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Abstract For a nonempty finite set V let 3'" be the set of all the ordered pairs of disjoint subsets of V, 
i.e., 3'" = {(X, Y) 1 X ,  Y V, X 0 Y = 0). We define two operations, reduced union U and intersection n, 
on 3' as follows: for each (Xi, K )  E 3" (i = 1 ,2 )  

Also, for a {U, n}-closed family 3 C 3" a function f : 3 -+ R is called bisubmodular if for each (Xi,  Y , )  
F ( i  = 1,2)  we have 

For a {U, n}-closed family 3 3' with (0,0) 3 and a so-called bisubmodular function f : 3 -+ R on F 
with f ( @ , g )  = 0, the pair (3, f) is called a bisubmodular system on V. 

In this paper we consider two classes of bisubmodular systems which are closely related to base polyhe- 
dra. The first one is the class of balanced bisubmodular systems. We give a characterization of balanced 
bisubmodular systems and show that their associated polyhedra are the convex hulls of reflections of base 
polyhedra. The second one is that of cut functions of bidirected networks. It  is shown that the polyhedron 
determined by the cut function of a bidirected network is the set of the boundaries of flows in the bidi- 
rected network and is a projection of a section of a base polyhedron of boundaries of an associated ordinary 
network. 

1. Introduction 
For a nonempty finite set V let us consider a hrriily .F G 3" = {(-X, Y)l-Y, Y G K An1' = g }  
which is closed with respect, t,o the operat,ions, reduced ~~r ; ; I on ,  U and intersection D. defined 
as 

for each (Al . l> ) , (& ,Y f ) E 3". Generalizing a theorem of Birkhoff [8] on represeritirig a 
dist,ributive lat,tice by a poset,, Arido and Fnjisl~ige [2] showed that any such {Q n}-closed 
family F is represented as the set of ideals of a bidirected graph (see Theorem 2.1 in 
Sect,ion 2). The notions of bidircct,ed graph. ideal etc. will be precisely defined later. A 
{U. n}-(;losed family is somet'irnes called a signed ring family. 

For a {U, D}-closcd family F 3" a function f : F -+ R is called hisubmodular if for 
each (AYi , Vi ) , (-X2. 12 ) E F wc l ~ x c  
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We ci-ill tin- pair ( F .  f )  of a. {U. fl}-rlosrd fni~iily F 3" witli ( 0 .  0 )  E F and a l)isiil)iiio(liilar 
function f : F -+ R 011 F with / ' ( U .  0 )  = 0 a bis-iibrriod'tdar system, oil V .  For a 1)isiil)iiiodiilar 
system ( F  f )  011 V wo associate a polyliodroii P*( f ) defined as 

l .r(X. Y) = .,a(-Y) - . r ( l  ' ) for eadi (A. l " )  E 3". Kr call P. ( f ) tin' Insulmto(l,~~lm- 
pol'yhdron associated with ( F .  f ) .  When F = 3 ' .  hisnbiiio(ln1i-ir systci~ts rippwr as a 
polypsciidor~iatroid [l l]. a dclt a-iiiatroid [g]. a met roid [13]. a ditioid [21]. a universal poly- 
matroid 1201 and a special case of a jniiip systern [10]. Bis~ib~iiodnlar polylivdra arc also 
cliaracterixod i-is the polyliodra for which cortaiu variant, of peedy alqorzth'm worlis. as was 
shown by Chandrasokarau and Kabadi [l l]. Indeed. t,he class of bisiibriiodnlar polyliodra 
was first invest,igat,ed as t,he class of such greedy polyhedra by Diiiistaii and Welsh [14]. A 
charact,erization of bisnbiiiodiilar fnnctioris was givoii iu [S]. General st,rnct,nics of bisub- 
moduli-ir polyhedri-i were studied in some dept,li in [3]. based on t,he signed Birlclioff t,hooreni. 

In this paper we consider t,wo special classes of l)isiib~iiodiilar systems. namely. balanced 
bisiibmodular syst~i i is  and bisubir~odular syst,ems associated wit h cut functions of bidircct od 
netxorks. As we will see later. t,hese two subclasses have a common feat,ure: the bisubiiiod- 
ular polyhedra as~ociat~ed with these 1)isul)rriodular syst,eiiis are represented in t,erms of base 
p olyhcdra. 

