., I* has an element E E I* n C' such 
that W (e*) < (W (E) <)W (g), contradicting the fact that e* is the maximum-weight element 
in I* .  If e* E J', then there exists an element E E C' n I* such that w(Z) < W (e*) (< W (E)) 
because lI*l > \J'\ and e* has maximum-weight in I*. This contradicts the choice of E. 
Consequently, we have W (E) = w(e*). 

We now turn to the time complexity analysis. In Step 2, it is not difficult to  renew the 
set C if we have the list of lower neighbors of each element in P(E - J ) .  That is, let Ci be 
C at  ith iteration, we obtain = (Ci - {E}) U {el the list of lower neighbors of e have 
just become empty by removing 2 from P(E - J)}. Notice that finding Cl and identifying 
the element whose list have just become empty require O(m + n) time in the whole of the 
algorithm. By having a heap data structure for C ,  finding a minimum-weight element E in C, 
inserting new members to C and deleting E from C are carried out in O(1og n), respectively. 
Since each operation is done for an element at  most once, it takes O(n log n) time. In total, 
this algorithm requires O(n log n + m) time. 13 

From max mineeI (-w(e)) = - min maxee1 W (e), we obtain an algorithm to solve Pmaximin 
correctly by replacing "find a minimum-weight" in Step 2 of MINIMAX(P,k) with "find a 
maximum-weight" . We call it MAXIMIN(P,k) . 

Remark: Based on an algorithm proposed by Gabow and Tarjan[3]for the bottleneck span- 
ning tree problem, we can construct another O(m\og* n) algorithm for the minimax ideal 
problem. Here, log* is the iterated logarithm, defined by log(') X = X, X = log log" X 

and log* X = min{i\ log^ x <: l}. Notice that log* X is very slowly growing function. This is 
an improvement if m is sufficiently small, i.e., m << (;)2. However, we do not refer to this 
approach in this paper since it is not suited for constructing an efficient algorithm for the 
minimum-range ideal problem. 

4. New Two Orders on a Poset 
We introduce a new preprocessor scheme, which uses two new orders on E defined below. 
In carrying out MINIMAX(P, n) ,  every element in E belongs to J in turn. The minimax- 
order of P is defined as the order in which MINIMAX(P, n)  considers the element. In a 
similar fashion, let the maximin-order of P be the order in which MAXIMIN(?, n)  considers 
the element. Notice that the minimax-order is defined uniquely by specifying the rule for 
selecting a minimum-weight element in C .  We show a fundamental theorem on these orders, 
which is a base for a validation of a new algorithm for Prange proposed in next section. 
Theorem 4.1: For an ideal I of P, an order defined by restricting the minimax-order (resp., 
the maximin-order) of P on I is a minimax-order (resp., a maximin-order) of P ( I ) .  

(Proof) Let us give each element in I an index, 1, . . . , l  11, in a minimax-order of P .  Suppose 
ei is also the ith element in I in the sense of a minimax-order of P (I). We show that ei+l 
is also the (i + l ) t h  element in the same sense by induction. Let C' and J' be the set C 
and J, respectively, just after ei has belonged to J in MINIMAX('P, n) . If ei+l $! C' n I, 
then there exists E E C' fl I such that E 5 ei+i since I is an ideal. This contradicts the fact 
that ei+l is the first element in I which belongs to J after ei has belonged to J. Therefore, 
ei+l E C' f l  I. Since ei+i is the smallest in the minimax-order of P in C' n I, e i + ~  is a 
minimum-weight element in C' n I .  It follows that ei+i is also the (i + 1)th element in the 
sense of the minimax-order of P(I). Similarly, we have the fact that ei has minimum-weight 
in the set of all the minimal elements of P(I). Hence, el is also the first element in I in the 
minimax-order of P(I). Consequently, we prove this theorem by induction. 
From Theorem 3.1 and Theorem 4.1 we have the following corollary. 
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Corollary 4.2: For an ideal J of P and a positive integer k with k < \J\, a subset I C J 
consisting of k elements in minimax-order (resp., maximin-order) of P is a minimax ideal 
(resp., maximm ideal) of P ( J ) .  a 
Example: Consider the minimax-order and the maximin-order on a poset P represented 
by the Hasse diagram shown in Figure 1. The weight of each element is attached at  the 
lower left of the element. We have the minirnax-order and the maximin-order as (a) and (b) 
in Figure 2, respectively. 

Figure 1: A poset P with weights. 

(a) The minimax-order. (b) The maximin-order. 

Figure 2: The minimax-order and the maximin-order of the poset 
shown in Figure 1. 

