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Abstract For a nonempty finite set ¥V let 3V be the set of all the ordered pairs of disjoint subsets of V,
e, 3V = {(X,Y)| X,Y CV,X NY = §§}. We define two operations, reduced union L and intersection M,
on 3V as follows: for each (X;,Y;) € 3V (i = 1,2)

(Xl,Yl)U(XQ,Yz) = ((X1UX2)—-(Y1UY2),(Y1UYz)-—(XlUXz)),
(Xl,yl)l—l(X2,Y2) = (XlﬂXg,YlﬂYQ).

Also, for a {U, M}-closed family F C 3V a function f : F — R is called bisubmodular if for each (X;,Y;) €
F (i =1,2) we have

F(X1, )+ f(Xo, Y2) > F((X1, Y1) U (X2, Y2)) + F((X1, Y1) M (X2, Ya)).

For a {U,M}-closed family F C 3" with (#,0) € F and a so-called bisubmodular function f: 7 — R on F
with f(0,0) = 0, the pair (F, f) is called a bisubmodular system on V.

In this paper we consider two classes of bisubmodular systems which are closely related to base polyhe-
dra. The first one is the class of balanced bisubmodular systems. We give a characterization of balanced
bisubmodular systems and show that their associated polyhedra are the convex hulls of reflections of base
polyhedra. The second one is that of cut functions of bidirected networks. It is shown that the polyhedron
determined by the cut function of a bidirected network is the set of the boundaries of flows in the bidi-
rected network and is a projection of a section of a base polyhedron of boundaries of an associated ordinary
network.

1. Introduction

For a nonempty finite set V let us consider a family F C 3V = {(X,V)|X,Y C V,XnY = §}
which is closed with respect to the operations, reduced union U and intersection M, defined
as

(XL YD) U (X5, Y5) = (X UX) = (BUYs), (1 UY) — (X UXs), (L)
(X1,Y) N (X9, Y5) = (A1NAYiNnYs) (1.2)
for cach (X7,Y7),(X5,Y3) € 3V, Generalizing a theorem of Birkhoff [8] on representing a
distributive lattice by a poset, Ando and Fujishige [2] showed that any such {LI,M}-closed
family F is represented as the set of ideals of a bidirected graph (see Theorem 2.1 in
Section 2). The notions of bidirected graph, ideal ctc.will be precisely defined later. A
{u, M}-closed family is sometimes called a signed ring family.
For a {U,M}-closed family F C 3¥ a function f: F — R is called bisubmodular if for
cach (X1,Y7), (X5, Y2) € F we have

FXLY) + £A(X2,Y2) > f((XL Y1) U (X2, Y9)) + F((X, Y1) M, 12)). (1.3)
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438 K. Ando & S. Fujishige & T. Naitoh

We call the pair (F. f) of a {U, M}-closed family F C 3" with (§,§) € F and a bisubmodular
function f: F — R on F with f(0,0) = 0 a bisubmodular systern on V. For a bisubmodular
system (F, f) on 17 we associate a polyhedron Po(f) defined as

P.(f)={r|2o e RV V(X.Y) e F:a(X,Y) < f(X.Y)]}, (1.4)

where #(X,Y) = #(X) — 2(Y) for cach (X,Y) € 3V, We call P.(f) the bisubmodular
polyhedron associated with (F, f). When F = 3%, bisubmodular systeims appear as a
polypseudomatroid [11], a delta-matroid [9], a metroid [13], a ditroid [21], a universal poly-
matroid [20] and a special case of a jump systemn [10]. Bisubmodular polyhedra are also
characterized as the polyhedra for which certain variant of greedy algorithim works, as was
shown by Chandrasckaran and Kabadi [11]. Indeed, the class of bisubmodular polyhedra
was first investigated as the class of such greedy polyhedra by Dunstan and Welsh [14]. A
characterization of bisubmodular functions was given in [5]. General structures of bisub-
modular polyhedra were studied in some depth in [3]. based on the signed Birkhoff theorewn.

