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Abstract This paper analyzes local convergence rates of primal-dual interior point methods for general 
nonlinearly constrained optimization problems. For this purpose, we first discuss modified Newton methods 
and modified quasi-Newton methods for solving a nonlinear system of equations, and show local and Q- 
quadratic/Q-superlinear convergence of these methods. These methods are characterized by a perturbation 
of the right-hand side of the Newton equation applied to the system, an approximation of the Jacobian 
matrix by some matrix, and component-wise dampings of the step. By applying these convergence results 
for the nonlinear system of equations to the primal-dual interior point methods for nonlinear optimization, 
we obtain convergence results of the primal-dual interior point Newton and quasi-Newton methods. A 
necessary and sufficient condition for Q-superlinear convergence of the latter methods corresponds to the 
Dennis-More condition. Furthermore, we present some quasi-Newton updating formulae. Finally, we give 
an analysis of the Q-rate in a part of variables for the primal-dual interior point quasi-Newton methods, and 
obtain a necessary and sufficient condition for the Q-rate. This condition is a generalization of the result 
given by Martinez, Parada and Tapia (1995), which was done independently. 

1. Introduction 
This paper is concerned with primal-dual interior point methods for solving the nonlinearly 
constrained optimization problem: 

(1.1) minimize f (X) subject to g(x) = 0, X > 0, X G R", 

where f : R" -+ R and g : R" -+ Rm. Many numerical methods have been studied for solving 
the problem. Among them, the augmented Lagrangian method and the SQP method (see 
for example [Ill) have been regarded as representatives of general and effective methods. 
On the other hand, the excellent success of interior point methods for linear programming, 
especially the primal-dual method ([l 51, [l 71, [20]), has affected researches on numerical 
methods for nonlinear optimization and has aroused renewed interests between researchers 
about interior point methods applied to the problem. 

Recently, primal-dual interior point methods for general nonlinearly constrained prob- 
lems have been studied by several authors. Local convergence properties are discussed by 
McCormick and Falk [19], El-Bakry, Tapia, Tsuchiya and Zhang [8], Yamashita and Yabe 
2 6 ,  and Martinez, Parada and Tapia [IS}. In [26], we studied primal-dual interior point 
methods based on the Newton method and the quasi-Newton method, and proved local 

A preliminary version of this paper was presented at the conference "The State of the Art of Scientific 
Computing and its Prospect" held a t  Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 
October 1993. ([24]) 
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and quadratic/superlinear convergence of these methods. On the other hand, the global 
convergence property was studied by Yamashita [Z]. Furthermore, Yamashita [25], Vial 
[23], and Lasdon, Plurnrner and Yu [l61 presented some computational experience. In [25], 
Yamashita applied his globally convergent primal-dual interior point method to Hock and 
Schittkowski problems [l41 and showed efficiency of the method. 

Let the Lagrangian function of problem (1.1) be denoted by 

where y and z are the multiplier vectors corresponding to the constraints g(x) = 0 and X > 0, 
respectively. In our previous paper [26], we dealt with the following modified Karush-Kuhn- 
Tucker (K-K-T) conditions: 

and 

(1.4) 
for a non-negative number p, instead of the K-K-T conditions of problem (1.1): 

and 

(1.6) 
where 

X = diag(xi,x2,--- ,xn),  

Z = diag(zi ,a , - -- ,zn) ,  

e = (I, I ,  m e . ,  1)' E R", 

and A(x) E Rmxn is the Jacobian matrix of g(x). Here we note that 

where 

Denote the Jacobian matrix of r(x, y, z) by 

Note that Vr (X, y, z) is equal to the Jacobian matrix Vro (X, y, z) . Denoting (X, y, z) by 
W E Rn X Rm X R", we have the following prototype algorithm of our primal-dual interior 
point method, which was described in [26]. 
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Algorithm I 
Fork=  0 ,1 ,2 ,+ - - ,  do 
Step 1. Choose the parameter pk 2 0. 
Step 2. Solve the following system for Awk = (Axk? Ayk ? 

where 

(1.10) 

and Gk is the Hessian matrix VzL(wk) of the Lagrangian function or its approximation. 
Step 3. Compute the step sizes Ak = diag (ask In, agk Im) azk In), where In and Im are n-th 

and m-th order identity matrices, respectively. 
Step 4. Update: 

(1.11) wk+1=wk+AkAwk. 

