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Abstract Two characterizations are given for a valuated delta-matroid. Let ( V , 3 )  be an even delta- 
matroid on a finite set V with the family 3 of feasible sets. I t  is shown that  a function S : T -+ R is a 
valuation of (V, 3) if and only if, for each linear weighting p : V Ã‘ R, the maximizers of S + p  form the 
family of feasible sets of a delta-matroid. It is also shown that  S is a valuation if and only if its conjugate 
function is "locally bisubmodular" a t  each point. 

1. Introduction 
Greedy algorithms for nonlinear discrete functions are attracting renewed interest in the 
literature (e.g., Ando-Fujishige-Naitoh [l], Fujishige [19], Favati-Tardella [18], Hochbaum- 
Hong [20]). Among others, it has turned out that the valuated (delta-)matroids, introduced 
by Dress-Wenzel [11, 12, 141 and Wenzel [39], afford a nice combinatorial framework, in 
which variants of greedy algorithms work (Dress-Wenzel [ll, 121, Dress-Terhalle [8, 9, 101, 
Murota [24, 251, Murota-Shioura [32]). These greedy-type algorithms are similar in the vein 
to, but not the same as, those in Korte-LovAsz-Schrader [21]. 

In addition to these results on greedy algorithms, valuated matroids afford a nice com- 
binatorial framework to which the duality results for matroids can be generalized. The 
weighted matroid intersection problem [15, 161 has been extended by Murota [26, 271 to the 
valuated matroid intersection problem, where the optimality criteria and algorithms for the 
weighted matroid intersection problem are generalized. This result has been reformulated 
by Murota [28] into a novel min-max duality theorem. 

The concept of valuation of a matroid is defined as follows (Dress-Wenzel [ l l ,  141). Let 
(V, B) be a matroid on a finite set V with the basis family B (see, e.g., Faigle [17], Welsh 
[38], White [41] for matroids), and let R be the set of real numbers. A valuation of (V, B) 
is a function W : B -+ R which enjoys the exchange property: 
(MV) For B, B' E B and for U E B - B', there exists v E B' - B such that B - U + v E B, 

B 1 + u - v  E B and 

w(B) +w(B1) 5 w(B - u + v )  +w(B1+u  - v), 

where B - U +v  = ( B  - {U}) U {v} and B' + U - v = (B' U {U}) - {v}. A matroid equipped 
with a valuation is called a valuated matroid. 

This concept has been generalized by Murota [29, 30, 311 for a function W : B + R 
defined on the set B of integral points in the base polytope of an integral submodular 
system in the sense of Fujishige [19]. That is, the domain of definition B Zv is assumed 
to satisfy the exchange property 
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(BP) For x, y E B and for u G suppyx - y), there exists v E supp- (x - y) such that 
x - ~ ~ + ~ ~ ? B a n d y + x ~ - ~ ~ ~ B ,  

where supp'^(x - y) = {u G V 1 x(u) > y(u)}, s u p p ( x  - y) = {v ? V \ x(v) < y(v)} and 
xu E Zv denotes the characteristic vector of u ? V, and then the exchange property (MV) 
is generalized to 
(EXC) For x, y ? B and u E supp'^(x - y) there exists v ? supp(a:  - y) such that 

X - X ~ + X ~ E B , ~ + X ~ - X ~ E B ~ ~ ~  

It is pointed out that such functions arise naturally in the context of combinatorial op- 
timization. Furthermore, the relationship among (EXC), submodularity and convexity is 
made clear by extending LovAsz's observation [22] about the relationship between convexity 
and submodularity. 

Another generalization of the concept of valuated matroid is that of valuated delta- 
matroid, due to Dress-Wenzel [12] and Wenzel [39]. A valuated delta-matroid is a function 
6 : 2" -^ R U {-oa} such that 
(DVO) 6(I) # -00 for some I 2 V, 
(DV1) For I ,  I' C V with 6(I) # -co # 6(It) and for u E IAI', there exists v G (IAI*) - v. 

such that 
&(I) + 6(Ir) < <(IAuAv) + S(IQuAv). 