5. Algorithm 
In this section we propose an algorithm RANGE(P, k )  for finding a minimum-range ideal 
of size k as follows. 

Algorithm RANGED, k )  
Step 1: Define a minimax-order and a maximin-order of P. 

Put  (a*, p*) := (-00, m), S := E and J = 0. 
Step 2: 
(2-1) Repeat the following (#l) 

(j^l) If S # 0, then find the smallest element e E S in minimax-order, and 
update J := J U {e} and S := S - {e}; else go to Step 3. 
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until IJI = k. Put (3 := max{w(e)le E J}. 
(2-2) Repeat the following (#2) 

( #2 )  If S # 0, then find the smallest element E E S in minimax-order, and if w(E) <  ̂ ,B, 
then update J := J U {E} and S := S - {E}. 

until (W (E) > (3 or S = 0). 
(2-3) If 1 Jl > k, then repeat the following ( b l )  

(bl) Find the largest element E E J U S in maximin-order, and update J := J - {G 
and S : = S -  G}. 

until IJI = k. Put a := min{w(e)le E J} and D := {e\e E J,w(e) = a}. If 
,8* - a* > /3 - a, then update (a*, ,P) := (a, p). 

(2-4) Repeat the following (b2) 
(b2) Find the largest element E E J U S in maximin-order, and update J := J - {e}, 

S := S - {E} and D := D - {E}. 
until D = 0. Go to (2-1). 

Step 3: Put /3 := p, S := E and J := 0. Then do (2-2),(2-3) and stop. 
The current J is a minimum-range ideal. 

Let ai and (i = 1, , l )  be a and /3 computed at ith iteration of Step2, where l is 
the number of iteration in Step 2. And let si2*), Jj2*) and Di denote the set S, J and 
D obtained just after Step (2-*) at ith iteration of Step 2. Here, we assume = E, 
JA2-0 = 0 , a 0 -  - - m a n d Q o = m .  

Lemma 5.1: For a minimal element e of P(E - (Jr2) U sf2))) we have either of the 
following statements: (a) w(e) <  ̂ ai-l; or (b) there is  an  element e' E s{~-~) such that e' 5 e 
on  P. 
(Proof) Let E be the smallest element in D in the sense of maximin-order. If there is a 
minimal element E of P(E - (J?" U sf2)))  such that w(E) > a,-1, then E is greater than e 
in maximin-order. Because all element deleted from Jy3) U sfy3) after E is deleted at Step 
(2-4) in (i - 1)th iteration of Step 2 have the same weight a,-1. Thus, from the definition 
of maximin-order, E satisfies one of the following two cases: (1) E 5 E on P ;  or (2) there is 
an element e' such that w(el) < ai-1 and e' 5 E on P .  Case (1) contradicts the assumption 
that E is minimal element of P(E - ( J J ~ - ~ )  U ~ 1 ~ ~ ) ) ) .  In the case (2), we have e' <i J J ~ - ~ )  

(2-2) from the definition of the set D. Therefore, we have e' E Si . 

Lemma 5.2: For a n  ideal f of P such that a,-1 < w(e) 5 (3, (e 6 f), f C J}~"~) .  

(Proof) If there exists an element E E f - J,'~-~), then G satisfies one of the following two 
cases: (1) Z E E - (J{~-~) U ~ 1 ~ ~ ) ) ;  or (2) E E s f 2 ) .  In case of (l), there are two cases 
from Lemma 5.1. In case of (a) in Lemma 5.1 we have w(e) <: In case of (2) and (b) 
in Lemma 5.1, f includes an element e" with w(el') > /?; since for any minimal element e of 
P ( S ~ ~ - ~ ) )  we have w(e) > 3,. Both cases contradict the condition a,-1 < w(e) < Pi(e G 1). 

D 

Suppose that the set ,/E4) U s!:~) is an ideal of P from here till Lemma 5.8. Then, the 
following two lemmas immediate follows from Corollaly 4.2. 