We note that the iteration defined by (1.9) is the Newton method for the solution of the 
system r (w) = 0 if the matrix Gk is the true Hessian matrix of the Lagrangian function. We 
also note that if the matrix Gk is an approximation to the Hessian matrix of the Lagrangian 
function, Algorithm I corresponds to the quasi-Newton method. Algorithm I has three 
characteristics. They are an approximation of the Hessian V;L(wk) by some matrix Gk, a 
perturbation of the right-hand side of the Newton equation by a vector p6, and component- 
wise dampings of the step Awk, In this paper, we call the Newton method and the quasi- 
Newton method that possess such characteristics as a modified Newton method and a modified 
qawi-Newton method, respectively. 

In [26], we gave necessary and sufficient conditions for the point {(xk, yk, zk)} to converge 
Q-superlinearly to the K-K-T point (x*, y*, z*) within the framework of the quasi-Newton 
method. In general) a Q-rate in (z, y, z )  implies no more than the conesponding R-rate 
in (x, z) .  Thus it is interesting to analyze the Q-rate in (x, 2). In the SQP method or 
the augmented Lagrangian method for solving constrained optimization, the analysis of the 
Q-rate in a part of variables is one of the main topics, and many studies have been done 
by, for example, Boggs, Tolle and Wang [I], Nocedal and Overton [Zl] ,  Fontecilla [12], and 
Coleman [3]. They discussed conditions on the approximation to the projected Hessian 
matrix. 

In this paper, we will consider similar conditions on the Q-rate in (x, y, z)  and in (x, 2) to 
those obtained in the SQP method and the augmented Lagrangian method. For this purpose, 
we will in general discuss modified Newton methods and modified quasi-Newton methods for 
solving a nonlinear system of equations? and will show local and Q-quadratic/Q-superlinew 
convergence of these methods. These results are in part related with the studies of inexact 
Newton methods by Dembo, Eisenstat and Steihaug 151 and inexact quasi-Newton methods 
by Eisenstat and Steihaug [?I, because we have to deal with a perturbation of the right-hand 
side of the Newton equation. By applying these convergence results for the nonlinear system 
of equations to primal-dual interior point methods) we will obtain the main results in [26] 
as corollaries and, furthermore, some results for the Q-rate in (x, z )  within the framework 
of primal-dual interior point quasi-Newton methods. The latter result is a generalization of 
the study by Martinez) Parada and Tapia [18] ) which was done independently, 
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The present paper is organized as follows. In Section 2, we will discuss general properties 
of modified Newton methods and modified quasi-Newton methods for solving a nonlinear 
system of equations, and show their local convergence and the rate of convergence. In Section 
3, by using the results of Section 2, we will derive the convergence results of the primal- 
dual interior point methods proposed in [26] for solving the nonlinear optimization problem 
(1.1). In addition, we will construct concrete updating formulae within the framework of 
primal-dual interior point quasi-Newton methods. Section 4 will be devoted to the analysis 
of Q-superlinear convergence of the sequence {(xk, zk)}. In the following, for simplicity, we 
omit the prefix " Q-" of Q-quadratic and Q-superlinear convergence. 

2. General theory on modified Newton and modified quasi-Newton methods 
In this section, we consider the nonlinear system of equations - 

Let W* E Rn be a solution to the equations and let 7-0 be continuously differentiable. When 
the Newton method is applied to the nonlinear system of equations, we have the following 
Newton equation: 

v70 (W) A w ~  = -TO ( ~ k ) ,  

and the new iterate is given by 
Wk+l = Wk + Awk, 

where wk is a current approximation to the solution W* and Vro denotes the Jacobian matrix 
of ro. 