Here A denotes the symmetric difference: IAI '  = ( I  - I') U (I' - I ) ,  and IA'uAv = 
IA{u}A{v}, etc. 

It is easy to see that the underlying family 

which is nonempty by (DVO), satisfies the following property: 
(DE) For I, I' E F and for u E IAI',  there exists w E (IAI') - u such that IAuAv E F 

and I'̂& E F. 
This means that (V, F) is an even delta-matroid. In fact, (DE) is known (Wenzel [40]) to 
be equivalent to the defining condition of an even delta-matroid. It is recalled (Bouchet 
[Z], [3],  Bouchet-Dress-Have1 [5], Chandrasekaran-Kabadi [6], Dress-Have1 f7]) that a pair 
(V, F) (with F C zV) is called a delta-matroid if 
(DG) For I, I' E f and for u E IAI', there exists v 6 IAI'  such that IA{u,u} E F, 
and that a delta-matroid (V, F) is said to be even if IIAI'I is even for all I, I' E 7. 

Hence, instead of starting with (V, 6), we may alternatively start with an even delta- 
matroid (V, F) and consider a function 6 : F --+ R. In this way we can talk of a valuation of 
a given even delta-matroid (V, F ) .  That is, we say that 6 : f --+ R is a valuation of (V, F) 
if the following property is satisfied: 
(DV) For I, I' ? F and for u 6 JAI', there exists v E (IAIf) - u such that IAuAv 6 F, 

I'AuAv E 7 and 
&(I) + <(I1) < S(IAuAv) + WAuAu) .  

A canonical combinatorial example of a valuated delta-matroid arises from the weighted 
(nonbipartite) matching problem. Let G = (V, E} be a graph with vertex set V and edge set 
E,  and let w : E --+ R be a weight function. For a matching M C E we denote by QM C V 
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the set of the vertices incident to M .  It  is well known that  F = {QM 2 V \ M : matching} 
defines an even delta-matroid (V, F ) .  A novel observation here is that  

6{I) = max{w(M) 1 M : matching with Q M  = I} 

gives a valuation of (V, F}, where the proof is by a standard augmenting path argument. It  
is remarked that the first example of a valuated delta-matroid due to  Dress-Wenzel [l21 is of 
algebraic nature and is related to determinants of a skew-symmetric matrix over a valuated 
field. The weighted matching example above can also be formulated in this algebraic setting 
using a weighted version of the Tutte matrix. 

The objective of this paper is to give two alternative characterizations of a delta-matroid 
valuation, one in terms of the family of the maximizers and the other in terms of the local 
bisubmodularity of the conjugate function. 

The first result (Theorem 2.2) reveals that  6 : 7 -+ R is a valuation of an even delta- 
matroid (V, F}  if and only if, for each linear weighting p : V + R, the maximizers of 8 + p 
form the family of feasible sets of an even delta-matroid. This fact allows us to  regard a 
valuated delta-matroid as a collection of delta-matroids, just as we may regard a valuated 
matroid as a collection of matroids (see Corollary 2.3). This may also be compared with 
the fact that a delta-matroid can be characterized as a collection of matroids under twisting 
(Bouchet [2]). 

The second result (Theorem 3.4) is concerned with the relationship among exchange- 
ability (DV), bisubmodularity and convexity. It is well known (Bouchet-Cunningham [4], 
Chandrasekaran-Kabadi [6], Fujishige [19], Nakamura [33]) that  the incidence vectors of the 
feasible sets of a delta-matroid agree with the vertices of a bisubmodular polytope contained 
in the unit hypercube in RV (see Lemma 3.2 for a precise statement). This means that ,  for 
an integral polytope contained in the unit hypercube in R V ,  the exchange property (DG) for 
the vertices is equivalent to the bisubmodularity for (the inequalities describing) the faces of 
the polytope. On the other hand, the property (DV) is a quantitative generalization of (DE) 
(a special case of (DG)). Then it is natural to ask for the generalization of bisubmodularity 
that  corresponds to  

An answer is given 

(DV) : 

in Theorem 3.4, which shows that  8 satisfies (DV) if and only if its 
conjugate function is "locally bisubmodular" a t  each point. 