In Section 2 we describe elernent,ary notions of {U. fl}-closed family. bisu1)modular s y s t ~ m  
and bidireetjed graph and give fundamental results t o  be used later. 

In Section 3 wo introduce the concept of balanced bisubmodi~lar system. We give a 
char act erizat ion of balanced bisnbmodular systems and it will t, urn oil t that t(l1e possibly 
unbounded bisnbiiiodiilar polyliedroii a~ssociat,ed with such a balanced bisnbiiiodular hyst8cixi 
is the convex hull of reflections of some base polylieclra. 

In Sect,ion 4 we investigat,e cut functions of 1)idirecteel networks and associated polyhedra. 
where t lie reduct ion t,ecliiiiquc used in [G] , [7] and [l61 is fully exploited. We will see. as is 
tlie case for cut functions of ordinary direct,ed n(>t~or l i s .  that  the polyhedrori determined 
by the cut function of a bidirectcd network is t,ho sot of t>ho boiiiidarios of flows in the 
l)idirect,cd network. Also. it, will be shown that, t,he polyhedron det,ermined by the  cut 
furict,ion of any bidirected network is a project,ion of tlie intersection of a base polyliedrou and 
a subspace. Resultjs obtained in Section 4 give a foundation for inve~t~igation of struct,ures 
of bisubrriodular polyhedra (see [3] ) . 

It should be rioted here that  an interest iiig application of t lie bidirect,ed network flow 
problem has recent,ly been reported by Miihrirlg. Miiller-Hi-innemaim arid M'eilie [19]. They 
considered the mesh refinement problem arising in a cornput,er-aided desigu, where a desired 
mesh refinement was made by solving a sequence of bidirect,ed flow problems. 

This article is based on [4] and some parts of it. an-' taken from K. Ando's dissertation [l]. 

2. Definitions and Preliminaries 
We give basic definitions and some preliminaries t o  be employed in t,he subsequent sections. 

Throughout this paper V denot,es a nonernpt,y finite set. R, R+ and Z. respectively7 
stjand for t>he set of reals, tJhe set of nonnegat,ive reals and t,he set of integers. For any vector 
r C R" and any subset U C V we define the r(;fl(:c:t-1,on X :  L of .T by U as 

- . r (u )  if 7; 6 L' 
(:r : U ) ( ' / ? )  = 

x(u}  ot,herwise ( v  c3 V).  
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Balanced Bisubmodular Systems 

Also, for any Q C R'' we define the refl(;c:tior~, Q : U of Q by U as 

Q : U  = { : r : U \  :l: e Q}. (2.2) 

2.1. {U,  I"!}-closed families and bid i rec ted  g raphs  
Each element (-X; V)  E 3" is nat,urally made correspond t,o a {Q, +l}-vcct,or \(Y,I-~ , called 
the characteristic vector of (X. Y ) ,  as 

and we call each element of 3" a sigr;,(;d suI),s(;t of k r .  The support of a signed subset (X) 
of V is -X- U V. WC sometimes ident,ify a signed subset with its characteristic vector. For 
example, for a signed subset (A', Y)  of V and a subset, U of V,  Y) : U denotes the signed 
subset corresponding to  {O, Â±l}-vecto \'(.y,yi : L'. A partial order C on 3'' is defined by 

A family F C 3'" is called {U, n}-i:losf:d if it, is closed under the two operations, reduced 
inion U and intersection n, defined by (1.1) and (1.2). It is known that if F is {U,  n}-closed, 
any maximal element (maximal with respect t o  the partial order C) has the same support, 
which we call the support of F and denote it by Supp(F).  If we have S ~ i p p ( F )  = V, we 
say F spans V (or F is spanr~irtg). A {U,  m}-closed family F 5 3" with (g,@) G F is called 
simple if for each distinct v, w G Siipp(F) there exists a signed subset (-X, Y ) 6 F separating 
v and W, i.e., 1 {U, W} n (X U Y)l = 1. 