We partition the vectors into 

where n~ + n2 = n. Then the Newton equation is written as 

Now we consider the following: 
(1) Approximation to Vurl(wk) by some matrix Gk. 
(2) Perturbation of the right-hand side of the Newton equation by a vector pk R". 
(3) Component-wise dampings of the Newton step Awk. 

As methods based on the idea of (2), inexact Newton methods are well known. Dembo, 
Eisenstat and Steihaug [5] first proposed these methods for solving the nonlinear system 
of equations and analyzed local convergence and the rate of convergence. An application 
of inexact Newton methods to unconstrained optimization was also derived by Dembo and 
Steihaug [4]. As methods based on the ideas of (1) and (2), Eisenstat and Steihaug [7] 
derived inexact quasi-Newton methods for solving the system of nonlinear equations and 
studied local convergence and the rate of convergence. Also, Steihaug [22] and Fontecilla [l21 
discussed methods based on the idears of (1) and (2) for solving unconstrained optimization 
and constrained optimization, respectively. 

Standard methods use a single step size for the Newton direction and analyze the rate 
of convergence for the case of a unit step size. However, since we would like to deal with 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Primal-Dual Interior Point Q-N Methods 419 

the primal-dual interior point met hods, we should consider component- wise dampings in 
the idea of (3) according to the current practice of implementations, and furthermore, we 
give sufficient conditions for a rapid convergence. 

By taking the preceding ideas into account, we consider the following algorithm. 

Algorithm X 
For k = 0 , l , 2 , - - . ,  do 
Step 1. Solve the following system for Awk = (Auk, A^)* 

where 

(2.3) 

Step 2. Compute the step size 

Step 3. Update 

(2.4) wk+l = WA; + AkAwk. 

Let D(c fin) be an open convex subset that contains W*. Let 11 11 denote the l2 norm 
for vectors and matrices, and for matrices, let 11 and 11 \\p be a matrix norm and the 
Frobenius norm, respectively. Then, by the norm equivalence, there is a positive constant 
f t  such that, for any matrix C, 

In this section, we make the following assumptions: 
(XA1) The function ro (W) is continuously differentiable and there exists a positive constant 

[ such that 

for any W, wt G D. 
(XA2) The Jacobian matrix Vro(w) is nonsingular at W*. 

(XA3) The vector p k  and the matrix At satisfy 

for positive constants ~ 1 ~ ~ 2  and \. D 
It follows from assumption (XA1) that 

(2.6) for Vw, W', W" E D. 

The following lemma is useful for convergence analysis in the following subsections. 
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Lemma 1 Suppose that assumptions (XA1) and (XA2)  hold. Then there exist an  E > 0 
and a 6 > 0 such that, if 

for some positive constant C. 
Proof. Since 

we have 

Thus we see 
\\Jk - Vro(w*)Il 5 r]\\Jk - Vro(w*)I l~  5 ~~4-7 

which proves the first inequality of (2.7). 
By choosing E and 6 such that 

it follows from Banach perturbation lemma that Jk is nonsingular and 

which proves the second inequality of (2.7). D 

2.1. Local and quadratic convergence of modified Newton methods 
In this subsection, we give a sufficient condition for local and quadratic convergence of 
modified Newton methods. Letting Gk = Vuri  (wk)  in Algorithm X ,  we have the following 
property. 