2. Maximizers 
2.1. Theorem 
Let (V ,F)  be an even delta-matroid. We first note the fact that  the defining exchange 
property (DV) for a valuation is equivalent t o  a seemingly weaker local exchange property. 
This is proven in Dress-Wenzel [13, Theorem 3.41 using the results on "matroids with 
coefficients", whereas in this paper we give an alternative proof in Section 2.2. 

Lemma 2.1 Let (V, F )  be an even delta-matroid and 8 : .F + R. Then (DV) is equivalent 
t 0 

(DVioc) For I ,  I' E F with \IN' = 4, there exist distinct U, v E I A I '  such that IAuAv E 
F, I'AuAv E F and <$(I) + 8(11) < 6(IAuAv) + 6{IfAuAu). D 
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The first theorem of this paper is now stated, while the proof is given in Section 2.3. For 
6 : F + R and p : V -> R define 6[p] : F -> R and 7(6[p]) by 

Theorem 2.2 Let (V, F) be an  even delta-matroid and 6 : F -+ R .  Then  6 is  a valuation 
(satisfying (DV)) if and only if 
( M A X )  (V, F(S[p])) is  a delta-matroid for each p : V + R. 
W h e n  6 is integer-valued, we may  restrict p to  half-integer vectors i n  the "if" part. 

When specialized to a matroid valuation, this result yields the following, which is also 
a special case of the similar theorem [30, Theorem 4.41 for a function with the exchange 
property (EXC). [The integrality of p follows from the proof of Theorem 2.2, and not from 
the statement itself.] 

Corollary 2.3 Let (V, B) be a matroid and W : B 4 R. Then  W is  a valuation (satisfying 
(MV)) if and only if (V, B(w [p])) is  a matroid for each p : V -+ R ,  where 

W h e n  W is integer-valued, we may restrict p to  integer vectors in the "if" part. 

Remark 2.1 It is easy to see that for any I E F there exists p such that I E F(6bI) .  
However, the following statement is not true in general: for any I ,  I' E F there exists p such 
that {I, If} 2 F(6[p]). D 

2.2. Proof of Lemma 2.1 
We regard S : F -+ R as S : 2" -+ R U {-m} by setting S(I) = -m for I E 2" - F ,  and 
define 

S(I, U,  v) = S(IAuAv) - 6(I) ( I  C F, U # v), 

Sp(I,u,v) = Sp(IAuAv)-Sp(I) ( I e F , u # u ) ,  

where 6, on the right hand side is an abbreviation of S\p] defined in (2.1). Note that 
S(I ,u ,v)  = S(I ,v ,u)  and S#,u,v) = 6,(I,v,u). If {u,v} C IAI' ,  I E F and I' E F we 
have 

S(IAuAv) + ~( J 'AUAU)  - S(I) - 6(11) 

= S(1, U, v) + 6(11, U, v) 

= &,(I, U, v) + 6p(I', U,  v). 

First note the following fact. 

Lemma 2.4 Let I 6 F,  /AI' = {vi, v2, v3, v4} (with v, being distinct) and p : V -+ R. If 
(DVioc) is  satisfied, then 
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(Proof) First note that  

I IAviAvj  = IAvkAvl  if {z, j }  U {k, l }  = { l ,  2,3,4}. 

From this and (2.3) we see that ,  if {i ,]}  U { k ,  l }  = {l, 2,3,4},  

(DVioc) implies that  [6(I ,  v,, v j )  + 6 ( I f ,  v , , ~ j ) ]  > 0 for some ( i , j )  with i  # j. 
Define 

-D = { ( I ,  I / )  1 I ,  I' E F ,  3u* E / A I 1 ,  Vv E ( I A I ' )  - U* : 

6(1) + 6(1') > i ( 7 A u . A ~ )  + 6(11Au*Av)}, 

which denotes the set of pairs ( I ,  I f )  for which the exchangeability in (DV) fails. We want 
to  show D = 0 assuming (DVioc). 