A bisubrr~odnlar system (F, f )  on V is called sirriple (or spanning) if .F is simple (or 
spanning). It  was shown in [3] that a bisubmodular syst,ern (F, f ) is simple and spanning if 
and only if P*(/)  is pointed. 

A bidirected graph is a graph G = (I,', A: Q} with a boundary operator 9 :  A + Zv such 
that for each arc a G A there exist two vertices v ,  w E V (possibly identical except for (3) 
below) we have 

( 1 )  9 a  = U + u1 (arc a has two tails v and W ) ,  

(2) 9 a  = -v - w (arc a has two heads v and W )  or 
(3) 9 a  = v - w (arc a has one head v and one tail U ) ) ,  

where we regard Z 1  as a free module wit,h base V (see [IS]). Figure 2.1 shows an example 
of a bidirected graph. We say an arc a E A is of type (i) for some i G {l, 2,3} according as 
(i)  in (2.5) holds. If all the arcs of the bidircctcd graph are of type (3): we call it a directed 
graph. An ideal of a bidirected graph G = (V, A; 9) is a signed subset (X, Y )  6 3' such 
that for any a E A we have 

( ~ u - v ( x , Y ) )  5 0, (2.6) 

where ( S ,  .) is the canonical inner product and 9 a  should be regarded as a vector in 2'' (see 
221). We denote by K G )  the set of all the ideals of G. 

We have the following represent at ion t heorern for {U, n}-closed families. 

T h e o r e m  2.1 (Signed Birkhoff Theorem [2] (see also [22])): For any {U,  fl}-closed family 
F o n  V with. (B, 0) 6 F then: exists a bulirected graph G = (V, A; 9)  such that F = K G ) .  

D 
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Figure 2.1: An example of a bidirectcd graph. 

\Ye call a pair M = (G  = (V, A; a), c) of a bidirected graph G = (V, A; 9) and a function 
c : A -+ R+ U {+X} a bidirected n,etwork. The function c is called a capacity funct'ion. 
Given a bidirected network N = (G = (V, A; (9). c) we define the following function K(. : 
3" -+ R+ U {+m} as 

We call kc the cut function of N .  For a bidirected network = (G  = (V, A; a), c) a function 
y : A --+ R is called a (feasible) flow in N if 0 < ?(a) < c(a) for all a G A. Then, the 
boundary 9y : V -+ R of a flow y is given by 

Qp = x { y ( a ) 9 a  \ a E A},  

where 9a is regarded as a vector in R .  Let us denote the set of all the boundaries of 
bidirected flows in N by 945, i.e., 

Q@ = { a y  I y is a feasible flow iri N } .  (2.9) 

2.2. Submodular systems and bisubmodular systems 
We call a family D 5 2' of subsets of V a distributive lattice if it is closed under set union 
U and intersection f1. A function f : 2" -+ R U {+m} is called submodular if for each 
X, Y E 2' we have 

f (x)+ f ( ~ )  f ( x u Y ) +  f ( x n V ) .  (2.10) 

A pair (D, f )  of a distributive lattice D C 2' with 0, V G D and a submodular function 
f : D --+ R on D with f (0)  = 0 is called a submodular system on V. The submodular 
polyhedron and the base polyhedron associated with (D,  f )  are, respectively, defined by 

(see [17]). 
A bidirected network N = (G  = (V, A; 9)) c) is called a directed network if G = (V, A; 9) 

is a directed graph. For a directed network the function : 2 Ã‘ R+ U {+m} defined 
as 

~ ~ ( X ) = ~ { c ( a ) I a ~ A , ( 9 a , x x ) > O }  (A-â‚¬2 (2.13) 
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is called the cut function of At, whore y , ~  is the characteristic vect,or of set X defined by 
,~ ,Y(-I ; )  = 1 for v E A" and = 0 for E V - A. It is well-known (see [l?, Section 2-31) 
t,hat a cut function is a submodular funct,ion and the set 9̂  of boundaries of feasible flows 
in N is given by 