Theorem 1 Suppose that assumptions (XAI) ,  (XA2)  and (XA3)  hold. Let Gk = Vnri  (wk)  
and 7-1 = 7-9 = 1 in Algorithm X. Let {wk}  be generated by Algorithm X. Then there exists 
a positive constant E such that i f  

llwo - w*ll < Â£ 

then the sequence {wk} is well defined and satisfies 

for each k > 0, where U is a positive constant, and the sequence {wk} converges to W * .  
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Proof. We choose e such that {W 1 1 1  W - W* 1 1  < E }  C D. Assume that 

Since, by Lemma 1, Vro ( w k )  is nonsingular and IIVro(wk)-l l ]  < C for e sufficiently small, 
we have 

and hence, using (2.6) 

which implies (2.8). Furthermore, we see 

if e is sufficiently small. Thus, by using mathematical induction, the proof is complete. U 

2.2. Local and superlinear convergence of modified quasi-Newton methods 
In this subsection, we show the local and superlinear convergence property of modified 
quasi-Newton methods. The following theorem gives local and linear convergence of mod- 
ified quasi-Newton methods, and corresponds to the bounded deterioration theorem for 
unconstrained optimization by Broyden, Dennis and More [2]. 

Theorem 2 Let { w k }  be generated by Algorithm X. Suppose that assumptions (XAl) ,  
(XA2) and (XA3)  hold. Assume that the sequence of matrices { G k }  satisfies the bounded 
deterioration property 

where ,B1 and are positive constants, and 

(2.10) Uk = max(llwk+l - W* 1 1 ,  \\Wk - W* 1 1 ) .  
Then for any v E ( 0 ,  l), there exist positive constants E = &(v) and 6 = 6 ( v )  such that i f  

then, the sequence {W^}  is well defined and converges to  W* with 

(2.11) 

for each k > 0. 
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Proof. We choose E such that {W \ \\W - W* \\ < E }  C D. By mathematical induction 
with respect to A;, we will prove that if, for I = 0,1, +, k, 

For k = 0, the conditions (2.12) clearly hold. Note that, in this case, the first inequality in 
(2.12) means llwo - W * [ [  < E. Now we show that (2.12) implies (2.13) for any k 2 0. For 
E and 6 sufficiently small, Lemma 1 guarantees that Jk is nonsingular and 11 J;' 1 1  5 <. It 
follows from the linear system (2.2) that 

Hence 

where is some positive constant. If we choose e and 6 such that 

then 
l l ~ k + l  - w*Il 5 ̂ IlWk - W* \\ < E. 

By using the same technique of Broyden, Dennis and More [2] ,  we can show that 

Therefore, the theorem is proved. D 

Next we give a necessary and sufficient condition for superlinear convergence of these 
methods. We note that expression (2.15) given below corresponds to the Dennis-More 
condition [6] in the case of unconstrained optimization. 

Theorem 3 Assume that the sequence { w k }  converges linearly to W*.  Suppose that assump- 
tions (XAl ) ,  (XA2) and (XA3)  hold. Then the following conditions are equivalent. 
(a) The sequence { G k }  satisfies 

lim 1 1  (Gk - vurl (W*))  (uk+l - ~ k ) \ \  
= 0. 

k+m llwk+l - wk\\ 

(b) The sequence { J k }  satisfies 

lim II(Jk - V r o ( ~ * , ) ) ( w k + i  - wt)Il = 0. 
k+m llwk+l - wkll 
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(c) The sequence {ro(wk)} satisfies 

(2.16) lim Ilro(w~+i) 1 1  = 0. 
\\Wk+l - ~ k l l  

(d)  The sequence {wk} converges superlinearly to W*, i.e. 

lim Il~k+l - w*ll 
- 0. 

k - > ~  l1wk - w * I I  
Proof. First we note that linear convergence (see expression (2.11)) implies 

(a) (b): Since 

the l2 norm for a vector implies 

Then, by the continuity of Vvrl (W), it is clear that (b) implies (a). Conversely, by (2.19), 
we have 

Thus (a) implies (b). 
(b) ==+ (c): Since 

we have 
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Therefore, expressions (2.18) and (2.21) yield 

(c) ==> (b): Since (2.20) is rewritten by 

we see that 

From (2.18), this implies (b). 