Lemma 5.3: The set JY1) is  a minimax ideal of size k of P(J^,^ U ~ 1 ~ ~ )  - 1  ) -  

Lemma 5.4: The  set ~ 1 ~ " ~ )  is  an  ideal of P(J'<~T~) U $ 2 ) .  
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From Lemma 5.4 and Corollary 4.2 we have the following lemma. 
Lemma 5.5: The set ~ 1 ~ - ~ )  is a maximin ideal of size k of P ( J ~ ~ ~ ) ,  

Lemma 5.6: For all ideal I of size k of P ( J ~ ~ ) ) ,  max{w(e) le E I} = &. 
(Proof) Suppose that there exists an ideal 1' of P (J f2) )  such that \I'[ = k and max{w(e) le E 

} < Pi. Then, I' is also an ideal of ~ ( ~ 1 2 ~ )  U ,S'K4)) from Lemma 5.4. This contradicts 
(2-49 that is the optimal value of Pminimax on 'P(J/:̂  U . D 

Combining Lemma 5.5 and Lemma 5.6, we have the following lemma. 
(2-3) Lemma 5.7: The set ~ 1 ~ ~ )  is a minimum-range ideal of size k of P ( J ~ ~ ) ) .  Thus, J, 

is a critical ideal of P. 
Lemma 5.8: The set JY4) U is an ideal of P. 
(Proof) Immediate from Corollary 4.2. 

Notice that  the set E(= ~ 1 ~ ~ )  U is an ideal of P. Therefore, by induction, we have 
Theorem 5.9: Each set J P 3 ) ( i  = 1, - . , l )  K B critical ideal of P .  

Now, let us define for a, 

Then we have the following lemma. 
Lemma 5.10: Each set JfF3) (i = l , - - - , l )  of P is a 
3, (7'9 ai) - Ik(P, ai-l) - 

e c I }  <ai}. (5.1) 

minimum-range ideal of size k in 

and there is an element e E ~ j ~ - ~ )  (Proof) For a set ~ , 1 ~ - ~ ) ,  a,-1 < w(e) (5  8,) (e 6 
with w(e) = a,.  Therefore, ~ 1 ~ ~ )  E &(P, a,) -W, Suppose I* is a minimum-range 
ideal on Zk(P, a,) -&('P, such that max{w(e)le C I*} - max{w(e)le E I*} < ,& - a,. 
Notice that min{w(e) le E I*} < a, since I* E I, (P, a,). Therefore 

/?,-a, > max{w(e)le E I*} -rnin{w(e)le E I*}, (5.2) 

max{w (e) le E I*} - a ^ .  (5.3) 

Hence we have ,& > max{w (e) le E I*}. In follows that a,-1 < w(e) < /?,(e E I*), and 
I* C Jlz2* from Lemma 5.2. This contradicts Lemma 5.6 since I* is also an ideal of 
P( J:~-~)). D 

Combining the above lemma with the fact that 

u{Z~(P, a,) - It(?, ai-l)li = l, - ,  l} = I , ,  ai) - &(P, ao) (5.4) 

= W } - 0  (5.5) 

=w\ (5.6) 

we have the following conclusion. 
Theorem 5.11: The set of all critical ideals of P is { JJ2" [ i  = 1, , l}. Thus, the algo- 
rithm RANGE(P, k) enumerates all critical ideals. 

Theorem 5.12: The algorithm RANGE(P, k}  correctly computes a minimum-range ideal 
of size k of P in 0 ( n l o g n  + m) time. 

(Proof) From Theorem 5.11 Step 2 finds a critical interval [a*, P*] such that /?* - a* is 
minimum in the all critical interval. And Step 3 identifies a minimum-range ideal. We 
now analyze the time complexity. In Step 1, defining the minimax-order and the maximin- 
order requires O(n log n + m) time from Theorem 3.1. In Step 2, one iteration of (#l), 
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(#2), ( b l )  or (b2) is done in O(1) time. And finding a set D in Step (2-4), i.e., finding the 
smallest element in maximin-order in the set of all the minimum-weight elements in J can 
be done in O(1og 1 Jl) time by using an appropriate data structures such as a heap date 
structure with respect to  the maximin-order and weights, respectively. Notice that we build 
two data structures for the same set J by two criterions. The number of iteration is 0 ( n )  
and max{l Jil li = 1, , l} <, n. Therefore Step 2 requires O(n log n). Step 3 require also 
O(n log n) since it is similar to carrying out one iteration of Step 2. Therefore, it takes 
O(n1ogn + m) time in total. 

Example: Consider the minimum-range ideal problrm (of size 5) on the poset P shown 
in Figure 1. RANGE(P, 5) execute as indicated in Table 1. At termination, we have a 
minimum-range ideal {e5, eg,elo,e13, e16}. 