9̂ > = B(K,), (2.14) 

whore the right-hand side is the base polyhedron associated wit,h snbmodular syst'em ( D ,  K(.) 

on V with 
D = {X 1 X 6 2'. &(A') < +X}. (2.15) 

Let (F, f )  be a bisubmodular system on V. We assume that F spans V. Then for each 
maximal element (S, T) E F we have S U T = V. We call an element (S, T) E 3" with 
S U T = V an orthant. For each orthant (S, T) 6 F define C F by 

= {(& Y )  1 (K Y) 6 F, (.X, Y) C (S, T)}. (2.16) 

Note that forms a distributive lattice with join U and meet fl and that it has a unique 
maximal element (S, T) and a unique minimal element (@,g) .  

Define for each orthant (S, T) E .F 

We see that for any orthant (S, T) 6 F the reflections f ) : T and f )  : T by 
T are, respectively, a submodular polyhedron and its corresponding base polyhedron (see 

[l71 ). 
Since F = U { . F ( ~ ? ~ )  I (S, T) G F, S U T = V}, the polyhedron P*( f )  of (1.4) is expressed 

as 

P*(/) n { p i s , ~ , ( f )  I (S. T) E F, S U T = V}. (2.19) 

We can show the following lemmas. We omit the proofs (cf. [17, Section 3.5(b)] and [2]). 

Lemma 2.2: For each orthant (S, T) G F, f )  is a face of P*( f ) .  D 

Lemma 2.3: For a simple and spanning bisubrnodular system ( F ,  f )  on V we have 

the set of extreme points of P* ( f ) 
= [\{the set of extreme points of I (S,  T) : an orthant S}. (2.20) 

Lemma 2.3 follows from the greediness property of possibly unbounded bisubrnodular poly- 
hedra (see [3]). 

3. Balanced Bisubmodular Systems 
For a bidirected graph G = (V, A; 9) and a subset U C V define the boundary operator 
(9 :U) :  A -  ̂Zv by 

(9:U)(a)  = (8a):L- (a  E A), (3.1) 

where we regard da as a vector in R V .  We call the bidirected graph G : U = (V, A; 9 : U) 
the reflection of G by U. It should be noted here that (A', V) is an ideal of G if and only if 
(X, Y) : U is an ideal of G : U .  

A bidirected graph G = (V, A; 9) is said t o  be balanced if there exists a subset U of V 
such that the reflection G : U of G by L is an ordinary directed graph (see [l8]). 

The balancedness is characterized in terms of ideals as follows. 
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Theorem 3.1: A bidirected graph G = (V,-4; 9) is balanced if and only if there exists an 
orthant (S, T) E 3'' such that both (S, T) and (T, S) are ideals of G. 
(Proof) If G : U is an ordinary direct,ed graph for some U 5 V, then, (0, V )  and (V, 0)  are 
ideals of G : U. Hence. both (h V - U) and (V  - U. are ideals of G. 

Conversely, suppose that (U, V - U} arid (V - U. U )  are ideals of a bidirectcd graph G. 
Tlien, (0. V )  and (V. 0)  arc ideals of G : U. This is possible only if there is neither are of 
type (1) nor of type (2) in G :  U, i.e., G :  U is a directed graph. D 

A {U, fl}-closed family F is called balanced if there exists an ortharit (S. T) such t,hat, 
(S, T) 6 F arid (T, S) 6 F. We call a bisubmodular system (F, f )  b a k ~ ~ ~ ~ i x d  if F is balanced. 

Let ( F ,  f )  be a bisubmodular system and let F = T(G) for some bidirect,cd graph. If F is 
)alanccd, then by definition there exists an orthant (S, T )  E 3'' such that (S, T ) ,  (T, S) E F. 
Tlien, for any bidirected graph G = (V, A; 9) representing F as F = T(G) ,  G must be 
balanced. Conversely, if F is represented as F = 1 ( G )  for some balanced bidirected graph 
G, then by Theorem 3.1 we have (S. T), (T, S) E F for some ortharit (S, T)  E 3". Hence, 
F is balanced. Therefore, a bisubmodular system (F, f )  is balanced if and only if F is 
represented by an ordinary directed graph with a possible reflection. 