(c) (d): The result follows directly from Broyden, Dennis and More [2]. 
Therefore, the theorem is proved. D 

3. Convergence properties of primal-dual interior point methods 
Now we consider the primal-dual interior point methods for solving the constrained opti- 
mization problem (1 .l). The algorithm is given by Algorithm I in Section 1. Within the 
framework of this algorithm, Yamashita and Yabe [26] analyzed three kinds of step size 
rules given below: 
Step size rule A (Single step size for X and z) 

where 'yk (0,l). The step size d y k  is determined by 

Step size rule B (Different step sizes for X and z) 

and 

(3.3) 

~k = min { l,ykrn.in C { -- ( * ,  1 (AX~) ,  < o}} 

= min { l , ~ ~ m i n  , { -- S, 1 ( ~ ~ k ) i  < o}} , 

where ~k â (0,l). The step size is determined by 
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Step size rule C (Globally convergent step size rule) 

= rnin { l , ~ ~ m i n  { -- (:::>.l (AX~) .  < o}} 7 

where 7 k  G (0,l) .  The step size is the largest step that satisfies 

where pk > 0, and where MLk and Muk are positive numbers that satisfy 

The step size d y k  is determined by 

By taking these rules into account, Algorithm I stated in Section 1 yields various types 
of algorithms. Specifically, Algorithms A, B and C denote those such that, in Algorithm 
I, the step sizes are determined by Step size rule A, B and C, respectively. Note that the 
parameter is chosen to satisfy > 0 for Algorithms A and B, and ,Q > 0 for Algorithm 
c. 

Let W* = (X*, y*, z*) be a K-K-T point of problem (1.1). Let D be an open convex 
set that contains W*. We assume the following, standard conditions on the functions which 
appear in problem (1.1) and on the point W*. 

(Al) The second derivatives of the functions f and g are Lipschitz continuous in D. 
(A2) The point X* satisfies the regularity condition, i.e. the vectors Vgi(x*), i = 1, .. ., m 
and e,, i E { i 1 (X*), = O} are linearly independent, where ei is the 2-th column of the 
identity matrix. 
(A3) The strict complementarity of the solution W* is satisfied, i.e. (z*)~  > 0 for i E 
{ 2 I (X*). = o}. 
(A4) The second order sufficiency condition for the optimality is satisfied at the point W*. 

We should note that the second order sufficiency condition for the optimality is that, for 
all v # 0 satisfying V g i ( ~ * ) T ~  = 0, i = l, ..., m, efv = 0 for i E { i 1 (X*), = 0, (z*) ,  > O} 
and eTu > 0 for i 6 { i I (X*). = 0, (z*). = O}, there holds vTV'^,L(w*)v > 0. Since 
assumption (A3) implies { i 1 (X*), = 0, (z*), = O} = 0, assumption (A4) means that for all 
v # 0 satisfying Vgdx*)Tv = 0, i = l ,  ..., m and efv = 0, i { i 1 (X*). = O}, there holds 
vTV^,L(w*)v > 0. 

Under the assumptions stated above, we have the following lemmas. 
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Lemma 2 (see [10]) Under assumptions ( A l ) ,  (AS), (AS)  and (Ad), the matrix V r ( w * )  is 
nonsingular. D 

Lemma 3 Suppose that assumptions ( A l ) ,  (AS), (A3) and (A4)  hold and that the sequence 
{ w k }  is generated by Algorithm A, B or C. Then there exist an E > 0 and a 6 > 0 such that, 

then there exists a positive constant C, such that 

llJk-Vro(w*)ll 5q2J- and ~ I J ~ ~ I I  sC,, 

Proof. By setting U = x , v  = ( y ,  z)* and rl = V x L ,  the result follows directly from 
Lemma 1 of the present paper and Lemma 7 in [26]. D 

Now we pay our attention to the local and quadratic/superlinear convergence property of 
primal-dual interior point Newtonlquasi-Newton methods. By using convergence theorems 
given in Section 2, we obtain the following corollaries, and these are the main convergence 
results of our previous paper [26]. We also note that Corollary 1 corresponds to the result 
by El-Bakry et al. [S]. 