In this paper we cousider two special classes of bisubmodular systems, namely, balanced
bisubmodular systems and bisubmodular systeimns associated with cut functions of bidirected
networks. As we will sec later, these two subclasses have a common feature: the bisubmod-
ular polyhedra associated with these bisubmodular systems are represented in terms of base
polyhedra. '

In Section 2 we describe elementary notions of {U, M}-closed family, bisubmodular systeimn
and bidirected graph and give fundamental results to be used later.

In Section 3 we introduce the concept of balanced bisubmodular system. We give a
characterization of balanced bisubmodular systems and it will turn out that the possibly
unbounded bisubmodular polyhedron associated with such a balanced bisubmodular system
15 the convex hull of reflections of some base polyhedra.

In Section 4 we investigate cut functions of bidirected networks and associated polyhedra,
where the reduction technigque used in [6], [7] and [16] is fully exploited. We will see, as is
the case for cut functions of ordinary directed networks, that the polyhedron determined
by the cut function of a bidirected network is the set of the boundaries of flows in the
bidirected network. Also, it will be shown that the polylhedron determined by the cut
function of any bidirected network is a projection of the intersection of a base polyhedron and
a subspace. Results obtained in Section 4 give a foundation for investigation of structures
of bisubmodular polyhedra (see [3]).

It should be noted here that an interesting application of the bidirected network flow
problem has recently been reported by Mohring, Miiller-Hannemann and Weihe [19]. They
considered the mesh refinement problem arising in a computer-aided design, where a desired
mesh refinement was made by solving a sequence of bidirected flow problems.

This article is based on [4] and some parts of it are taken from K. Ando’s dissertation [1].

2. Definitions and Preliminaries

We give basic definitions and some preliminaries to be employed in the subsequent sections.
Throughout this paper V' denotes a nonempty finite set. R, Ry and Z, respectively,

stand for the set of reals, the set of nonnegative reals and the set of integers. For any vector

€ RV and any subset U C V we define the reflection 2:U of 2 by U as

(z:U)(v) = —t(v) ifvel (veV). (2.1)

x(v) - otherwise
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Balanced Bisubmodular Systems 439
Also, for any Q C RY we define the reflection Q:U of Q by U as
Y
Q:U={x:U|xeQ}. (2.2)

2.1. {U,M}-closed families and bidirected graphs
Each clement (X,Y) € 3" is naturally made correspond to a {0, £1}-vector x(x,y), called
the characteristic vector of (X,Y), as

1 fveX
Xxy(v)=4 =1 ifveYy  (veV) (2.3)
0 otherwise

and we call each element of 3¥ a signed subsct of V. The support of a signed subset (X,Y)
of Vis X UY. We sometimes identify a signed subset with its characteristic vector. For
example, for a signed subset (X,Y) of V and a subset U of V., (X,Y"):U denotes the signed
subset corresponding to {0, £1}-vector x(x,v):U. A partial order C on 3V is defined by

(XL,Y) C (Ao, Ys) <= X1 C X0, V1 C Y, (X}, V1), (X, ¥5) € 3Y). (2.4)

A family F C 3V is called {U,M}-closed if it is closed under the two operations, reduced
union U and intersection M, defined by (1.1) and (1.2). It is known that if  is {LJ,M}-closed,
any maximal element (maximal with respect to the partial order C) has the same support,
which we call the support of F and denote it by Supp(F). If we have Supp(F) =V, we
say F spans V (or F is spanning). A {U,M}-closed family F C 3" with (§,8) € F is called
simple if for each distinet v, w € Supp(F) there exists a signed subset (X,Y) € F separating
v and w, i.e, [{v,w} N (X UY)| =1

A bisubmodular system (F, f) on V is called simple (or spanning) if F is simple (or
spanning). It was shown in [3] that a bisubmodular system (F, f) is simple and spanning if
and only if P,(f) is pointed.