To the contrary suppose that  V # 0, and take ( I ,  I f )  G V such that  1 IAI'I is minimum 
and let U* E / A I 1  be as in the definition of D. We have \IAI'\ > 4. Define p : V Ã‘> R by 

&(I7  U*,  v )  ( v  E ( I  - 1') - U * ,  IAu*Av E F )  
-v, U * ,  V )  ( v  E (I' - I )  - U * ,  IAu*Av E F) 

P ( V )  = -6(11, U * ,  U )  - E (V E ( I  - I f )  - U * ,  IAu*Av I1Au*Av E 3 
6{I ' ,u*,v)+e ( v E ( I 1 - I ) - u * , I A u * A v ^ F , 1 1 A u * A v E J 7 )  
0 (otherwise) 

with some E > 0 and consider 6, = S\v\ defined in (2.1). 
Claim 1: 

The equality (2.6) follows from the definition of p, whereas the inequality (2.7) can be shown 
as follows. If IAu.Av E F,  we have 6,(I, U* ,  v )  = 0 by (2.6) and 

by (2.3) and the definition of U*. Otherwise we have 6p(I'7 U * ,  v )  = -E or -m according to  
whether I IAu*Av E F or not. 

Claim 2: There exists {u07 vo} C ( I A I ' )  - U ,  such that  uo # no, I'AuoAvo E F and 

6p(11, M O ,  W O )  2 6p(117 U ,  v )  ( { U ,  v }  C (JAJ ' )  - M * ,  U # v) .  (2.8) 
In fact, by (DE) for ( I ,  I f )  we see I* = IAu.Av. E F for some v. E ( I A I ' )  - U*. Since 
I' + I* and ( D E )  holds for ( I1 ,  I*)  we have I'AuoAvo E F for some {uo,  vo}  C I'AI* = 
( I A I ' )  - {U*, v*} with uo # vo. This shows that  

{ { U ,  v }  I { U ,  v }  ( I A I ' )  - U * ,  U # v ,  I 'AuAu E F }  

is nonempty. Let {uo,  vo}  be a pair that  maximizes 6,(11, U ,  v )  among those pairs. 
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Claim 3: ( I ,  Ill) E D for I" = IIAuoAuo. 

To prove this it suffices to show 

We may restrict ourselves to  U with IAu*Au E F, since otherwise the first t,erm SP(I, U*, v) 
is equal to -m. For such v the first term is equal to zero by (2.6). For the second term it 
follows from Lemma 2.4, (2.7) and (2.8) that 

Since IAI1l1 = IIAIII - 2, Claim 3 contradicts our choice of ( I ,  11) E D. Therefore we 
conclude D = 0. 

2.3. Proof of Theorem 2.2 
The "only if" part is easy to see. Take 1,I' E .F(&,) and U E /AI1, where bp = S[p] as 
before. Since 6, satisfies (DV), there exists U G (IAI')  - U such that  

which shows IAuAu E .?'(bp) and I'AuAu .F(&,). That  is, .F(SP) satisfies (DE). 
The "if" part follows from Lemma 2.1 and the lemma below. 

Lemma 2.5 Let I G F and IN' = {vl, 1~2,713, u4} (with Ui being distinct). If (MAX) is  
satisfied, then 

&(If)  - b(I) 5 max{~12 + 0347 a13 + 0 2 4  a 1 4  + a23}, P - 9 )  

where a., = &(I ,  U*,) for i, j E {l ,  2,3,4}. That  is, (MAX) implies (DVioc). 

(Proof) We may assume that I' E F, since otherwise (2.9) holds trivially with 6(11) = -00. 