We also have another characterization of balancedness given below. 

Theorem 3.2: A bisubmodular system ( F ,  f )  on V zs balanced if and only if for some 
orthant (S, T) ? F the characteristic cone of BiST)( f )  coincides with that of P*( f ). 
(Proof) First, note tliat for any bisubrnodular system (F, f )  on V and any ortharit (S, T) E 
F the characteristic cone of B<s,T)( f )  is a subset of tlie characteristic cone of P*( f )  due to  
Lemma 2.2. 

The "only if" part: Suppose (J^i f )  is a balanced bisubmodular system on V. Tlien, 
by definition, there exists an orthant (S, T) E 3'' such tliat (S, T ) ,  ( T A  E F. Hence, 
for any vector x in the characteristic cone of P*( f ) we have x(S, T) = 0. Therefore, the 
characteristic cone of P*( f )  is a subset of the characteristic cone of f ) .  

The ('if" part: Conversely, suppose that a bisubmodular system ( F ,  f )  on V is not 
balanced. Let G = (V, A; 9) be a bidirected grapli representing F as in Theorem 2.1. Then, 
for each orthant (S, T) E F = Z(G) there is an arc U ( ~ , T )  ? A such that ( 9 ( ~ ( ~ , ~ ) ,  X ( T , ~ ) )  > 0 
since otherwise we would have (T, S) E F . This implies QaiST) is not in the characteristic 
cone of f ). However, &Z(s,T) is in the characteristic cone of P*( f )  by the definition of 
ideal. 

For any set Q C R" let us denote the convex hull of Q by W).  
Now, we have t lie following theorem. 

Theorem 3.3: For a balanced bisubmodular system ( F ,  f )  o n V  we have 

(Proof) It suffices to  prove tlie theorem when ( F ,  f )  is simple (and spanning due to  the 
balancedness of (F, f ) ) .  This assumption guarantees that P*( f )  is pointed. From Lemma 2.2 
we have 

P*(/) 2 x ( U { B ( s , ~ ) ( f )  I (S, T) E J-, S U T = V }  ) -  (3.3) 

The converse inclusion also holds by Lemma 2.3 and Theorem 3.2. 

It should be noted that (3.2) does not hold in general for non-balanced bisubrnodular 
systems. For example, consider bisubmodular system (F ,  f )  on V = {l, 2}, where 
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Figure 4.1: The signed covering graph of the bidirected graph in Figure 2.1. 

Also, note that when P,(/) is bounded, i.e., F = 3'; bisubrnodular system (3'; /) is 
balanced arid we have (3.2) (as shown in [l:]). 

4. Flows in Bidirected Networks 
For a bidirect.ed graph G = (V, A; Q) we define an associated ordinary directed graph G = 

( V ,  A; 9) as follows: V = V X {+, -}, A = A X {+, -} and 9 :  A + 2'' is defined by 

- 
for each a G A with 9a = (TV + r w .  The graph G is called the signed covering qr(1p1~ of G 
([23]). Figure 4.1 shows the signed covering graph of t,he bidirccted graph in Figure 2.1. 

With a bidirected network N = (G = (V.A;9), c)  we associate a directed network 
j\f = (G = ( V ,  A: 8) .  E) where G is the signed covering graph of G and the capacity function 
: A 4 R+ U {+S} is defined by 

We call the directed network fl the signed covering network of N.  
For eac,h subset U of V we define (U, +), (U, -) C as 

(U,  +) = {(V, +) I c 6 c}, (U, -) = {(c. -) 1 11 e L } .  (4.3) 

The cut function KC : 3" -  ̂ R+ U {+X} of a bidirected nettwork N = (G  = (V, A: (l), c) 
can be represented in terms of the ordinary cut function of its associated signed covering 
nettwork as follows. 