Corollary 1 Suppose that assumptions (A l ) ,  (AS), (A3)  and (A4) hold. Let Gk  = V&L,(wk) 
and choose the parameters such that 

in Algorithm A,  B and C. Let { w k }  be generated by Algorithm A,  B or C. Then there exists 
a positive constant E such that if 

then the sequence { w k }  is well defined and converges to W*. Furthermore 

for each k > 0, where v is a positive constant. 
Proof. By setting U = X, v = ( y  , z)* and rl = T .  = 1, Theorem 1 and Lemma 3 yield the 

result. D 

Corollary 2 Let { w k }  be generated by Algorithm A,  B or C. Suppose that assumptions 
(A l ) ,  (AS), (AS) and (A4) hold. Choose the parameters and f t  such that 

for positive constants rl and TZ in each algorithm. Assume that the sequence of matrices 
{ G k }  satisfies the bounded deterioration property 
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where Q\ and B^, are positive constants, and 

Then for each of Algorithm A, B and C, and each v C (0, l ) ,  there exist positive constants 
E = &(v)  and 6 = 6(v) such that i f  

and 
6 

IIGo - V ^ ( W * ) I I M  5, 
the sequence {wk} is well defined and converges to W * .  Furthermore, 

for each k > 0. 
Proof. By setting U = X and v = (y , g, Theorem 2 and Lemma 3 yield the result. D 

Corollary 3 Let {wk} be generated by Algorithm A,  B or C. Suppose that assumptions 
(A l ) ,  (A2), (A3)  and (Ad) hold. Choose the parameters pk and ~k satisfying (3.11). Assume 
that the sequence {wk} converges linearly to W*. Then the following four conditions are 
equivalent. 
(a) The sequence {Gk} satisfies 

(b) The sequence { J k }  satisfies 

lim 1 1  (Jk - Vro(w*)) (wk+l - wk) 1 1  
= 0. 

k-400 Ilwk+l - wkll 

(c) The sequence {ro(wk)} satisfies 

lim Ilr~(wf~+i) l 1  = 0. 
k- b k + l  - Wk\\ 

(d) The sequence {wk} converges superlinearly to W * ,  i.e. 

lim b k + l  - W* \\ = 0. 
k->m \\Wk - w * \ I  

Proof. By setting U = X and v = (y , z)', Theorem 3 yields the result. Cl 

Before closing this section, we show examples of primal-dual interior point quasi-Newton 
updates that satisfy the bounded deterioration property (3.12) and condition (3.15) given 
above. Since the matrix Gk approximates the Hessian matrix V s ( w k ) ,  we impose the 
following secant condition on Gk+l : 
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where 

For simplicity, we omit the subscript k and denote the subscript (k + 1) by + . 
First we consider the PSB update: 

The following lemma indicates that the PSB update satisfies the conditions stated in Corol- 
laries 2 and 3. The proof can be found in Appendix. 

Lemma 4 (1) The PSB update (3.21) has the bounded deterioration property (3.12) at each 
iteration. 
(2) Suppose that the sequence {wk} converges linearly to  W*. Then the PSB update satisfies 
(3.15).0 

Combining Corollaries 2, 3 and Lemma 4 , we obtain the following result. 

Theorem 4 Suppose that assumptions (Al) ,  (A2), (A3) and (Ad) hold. Choose the pa- 
rameters and yk satisfying (3.11). Let {wk} be generated by Algorithm A, B or C, and 
let {Gk} be generated by the PSB update (3.21). Then the sequence {wk} converges locally 
and superlinearly to  W*. 0 

Next we consider the Broyden family: 

where 

and (f) is a parameter. This family contains important members. For example, setting 4 = 0 
yields the BFGS update: 

and setting (f> = 1 yields the DFP update: 

The following theorem indicates that the convex class of the Broyden family, i.e. 0 < 4 < 1, 
satisfies the conditions stated in Corollaries 2 and 3. 