A bidirected graph is a graph G = (V, A; 9) with a boundary operator 9: A — ZV such
that for each arc @ € A there exist two vertices v,w € V' (possibly identical except for (3)
below) we have

(1) da=v+w (arc a has two tails v and w),
(2) 0a= —v—w (arc a has two heads v and w) or (2.5)
(3) Qa=v—w (arc a has one head v and one tail w),

where we regard Z" as a free module with base V' (see [15]). Figure 2.1 shows an example
of a bidirected graph. We say an arc a € A is of type (i) for some ¢ € {1,2,3} according as
(1) in (2.5) holds. If all the arcs of the bidirected graph are of type (3), we call it a directed
graph. An ideal of a bidirected graph G = (V, A4;0) is a signed subset (X,Y) € 3" such
that for any a € A we have

(Oa,x(x,y)) <0, (2.6)

where (-, -} is the canonical inner product and da should be regarded as a vector in ZY (see
[22]). We denote by Z(G) the set of all the ideals of G.
We have the following representation theorem for {U, M}-closed families.
Theorem 2.1 (Signed Birkhoff Theorem [2] (see also [22])): For any {U,M}-closed family
F on'V with (0,0) € F there exists a bidirected graph G = (V, A;9) such that F = Z(G).
a

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



440 K. Ando & S. Fujishige & T. Naitoh

Figure 2.1: An example of a bidirected graph.

We call a pair N = (G = (V, 4; ), ¢) of a bidirected graph G = (V, A; 9) and a function
c: A — Ry U {+oo} a bidirected network. The function c is called a capacity function.
Given a bidirected network N' = (G = (V, A4;0),¢) we define the following function &, :
3V - R, U {+oc} as

R(X,Y) =) {(Ba, x(x,v))cla) | a € A, (Ba, x(x,yy) > 0} (2.7)

We call &, the cut function of N. For a bidirected network N' = (G = (V, 4, 0), ¢) a function
w: A — Ris called a (feasible) flow in N if 0 < p(a) < ¢(a) for all a € A. Then, the
boundary 0p : V — R of a flow ¢ is given by

9y =Y {p(a)aa € A}, (28)

where Ja is regarded as a vector in RV. Let us denote the set of all the boundaries of
bidirected flows in A by 09, i.e.,

0% = {J¢ | v is a feasible flow in N'}. (2.9)

2.2. Submodular systems and bisubmodular systems

We call a family D C 2V of subsets of V' a distributive lattice if it is closed under set union
U and intersection N. A function f: 2¥ — R U {400} is called submodular if for each
X,Y € 2V we have :
fX)+fY) 2 f(XUY)+ f(XNY). (2.10)
A pair (D, f) of a distributive lattice D C 2V with #,V € D and a submodular function
f:D — R on D with f(§) = 0 is called a submodular system on V. The submodular
polyhedron and the base polyhedron associated with (D, f) are, respectively, defined by

P(f) = {z]2eRV.VX € D: 2(X) < f(X)}, (2.11)
B(f) = {z|zeP(f)z(V)=f(V)} (2.12)

(see [17]). ,

A bidirected network N = (G = (V, A4;3), ¢) is called a directed network if G = (V, A; 0)
is a directed graph. For a directed network A the function k.: 2¥ — R, U {+oc} defined
as

ke(X) = {c(a)|a € A (da,xx) >0} (X €2") (2.13)
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is called the cut function of N, where yx is the characteristic vector of set X defined by
xx(v) =1for v e X and xx(v) =0 for v € V — X. It is well-known (see [17, Section 2.3])
that a cut function is a submodular function and the set d® of boundaries of feasible flows
in N is given by

0% = B(k,) (2.14)

where the right-hand side is the base polyhedron associated with submodular system (D, &)

;

on V with

D={X|Xe2" r(X)<+ox}. (2.15)

Let (F, f) be a bisubmodular system on V. We assume that F spans V. Then for each
maximal element (S,T) € F we have SUT = V. We call an element (S,T) € 3" with
SUT =V an orthant. For each orthant (S, T) € F define F5T) C F by

FED = ((X,Y)|(X,Y) € F,(X,Y) C (5,T)}. (2.16)

Note that F5T) forms a distributive lattice with join Ll and meet M and that it has a unique

maximal element (S,T") and a unique minimal element (@, ).
Define for each orthant (S,7T) € F