Table 1: Illustrating RANGE(P, 5). 
Step S J 0 D 

el67e17 } 
(2-1) {ell e13 ,e14,e15,e16,e17 } {e1,e2 765 ,e9,e10} 2 6 
(2-2) {e13 ,e14 ,e16 ,e17 } {el,e2 ,e5 7'39 ,e10 7 611 ,e15} 2 6 
(2-3) {e13 ,e14 7e16 ye17 } {e5,e9,elo,ell,el5} 4 6 ell,el5 
(2-4) {ei3,ei4,ei6} {e5 ,eg ,eio} 4 6 

4 9 

6. A Lower Bound 
We shall consider a lower bound for Prange and show that RANGE(?, k) is optimal. First, 
we introduce the following problem. 
The closest k numbers problem : Given n real numbers and a positive integer k, find 

k numbers whose range is smallest. 

Lemma 6.1: The closest k numbers problem has an O(n log n) lower bound. 

(Proof) For N real numbers, which are treated as a multiset and denoted by U, finding 
a minimum difference among them has an O(N log N) lower bound (see Chapter 5 of [7]). 
This problem is called the closest pair problem. Let Urhi be a multiset which has [g \U\ real 

numbers such that each real number in U contributes to Urgl [$l times, where [$l is the 

smallest integer larger than or equal to g. Now, we consider the closest k numbers problem 
on Urk,,. Then the minimum-range of the closest k numbers problem on Urki is equal to 
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that of the closest pair problem on U since there are \^\ same numbers in U,$,. Hence, 

an arbitrary algorithm for the closest k numbers problem requires at least N log N - N \$l 
time. Noting that n = N \ ~ I  ( N  = +) and k is a fixed integer, we get the above statement. r T i  

D 

Lemma 6.2: The minimum-range ideal problem (of size k) has an Cl(n log n + m) lower 
bound. 

(Proof) For any positive integers n and m satisfying m < (E)2 ,  let us define a bipartite graph 
G = (El U 232, A) with disjoint element sets El and E2 such that 1 El 1 + 1 E2 1 = n ,  1 El 1 2 1 E2 l, 
and ~ E 1 ~ ( ~ E 2 ~  - 1) < m < lE111E2, and an arc set A = {(e,e')\el E E l , e  E E2 - { e } }  
U{(;, et) le' E E,'} for a subset El C El with IE,' 1 = m - 1 El 1 (lE2 1 - 1) and a special element 
E E E2 (see Figure 3). Then, consider the minimum-range ideal problem (of size k) on the 
poset P represented by G = (E\ U E2, A) defined above. Notice that El is the set of all the 
minimal elements of P. If k 5 \E^\, every element in E, - { G }  is not able to belong to an 
ideal of size k .  Therefore, this problem is transformable to the closest k numbers problem 
on & and hence has an O(1 El 1 log 1 El 1 )  lower bound due to Lemma 6.1. From the facts 
that lEl 1 2 3 n d  that it has a trivial !l(m + n) lower bound, O(n log n + m) lower bound 

get the same condition if k > [El l ,  by reversing all arcs of G. 

Figure 3: The bipartite graph G = (E1 U E2, A) in Lemma 6.2. 

Combining this lemma with Theorem 5.12, we have the theorem below. 

Theorem 6.3: The algorithm RANGER, k )  requires 6 ( n  log n+m) time, which is optimal. 
D 

References 

[l] P. M. Camerini, F. Maffioli, S. Martello and P. Toth: Most and least uniform spanning 
trees. Discrete Applied Mathematics, 15 (1986) 181-197. 

2 U. Faigle and W. Kern: Computational complexity of some maximum average weight 
problems with precedence constraints. Operations Research, 42 (1994) 688-693. 

[3] H. N. Gabow and R. T. Tarjan: Algorithms for two bottleneck optimization problems. 
Journal of Algorithms, 9 (1988) 411-417. 

[4] Z. Galil and B. Schieber: On finding most uniform spanning tree. Discrete Applied 
Mathematics, 20 (1988) 173-175. 

[5] N. Katoh and K. Iwano: Efficient algorithms for minimum range cut problems. Net- 
works, 24 (1994) 395-407. 

[6] S. Martello, W.R. Pulleyblank, P. Toth and D. de Werra: Balanced optimization prob- 
lems. Operations Research Letters, 3 (1984) 275-278. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Algorithm for Min-Range Ideal Problem 97 

[7] F. P. Preparata and M. I. Shames: Computational Geometry: An  Introduction 
(Springer-Verlag, New York, 1985). 

[8] J .  C. Picard and M. Queyranne: Selected applications on minimum cuts in networks. 
INFOR, 20 (1982) 394-422. 

Toshio Nemoto 
Department of Business and Information 
Faculty of Information and Communication 
Bunkyo University 
1100 Namegaya, Chigasaki 253-8550, JAPAN 
E-mail:nemotoOshonan. bunkyo . ac . jp 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