Denote by 7 and p the left-hand side and the right-hand side of (2.9) respectively. We 
consider an undirected graph G = (V, E} with V = {v\,v2, v3, v4} and E = {(U;, U,) 1 
IAviAuj E F}. The graph G has a perfect matching (of size 2) by Theorem 4.1 of Bouchet 
[3]. In addition we associate a,, with edge (vi, U,) as the weight. Then p is equal t o  the 
maximum weight of a perfect matching in G,  and accordingly (d., e.g., Lovhsz-Plummer 
231) there exists 5 : V -> R such that  

(In fact, 5 is the "optimal dual variable"; no "blossoms" are needed since 1 ~ 1  = 4.) 
To show 7 p ,  suppose that 7 > p. Then we can modify 5 to  p : p -+ R such tha t  
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Using p we define p : V -+ R by 

( -M (v e V -  ( I ' U I ) )  

where M > 0 is a sufficiently large number. 
For this p we have {I, It} C F(6,), i.e., 6,(1) = 2 6,(J) ( V J  6 F ) .  In fact, this is 

immediate from the following relations: 

where it should be recalled that 1 JAII  is even for J 6 F .  By applying (DE) to (V, F(SP)), 
which is an even delta-matroid since it is a delta-matroid with F(6p) C F ,  we see Sp(IAviAvj) 
= SP(I1AviAvj) = SP(I) for some {i , j}  C {l, 2,3,4} with z # j .  Putting {k, l} = 
{l, 2,3,4} - {a} and noting (2.5) we obtain 

a contradiction to 7 > p. D 

If 6 is integer-valued, we have a,, = &(I, Vi ,  vj} E Z for all (vi, V,) E E in the proof if 
Lemma 2.4, and consequently, we can assume @(vi), p(vi) E ;Z in (2.10) and (2.1 1). This 
completes the proof of Theorem 2.2. For the integrality assertion in Corollary 2.3, note that 
the graph G is bipartite in this case, and therefore we can assume @(vi), p[vi) ? Z in (2.10) 
and (2.11). 

3. Conjugate Function 
We consider an extension of the correspondence between the exchangeability (DG) (or (DE)) 
and the bisubmodularity (see (1.1)) and conclude in Theorem 3.4 that (DV) for 6 is equiv- 
alent to "local bisubmodularity" of the concave conjugate function 6'. 

3.1. Concave conjugate function 
In a manner compatible with the standard method in the convex analysis (Rockafellar [35], 
Stoer-Witzgall [37]), we introduce the concept of conjugate function of a set function, as 
has been done in Murota [28] in studying matroid valuations. 

Let F 2 2^ be any family of subsets of V. Denote by 7 the convex hull of the charac- 
teristic vectors (incidence vectors) of the members of F .  That is, 
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where A = (\i \ I E F)  ? R^, XI RV is the characteristic vector of I defined as 

{ 1 (v â I) 
 XI^) = 0 (v E v - I ) ,  

and 
A(^) = { A  â R  ̂ I E\,=l, AI 2 0 (I E F)}. 

Iâ‚ 

For a function 6 : F -+ R in general we define 6' : RV -+ R by 

6Â¡(p = min{(p, I) - 6(I)  1 I E F}, 

where (p, I )  = Y,{p(u) \ U E I}. We call 8' the concave conjugate function of 6. Since IF1 
is finite, 8' is a polyhedral concave function, taking finite values for all p. The function 6 is 
uniquely determined from the concave conjugate function 6Â by 

(see [28, Lemma 3.21). 
For p : V --+ R (or p G RV) we define S[p] : F -+ R by 

as in (2.1). It is easy to see (6b0])0(p) = 6Â°( 

3.2. Exchangeability (DG) and bisubmodularity 
A function f : 3" --+ R, where 3" = {(X, Y) \ X n Y = 0, X C V, Y C V}, is said to be 
bisubmodular if 

A polyhedron defined by 

where b(X) = Evex b(v), is called a bisubmodular polyhedron if f is a bisubmodular func- 
t ion. 