Psmy(f) = {z|2 e RV V(X,Y)e FOD: z(X)Y) < f(X,Y)}, (2.17)
Bisr(f) = {z|ze€Pin(f),s(S,T)=f(S,T)} (2.18)
We see that for any orthant (S,T) € F the reflections Pisr)(f): T and Bsn(f): T by

T are, respectively, a submodular polyhedron and its corresponding base polyhedron (see

[17]).
Since F = Y{FED|(S,T) € F,SUT = V}, the polyhedron P,(f) of (1.4) is expressed

as

P.(f) =(WPsn(f)1(8,T) e F,SUT =V} (2.19)
We can show the following lemmas. We omit the proofs (cf. [17, Section 3.5(b)] and [2]).
Lemma 2.2: For each orthant (S,T) € F, Bisr)(f) is a face of P.(f). a

Lemma 2.3: For a simple and spanning bisubmodular system (F, f) on V we have

the set of extreme points of P.(f)
= |J{the set of extreme points of Bsry | (S,T) : an orthant in F}.  (2.20)

a

Lemma 2.3 follows from the greediness property of possibly unbounded bisubmodular poly-
hedra (see [3]).

3. Balanced Bisubmodular Systems
For a bidirected graph G = (V, A;3) and a subset U C V define the boundary operator
(0:U): A—Z"V by
‘ (0:U)(a) = (0a):U (a € A), (3.1)
where we regard da as a vector in RY. We call the bidirected graph G:U = (V,4;9:U)
the reflection of G by U. It should be noted here that (X,Y") is an ideal of G if and only if
(X,Y):U is an ideal of G:U.

A bidirected graph G = (V, A; ) is said to be balanced if there exists a subset U of V
such that the reflection G:U of G by U is an ordinary directed graph (see [18]).

The balancedness is characterized in terms of ideals as follows.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Theorem 3.1: A bidirected graph G = (V, A; 0) is balanced if and only if there cxists an
orthant (S, T) € 3" such that both (S, T) and (T,S) are ideals of G.

(Proof) If G:U is an ordinary directed graph for some U C V', then, (§,V) and (V,0) are
ideals of G:U. Hence, both (U,V —U) and (V — U,U) are ideals of G.

Conversely, suppose that (U, V —U) and (V — U, U) are ideals of a bidirected graph G.
Then, (§,V) and (V,0) are ideals of G : U. This is possible only if there is neither arc of
type (1) nor of type (2) in G:U, i.e., G:U is a directed graph. a

A {U,M}-closed family F is called balanced if there exists an orthant (S,T') such that
(5,T) € Fand (T,S) € F. We call a bisubmodular system (F, f) balanced if F is balanced.

Let (F, f) be a bisubmodular system and let F = Z(G) for some bidirected graph. If F is
balanced, then by definition there exists an orthant (S, T) € 3Y such that (S, T),(T,S) € F.
Then, for any bidirected graph G = (V| A; 9) representing F as F = Z(G), G must be
balanced. Conversely, if F is represented as F = Z(G) for some balanced bidirected graph
G, then by Theorem 3.1 we have (S,T),(T,S) € F for some orthant (S,T) € 3¥. Hence,
F is balanced. Therefore, a bisubmodular system (F, f) is balanced if and ounly if F is
represented by an ordinary directed graph with a possible reflection.

We also have another characterization of balancedness given below.

Theorem 3.2: A bisubmodular system (F, f) on V is balanced if and only if for some
orthant (S,T) € F the characteristic cone of Bisr)(f) coincides with that of P.(f).
(Proof) First, note that for any bisubmodular system (F, f) on V and any orthant (S,T) €
F the characteristic cone of B(sr)(f) is a subset of the characteristic cone of P,(f) due to
Lemma 2.2. '

The “only if” part: Suppose (F, f) is a balanced bisubmodular system on V. Then,
by definition, there exists an orthant (S,T) € 3" such that (S,T),(T,S) € F. Hence,
for any vector x in the characteristic cone of P.(f) we have z(S,T) = 0. Therefore, the
characteristic cone of P,(f) is a subset of the characteristic cone of Bigr)(f).