Lemma 4.1: L e w  = (G  = (V, A; 3) ;  c) he a hidirected network and Af = (G = (V,  A; a),  F) 
its signed covering network. Then we have 

Kc(A', y )  = K?((A', +) U (l", - ) )  (4.4) 

for any (X,Y ) 6 3". 
(Proof) An elementary calculation yields (4.4). 
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We obt'ain t,he bisnbmodnlarit,y of tthe cut function he. from t,lio submodularit,y of /v. We 
first show a preliminary lemma. 

For a subset, U of V define 

u* = {(r, -0) 1 (,?, IT) e u}. (4.5) 

Lemma 4.2: For -c C p we have 

(Proof) For each -2- 2 V we have 

since the mapping defined by A + ~  3 Q^) H-̂  d f )  6 A+(V - +c*) is a 1)ijcctioii and 
?(Q^) = ? ( a * ' ^ )  by definition, where /^z is t,he set of arcs leaving 2 for any 2 C V. i.e., 
A+Z = {a 1 a E A, (96, G)  > o}. 

Then from (4.7) and the submodularit,y of K? we have 

Now. we have 

Theorem 4.3: For any bidirected network N = (G = (V, A: Q). c) its cut function kc : 3" --+ 

R+ U {+X} is bisubmodular. 
(Proof) For any (A-1, 1; ), (-X2, Y2) E 3" we have from the snbmodularity of K;, Lemma 4.1 
and Lemma 4.2 that 

The bisubmodular polyhedron associated with the cut function of a bidirected network 
is related to  the base polyhedron associated with the ordinary cut funct,ion of its signed 
covering network in an interesting way as the following theorem shows. 

Theorem 4.4: For any bidirected n,etwork N = (G  = (V, A; a),  c )  we have 

where for each x G RV the vector 2 6 R^ is defined by 

.?(v, a} = ax(v) ((v, a} E V ) .  (4.11) 
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It follows from Lemma 4.1 that, (4.13) is equivalent t30 

V(XV,Y) E 3v : :(Â¥(X Y)  G,.(-\.. Y) .  (4.14) 

From Theorem 4.4 we have the following charact,erizatiori of the boundaries of flows in 

Theorem 4.5: For any bidirected network N = (G = (V, A; 9), c )  the set 9@ of the bour~,(I- 
arzcs of flows in N i s  given by 

9@ = P*(kC). (4.15) 

(Proof) The inclusion 9̂  5 P*(K(..) is clear. We prove the converse. Suppose T ? P* (k r ) .  
Then, by Theorem 4.4 :<Â 6 R defined by (4.11) is in the base polyhedron B ( K ~ )  associated 
with the cut function K,. of the signed covering network N = (G = (F. A; 9) , E).  \\\ know 
by (2.14) tha t  B(K,-,) is exactly the set of the boundaries of flows in N. Hence, there exists 
a foaaiblc flow "> A -+ R+ in A/" such that 

Define y :  A 4 R+ by 

1 
,;(a) = -(?(a(+)) + +(a ' - ) ) )  (a E A).  

2 

Clearly. y is a feasible flow in N.  Furthermore, we have 

It follows from (4.16) that, 89 = x, i.e., .X C 9@. D 

It should be noted that the degree sequence polyhedron of an undirected graph is a 
special case of (4.15), where all the arcs are of type (1) in the corresponding bidirect,ed 
graph (see [l21 and also [l01 for its generalization and related t,opics). 

For a t~idirect~ed network N = (G = (V, A: 9}, c) define a hidirected graph Gm = 

(V, Am: am) as A" = { a  1 a 6 A,c(a) = +S} and 9" is the restrict,iori of 9 t,o A". 
Define 

F = { ( - X 7 J )  1 (X, Y )  6 3", h-,.(A-. Y)  < +X}. (4.19) 

Then, we have Z(GOC) = F ,  and hencei 

Theorem 4.6: For the {U. D}-closed family F of (4.19)) rq(ird'iny k<: as the rest'ricf.wn of 
kc to F, (F. k c )  i s  a ?)is'i~1)rr1ocI'/~l(~r system on V .  Also. ( F ,  h-c) i s  a balanced bisubrn,od11lc1,Â¥1 
system on V i f  and only if Gm is a b(~,l(~Â¥~/~(:e bidirectcd graph. 
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