The following lemmas are immediate from the results in Chandrasekaran-Kabadi [6] (see 
also Bouchet-Cunningham [4], Fujishige [19], Nakamura [33] and Qi [34]). The former is 
concerned with the greedy algorithm for maximizing a linear function over a bisubmodular 
polyhedron, and the latter shows a characterization of a delta-matroid in terms of the 
polyhedral rank function. We use 

sign a  = 1 (a  2 .0)  
-1 ( a  < 0) 

in the expression (3.6) below. 
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If f : 3v -+ Z satisfies the following three conditions, (R1)-(R3),  
(RI) f ( 0 , B )  = 0, 
(R2) f ( X  + v ,  Y )  - f ( X ,  Y )  C {o,  l } ,  f ( X ,  Y + v )  - f ( X ,  Y )  E { o ,  -11 

for v E V -  ( X  U Y ) ,  
( R 3 )  f is bisubmodular, 
then b C RV defined b y  

maximizes (p,  b )  over P*( f ), that is, 

Lemma 3.2 
(1) If F c 2v satisfies (DG) ,  then the function f : 3v -+ Z defined b y  

satisfies (R1)-(R3); and moreover, 7 agrees with P , ( f ) .  
(2) If f : 3v -+ Z satisfies (R1)-(R3),  then the vertices of P*( f )  are {O, \}-vectors and 

F =  { I  G V I X I  is avertexof P*( / ) }  (3-8) 

satisfies (DG); and moreover, (3.7) holds true. 12 

The function f associated with a delta-matroid (V,  F }  by (3.7) is called the polyhedral 
rank function of (V, F).  

We recast the above facts into a form (Theorem 3.3) that is suitable for our subsequent 
extension. Define : RV -+ R by 

Note that $' is the concave conjugate function of $ 0 (on F) in the sense of (3.2), and 
also that 

- ̂( - P )  = max{(p9 1) 1 I fl (3.10) 

agrees with the support function of 7 as defined in [35], [37]. Obviously, $'(p)  is concave, 
$'CO) = 0, and positively homogeneous, i.e., $'(\p) = \^Â¡(p for A > 0. Hence the 

hy pograph 
HYP($') = { ( P ,  q )  6 R 1 q  5 $Â¡(P)  (3.11) 

is a convex cone. 
Suppose F satisfies (DG).  We first observe 
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where f is the poly 
$'(p) at  arbitrary p 
In fact, Lemma 3.1 

rhedral rank function of (V,F)  defined by (3.7). Secondly, the value of 
can be expressed as a linear combination of $'(xx - xy) ((X, Y) 6 3v). 
(the greedy algorithm for the bisubmodular polyhedron) shows 

where, for given p E R^, we index the elements of V as V = {v1, v2 , - - , vn} (with n = \V\} 
in such a way that Ip(v1) 1 > Ip(v2) \ > > \p(vn)\, and we put p j  = ~ ( v j )  ( j  = 1, , n) 
and pn+i = 0 and 

Conversely, suppose i{iO defined from F by (3.9) satisfies the two conditions: 

(Cl )  f (X, Y) = -*y - xx) satisfies (R1)-(R3). 
n 

(C2) ^'(P) = z(bj I - IP~+I I)i{iO(xxj - X% ), 
j=l 

where, for given p RV,  we index the elements of V as V = {vi, vi, , vn} (with 
n = \V\) in such a way that lp(vl) 1 2 \p(vy)\ 2 > lp(vn) l; and we put pj  = p(vj) 
( j  = l , . . . , ~ ) ,  Pn+l = 0, X, = {vi 1 1 < i 5 j,p(vi) > O} ( j  = l , - - - , n )  and 
Y ,  = {vi 1 1 5 z 5 j,p(vi) < O} ( j  = l , . . . , n )  . 

Then Lemma 3.2 shows that F satisfies (DG) and that f (X, Y) = -I,!IO(X~ - xx) is the 
polyhedral rank function of (V, F). 

We say that a positively homogeneous function h : RV -+ R is LLdelta-matroidal" if it 
satisfies (Cl)  and (C2) with i{iO replaced by h. By a result of Qi [34] such h is necessarily 
concave. We also say that a cone is "delta-matroidal" if it is a hypograph of a "delta- 
matroida17' h. 

With this terminology the above observations are summarized in the following theorem, 
which characterizes the exchange property of F in the language of $f' (or the support 
function of 7). It is emphasized that this is a reformulation of known results. 