The “if” part: Conversely, suppose that a bisubmodular system (F, f) on V is not
balanced. Let G = (V, A;0) be a bidirected graph representing F as in Theorem 2.1. Then,
for each orthant (S,T) € F = Z(G) there is an arc a¢s;r) € A such that (Jaisr), X(1,5)) > 0
since otherwise we would have (T, S) € F . This implies da¢gr) is not in the characteristic

cone of B(s.r)(f). However, da(sr) is in the characteristic cone of P,(f) by the definition of
ideal. O

For any set @ C RY let us denote the convex hull of Q by H(Q).
Now, we have the following theorem.

Theorem 3.3: For a balanced bisubmodular system (F, f) on V we have
P.(f) = H(UBsm(H (S, T) e F,SUT =V}). (32)

(Proof) It suffices to prove the theorem when (F, f) is simple (and spanning due to the
balancedness of (F, f)). This assumption guarantees that P,(f) is pointed. From Lemma 2.2
we have

P*(f) :_) H(U{B(S,T)(f) | (SvT) € fa SUT = V}) (33)
The converse inclusion also holds by Lemma 2.3 and Theorem 3.2. O

It should be noted that (3.2) does not hold in general for non-balanced bisubmodular
systems. For example, consider bisubmodular system (F, f) on V = {1,2}, where

F={0.0),({13.9),({1,2},0),({2},0), ({2}, {1}), (0, {1})}.
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Figurc 4.1: The signed covering graph of the bidirected graph in Figure 2.1.

Also, note that when P,(f) is bounded, ie., F = 3V, bisubmodular system (3, f) is
balanced and we have (3.2) (as shown in [17]).

4. Flows in Bidirected Networks )
For a bidirected graph G = (V, A;0) we define an associated ordinary directed graph G =
(V,A;9) as follows: V=V x {+,-}, A=A x {+,~} and 9: A — ZV is defined by

é((L(Jr)) = (’U,(T) - (w7 —7—)’

Ia) = (w,T)~(v,—0) (4.1)

for each a € A with da = ov + 7w. The graph G is called the signed covering graph of G
([23]). Figure 4.1 shows the signed covering graph of the bidirected graph in Figure 2.1.

With a bidirected network ' = (G = (V, A;39),c) we associate a directed network
N = (é = (\7, A; 0), €) where G is the signed covering graph of G and the capacity function
¢:

A — Ry U {400} is defined by
Ha) = &a 7)) =cla) (a € A). (4.2)

We call the directed network N the signed covering network of N.
For each subset U of V' we define (U, +),(U,—) CV as

(U,+) = {(’U, +) I v € U}a (U7 "“)‘ = {(/U? —) I CAS U}' (4'3)

The cut function &, : 3V — Ry, U {+o0} of a bidirected network N' = (G = (V, 4;0),¢)
can be represented in terms of the ordinary cut function of its associated signed covering
network as follows.

Lemma 4.1: Let N = (G = (V, A;9), c) be a bidirected network and N = (G = (V, A;9), &)

its signed covering network. Then we have
Ro(XY) = re((X, +) U (Y, -)) (4.4)

for any (X,Y) € 3".
(Proof) An elementary calculation yields (4.4). a
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We obtain the bisubmodularity of the cut function &, from the submodularity of sz We
first show a preliminary lemma.

For a subset U of V define
—{ v,—0) | (v,0o GC} (4.5)
Lemma 4.2: For any X CV we have

Ke(X) 2 Ke(X — X7). (4.6)

(Proof) For cach X C V we have
Ke(X) = ko(V = X7) (4.7)

since the mapping defined by A*X 3 a9 - 79 € AT(V - _\*) is a bijection and
~(a(‘)) = ¢(al=9) by definition, where A*Z is the set of arcs leavi ng Z for any Z C V,ic.,
ATZ ={a|a€ A,{da,x;) >0}