Theorem 5 Suppose that assumptions (Al), (A2), (A3) and (A4) hold. Choose the pa- 
rameters pk and yk satisfying (3. l l). Suppose that the Hessian matrix V^L(w*) is positive 
definite. Let {wk} be generated by Algorithm A, B or C, and let {Gk} be generated by the 
convex class of the Broyden family (3.22). Then the sequence {wk} converges locally and 
superlinearly to W*. D 

The proof of this theorem can be similarly shown by combining the proofs of Lemma 4 
and Theorem 4 and the proofs of the standard Broyden family (for example, see [g]). Thus 
we omit it. 
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4. Superlinear convergence in (X, z) 

In the previous section, we have presented the necessary and sufficient conditions for the 
sequence {(xk, yk, zk)}, which is generated by the primal-dual interior point quasi-Newton 
methods, to converge superlinearly to the K-K-T point (X*, y*, z*). In this section, we will 
investigate a local behavior of the sequence {(xk, G)} .  In general, a Q-rate in (X, y, z) 
implies no more than the corresponding R-rate in (X, z). Therefore, it is interesting to 
consider necessary and sufficient conditions for the Q-rate in (X, z). This section gives such 
necessary and sufficient conditions for the part {(xk, zk)} of the sequence {wk} to converge 
superlinearly to (X*, X*). The results mentioned below correspond to those by Boggs, Tolle 
and Wang [l] and Coleman [3] for the SQP method. 

First we show a relationship between the sequences {(xk, a)} and {yk}. The following 
theorem shows how the convergence of {(xk, zk) } affects the convergence of { yk}. 

Theorem 6 Let {wk} be generated by Algorithm A, B or C, Suppose that assumptions 
(Al), (AS), (A3) and (A41 hold, and that the matrices {Gk} and vectors {gk} are bounded. 
Then, for some positive constants cl, ca, c3 and 04, 

If a y k  = 1, then 

If the sequence {(xk, zk)} converges linearly to (X*, z*), then 

Proof. Since yk+l = yk+aykAyk and assumption (A2) implies that the matrix A(x*) A(x*lt 
is nonsingular, we have 

Then, for a positive constant 05 ,  

Since equation (1.9) and the K-K-T conditions of problem (1.1) yield 

and 

(4.6) 
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we have, for positive constants eg and 07, 

It also follows from (4.5) and (4.6) that, for a positive constant CB, 

Therefore, by using equations (4.4)) (4.7) and (4.8)) we obtain 

and the proof is complete. 

Expression (4.2) suggests that for a,k = 1, the convergence of the sequence {(xis, zk)} 
implies the convergence of the sequence {yk}. Note that the boundedness of {yk} and the 
convergence of { (xk , yk) } are discussed below. 

Now we will give necessary and sufficient conditions for the Q-rate in (X, 4. In what 
follows, we suppose that assumptions (Al), (A2), (A3) and (A4) given in Section 3 hold. 
Let A ( x )  ? Rnxm be a generalized inverse of A(x) that satisfies 

Since the matrix A(x) is of full row rank, we have 

Let B (X) E R ( ~ - ~ ) ~ ~  be a full rank matrix that satisfies 

and be differentiable with respect to X. The existence of such a matrix B(x) near the 
solution W* was proved by Goodman 1131. Then it is easily shown that a matrix 

is nonsingular. 
First we consider the quasi-Newton method for solving the nonlinear system of equations 

(1.3). Then equation (1.9) in Algorithm I is equivalent to the following system 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Primal-Dual Interior Point Q-N Methods 

Note that (4.10) does not correspond to the Newton equation with respect to ( X ,  z )  . This 
fact makes it difficult to get convergence property directly from the preceding result. So we 
must consider the quasi-Newton method after rearranging (1.3).  