Theorem 3.3 F 2' satisfies (DG) if and only if y!IO is "delta-matroidal" (satisfying (Cl) 
and (C2)). D 

3.3. Exchangeability (DV) and bisubmodularity 
We now assume that (V,^) is an even delta-matroid and consider the concave conjugate 
function 

b0(p) = min{(p, I) - &(I) 1 I E F} 

of 6 : F -+ R .  Unlike y!IO 6' is not a positively homogeneous function. Accordingly, the 

is not a cone but a polyhedron. Its characteristic cone (or recession cone) [35], [36], [37] is 
given by Hyp(GO) of (3.11), and hence it is "delta-matroidal" by Lemma 3.2. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Since 6' is a concave function, we can think of its subdifferential in the ordinary sense 
in the convex analysis. Namely, the subdifferential of 6' a t  p. E RV, denoted 96OfpO), is 
defined by 

96' (PO) = {b E RV 1 6' (P) - 6' (PO) 5 (P - PO, 6) (vp E R")}. (3.14) 

Note that 96'(po) # 0 for any p0 E RV, since 6' is a polyhedral concave function. Using this 
notion we define, as in [30], a positively homogeneous concave function L ( S ' , ~ ~ )  : -+ R 
by 

L(&", PO) (P) = inf{(p, b) 1 b 8fi0(Po)}, (3.15) 

which we call the localization of 6' at  po. Note that 

and that P (p )  is equal to the right-hand side in the neighborhood of po. Also note the 
expression 

HYP(Â£(~',PO) = {(P,Ãˆ E RV X R 1 q 5 (P,(>), 6 sO(po)}. (3.17) 

Example 3.1 For an affine function 6(1) = a + (7, I) for I E F we have 

where i,' is defined in (3.9). 

We are now in the position to state the second result of this paper. I t  establishes a link 
between (DV) and bisubmodularity, showing that (DV) for 6 is equivalent to the localization 
of P being "delta-matroidal" a t  each point. Recalling that the first condition (Cl)  for being 
'delta-matroidal" refers to bisubmodularity, while (C2) is related to greediness, which is 
somehow equivalent to bisubmodularity, we may say that the exchange property (DV) is 
nothing but "a collection of local bisubmodularity", just as the exchange property (DG) 
corresponds to bisubmodularity. See [30, Theorem 5.31 for a similar result for matroid 
valuations. 

Theorem 3.4 Let (V, F) i s  an  even delta-matroid and 6 : F + R. Then  6 i s  a valuation 
(satisfying (DV)) if and only i f  the localization L{6', po) of 6' i s  "delta-matroidal" (satisfying 
(Cl)  and (C2)) at each point po. 

(Proof) A hyperplane {(p, q) 1 q = (p, I) - 6(1)} in the space of (p, q), indexed by I E F, 
contains (p, q) = (po, 6Â¡(po) if and only if 

(PO, I) - h ( I )  = ~ ( P O )  min{(po, J) - 6(J)  \ J E F}, 

which means I E v[-PO]) and (p, 1) - 6(1) = (p - po, I) + bO(po) for such I .  Therefore, in 
the neighborhood of po, bO(p) is equal to 

By Theorem 3.3, this is "delta-matroidal" if and only if .F(^-po]) satisfies (DG), whereas 
the latter condition for all p0 is equivalent to (DV) by Theorem 2.2. 
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Remark 3.1 It follows from Theorem 3.4 that the localization of a "delta-matroidal" func- 
tion is again "delta-matroidal". Therefore, it is sufficient in Theorem 3.4 to consider the 
localization of So at  points p0 such that (po, SO(po)) lies in a minimal face of Hyp(SO). 0 

Remark 3.2 By way of a concluding remark we indicate an implication of Theorem 3.4 in 
the context of discrete convex analysis [30, 311. Let (V, S1) and (V, S2) be valuated delta- 
matroids and suppose we are interested in the separation of 61 and -62 by an affine function. 
Theorem 3.4 shows that the separation of and -Si for a pair of general valuations (Sl, b 2 )  
can be reduced to a special case where c& and 62 are affine functions. This is due to the 
general observation in [30, $6.31 concerning separations. 
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