Then from (4.7) and the submodularity of x; we have

26a(X) = ma(X) +ra(V = X7) |
> KX — X") 4+ ka(V — (X" = X))
= w( X = X7+ we(V = (X = X))
= 2&5(- - '*) (48)
O

Now, we have
Theorem 4.3: For any bidirected network N' = (G = (V, A; 9), ¢) its cut function k.: 3V —
R U {+oc} is bisubmodular.
(Proof) For any (X1, 1Y]),(X>,Y3) € 3V we have from the submodularity of xz, Lemma 4.1
and Lemma 4.2 that

Re(X1, Y1) + Re(Xo,Y5)
Ke((X1, +) U (Y1, =) + ka((X2, +) U (Y2, —))
Ka((X1 U Xy, + ) (Y1UYs,—)) + ka((X1 N Xp, +) U (Y1 N Y5, —))
Ke(((X1U X)) = (Y1 UYa), +) U ((Y1 UYa) — (X, U Xa), —))
+r:((X1 N X, +) U (Y1NYs, =)
kc((Xl,Y) (X5,Y3)) + £e((X1, Y1) M (X9, ¥3)). (4.9)

]

AV AVARS|

The bisubmodular polyhedron associated with the cut function of a bidirected network
is related to the base polyhedron associated with the ordinary cut function of its signed
covering network in an interesting way as the following theorem shows.

Theorem 4.4: For any bidirected network N = (G = (V, A;9), ¢) we have
P.(k.) = {z |2 € RY,i € B(ka)}, (4.10)
where for each x € RY the vector i € RY is defined by

#(v,0) = (fﬂ;(b) ((v,0) € V). (4.11)
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(Proof) Consider any vector 2 € RY and its associated @ € R" through (4.11). Then,
T € B(w;) if and only if o ) ‘
VX CV:a(X) <ra(X). (4.12)

Since a( X) = #X - X*) and H;{.(};) > ko X — }{'*) due to Lemma 4.2, this is equivalent to
V(X Y) €3V 2((X, +) U (Y, =) < ma((X, +) U (Y, - (4.13)

It follows from Lemma 4.1 that (4.13) is equivalent to
VX, Y) €3V a(X,Y) < A (XN, Y). (4.14)

a

From Theorem 4.4 we have the following characterization of the houndaries of flows in
bidirected networks.
Theorem 4.5: For any bidirected network N = (G = (V, A;9),¢) the set 0P of the bound-
arics of flows in N is given by
0P = P.(k,). (4.15)

(Proof) The inclusion 9% C P.(k.) is clear. We prove the converse. Suppose © € P.(k.).
Then, by Theorem 4.4 1 € RY defined by (4.11) is in the base polyhedron B( &) associated
with the cut function x; of the signed covering network N = (G (V,A, 3)/ ¢). We know
by (2.14) that B(h,) is exactly the set of the boundaries of flows in . Hence, there exists
a feasible flow ¢: A — R in A such that

=dp. (4.16)
Define »: A - R, by
Pla) = S(Ha) + 2(a7) (a€ A) (4.17)
Clearly, ¢ is a feasible flow in M. Furthermore, we have
Bo(v) = 5(8p(v, +) ~ 33(r, ) (4.18)
It follows from (4.16) that dp = z, i.e., x € 09. | O

It should be noted that the degree sequence polyhedron of an undirected graph is a
special case of (4.15), where all the arcs are of type (1) in the corresponding bidirected
graph (see [12] and also [10] for its genoralization and related topics).

For a bidirected network N' = (G = (V,A4;9),¢) define a bidirected graph G* =
(V,A4%,0%) as A = {a|a € 4,c(a) = +oo} and 9= is the restriction of § to A.
Define

F={(X,Y)|(X,Y) €3, k(X,Y) < +oc}. (4.19)

Then, we have Z(G*) = F, and hence,

Theorem 4.6: For the {U,M}-closed family F of (4.19), regarding &, as the restriction of
ke to F, (F, k) ts a bisubmodular system on V. Also, (F,k.) is a balanced bisubmodular
system, on V if and only if G is a balanced bidirected graph. O
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