We note that (1.3) is equivalent to the equation 

Then we have 

Here expression (4.11) shows that ( X ,  z )  gives y . On the other hand, equations (4.12),  (4.13) 
and (4.14) only depend on ( X ,  z )  . 

We apply the Newton method to (4.12), (4.13) and (4.14), and we have the Newton 
equation 

(4.15) 

where 

and B ( X )  denotes the derivative of B ( X )  with respect to X .  At ( X *  z*) , the matrix 3 is given 

by 
* 

(4.18) J(x* ,  z*) = 
z* X* 

and becomes nonsingular. We consider a quasi-Newton method in which the matrix 

is approximated by B ( x k )  G k ,  where Gk is an approximation to the Hessian matrix V z L ( w k ) .  
Then a quasi-Newton equation is identical with (4.10), so we can apply the general theory 
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in Section 2 to (4.10). Specifically speaking, by setting U = X and v = z in Theorem 3, we 
obtain the following theorem. 

Theorem 7 Suppose that assumptions ( A l ) ,  (AS), (A3)  and (A4) 
rameters pk and - ~ k  satisfying (3.11). Let {wk} be generated by the 
based on Algorithm A , B or C .  Assume that {yk} converges to y* 
{(xk, zk)} converges linearly to (X*, z*). Let {Gk} be a sequence such 

hold. Choose the pa- 
quasi-Newton method 
and that the sequence 
that the matrix 

is nonsingular for each k > 0. 
Then the following three conditions are equivalent. 

(a) The sequence { (xk , zt)} converges superlinearly to  (X*, z*) . 
(b) The sequence {Gk} satisfies 

(4.19) lim 1 1  (B(xk)Gk - B(x*)vmw*) )  (xk+l - xk) 1 1  
= 0. 

k-+m Xk+l - Xk 

( c )  The sequence {Gk} satisfies 

Proof. The parts (a) and (b) are straightforward results from Theorem 3. The continuity 
of B(x) near X* yields the part (c). Therefore, the theorem is proved. D 

We note that a special choice of B (X) yields a specific result. For example, let B (X) be 
an orthonorrnal basis such that 
(4.21) B(x)B(x)' = I. 

Then a matrix 
(4.22) P(X) 5 B(x)'B(x) = I - A(x)~(A(x)A(x)~)-~A(x) 

becomes an ort hogonal projection matrix onto the orthogonal complement of the range 
space of A(x)'. This fact gives us the following result. 

Corollary 4 Suppose that all the assumptions of Theorem 7 hold. Assume that the matrix 
B(x) satisfies (4.21). Then the following conditions are equivalent. 
(a) The sequence {(X*, a)} converges superlinearly to  (X*, z*). 
(b) The sequence {Gk} satisfies 
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The preceding corollary corresponds to the main result (Theorem 5.1) by Martinez, Parada 
and Tapia [18]. 

Appendix: Proof of Lemma 4 
The proof is similar to that of convergence theorem in [2]. 

(1) The update (3.21) yields 

Setting 
sst p = ~ - -  and E = G - v ~ L ( w * ) ,  
sts 

we have 

By mean value theorem, we have 

If E = 0, then the bounded deterioration clearly holds. 
Next we consider the case of E # 0. Since 

and 
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we have 

Thus we obtain 

This implies the bounded deterioration property. 
(2) Define 

Then, for the case of Ek # 0, the result of (1) yields 

Since the bounded deterioration property guarantees that there exists a positive constant 
such that ~ ) k  < for any k > 0, we have 

On the other hand, for E = 0, the preceding result follows directly from the bounded 
deterioration property. Summing both sides from k = 0 to k = N, we have 

The linear convergence of the sequence {wk} to W* with 

I J w ~ + ~  - W* 11 <, vllwk - W*![, where 0 < v < 1 

Then we have 

Thus +k + 0 and we obtain 

Therefore, condition (3.15) is satisfied by the PSB update (3.21). D 
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