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Abstract Bidirected graphs are a generalization of undirected graphs. For bidirected graphs, we can
consider a problem whichi is a natural extension of the maximum weighted stable set problem for undirected
graphs. Here we call this problem the generalized stable set problem. It is well known that the maximum
weighted stable set problem is solvable in polynomial time for perfect undirected graphs. Perfectness is
naturally extended to bidirected graphs in terms of polytopes. Furthermore, it has been proved that a
bidirected graph is perfect if and only if its underlying graph is perfect. Thus it is natural to expect that
the generalized stable set problem for perfect bidirected graphs can be solved in polynomial time. In this
paper, we show that the problem for any bidirected graph is reducible to the maximum weighted stable set
problem for a certain undirected graph is in time polynomial in the number of vertices, and moreover, prove
that this reduction preserves perfectness. That is, this paper gives an affirmative answer to our expectation.

1 Introduction
Bidirected graphs, first introduced by Edmonds and Johnson [11] are a generalization of
undirected graphs. A bidirected graph G = (V,E) has a set of vertices V, and a set
of edges F, in which each edge e € E has two vertices 2,7 € V' as its ends and two
associated signs at 7 and j. We say that an edge e is incident to ¢,7 € V if e has
i and j asits ends and that e is incident to ¢ with a plus (or minus) sign if e has a
plus (or minus) sign at 7. We call e a selfloop if ¢ = j. The edges are classified into three
types: the (4, +)-edges are the edges with two plus signs at their ends, the (—, —)-edges are
the edges with two minus signs, and the (4, —)-edges (and the (—, +)-edges) are the edges
with one plus and one minus sign. Two vertices ¢ and j are said to be adjacent if there is
an edge incident to these. Undirected graphs may be interpreted as bidirected graphs with
only (4, +)-edges. :
By associating a variable z; with each vertex 7 € V, we may consider the following
inequality system:
ri+z;< 1 for each (+,+)-edge incident to ¢ and 7,
—z;—r;<—1 for each (—, —)-edge incident to 7 and j,
z;—z;< 0 for each (+, —)-edge incident to 7 and j.

Such systems are called degree-two inequality systems, and have been studied by Johnson
and Padberg [21], Bourjolly [7], Ando, Fujishige and Nemoto [2], and Ando [1]. We will call
the degree-two inequality system arising from G the system of G, and any solution to the
system, a solution of G. We note here that besides having a natural correspondence with
bidirected graphs, degree-two inequality systems may also be regarded as a complete set of
implicants with length at most two. Studies from this approach include those by Hausmann
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Facilities:  F = {Fy, Fs, F3, Fy},
Locations: L = {L,, L, L3},
Relations:  F(

Constraints: Cp = { )
CL = {(L11 L?.)a (le L;)}

Figure 1: A small example of the facility location problem.

and Korte [17], and Tkebe and Tamura [19].
Here we consider an optimization problem over the 0—1 solutions of a given bidirected
graph G as below:

(1.1) maximize{z wi; | ® = (x;)icy 1s a 0—1 solution of G},
eV

for a given integral weight vector w = (w;)iey € Z". This problem includes the set packing
problem, the maximum weighted stable set problem and so on. Here we call the problem the
generalized stable set problem. The next facility location problem is an example which may
be formulated as (1.1) and seems not to be easily formulated as the maximum weighted
stable set problem. An instance consists of facilities F = {Fy,---,F,} and potential
locations £ = {Ly,---, L;}. If facility F; is built, it will make a profit of p; in its durable
years. On the other hand, each location L; costs ¢; and has aset F(L;) CF of facilities
which can be built in L;. The objective of the problem is to maximize the amount of gains
under the following constraints:

(a) aset Cp of pairs of facilities such that both of each pair may not be built in the
same location is given,

(b) aset Cp of pairs of locations such that both of each pair may not be bought is
given,

(c) each facility is built in at most one location.

Constraint (c) is not fatal because we may assign different names to the same facility. This
problem caii be formulated in terms of bidirected graphs. Let us consider a vertex, denoted
by L; for convenience, for each location L; € £ and a vertex, denoted by FJ, for each
facility F; € F(L;). Let G be the bidirected graph with these vertices and with edge set
defined in the following way:

o join F/ and F} by a (+,4)-edgeif F;,F, € F(L;) and {F;,Fy} € Cr, by (a),

e join L; and Ly bya (+,+)-edgeif {L;,L;} €Cyp, by (b),

e join F/ and FF by a (4,+)-edge if F; € F(L;)NF (L), by (c),

e join L; and F} by a (—,+)-edge.
The last construction means that F; cannot be built in L; if L; is not bought. Then
any 0—1 solution & of G is a feasible facility location and vice versa. (When z, = 1,

if v corresponds to a location then it is bought, and if it corresponds to a facility then it
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The Generalized Stable Set Problem 403

is built.) Assigning weight p; for vertex F,J and —c; for vertex L;, the problem is
formulated in the form of (1.1). Figure 1 gives an example of the facility location problem.
In the figure, we draw (+.+)-edges and (4, —)-edges by using ordinary undirected edges
and directed edges respectively.

It is well known that the maximum weighted stable set problem for perfect graphs can
be solved in polynomial time [13, 14, 15]. On the other hand, the concept of perfectness may
be extended to bidirected graphs, see Section 2. Moreover, Ikebe and Tamura [20] proved
that a bidirected graph G is perfect if and only if its underlying graph G is perfect, where
G is defined as the undirected graph obtained by exchanging all edges for (4, +)-edges.
From the above facts, one may naturally expect that the generalized stable set problem
(1.1) can be solved in time polynomial for perfect bidirected graphs. The main aim of this
paper is to verify the expectation. To do this, we prove that (1.1) for any perfect bidirected
graph can be reduced to the maximum weighted stable set problem for a certain perfect
undirected graph in time polynomial in the number of vertices. Combining this and the
excellent method of Grotschel, Lovdsz and Schrijver [13, 14, 15], we attain our aim. For this
reduction, a (—, +)-edge elimination, which will be defined in Section 3, plays an important
role. We will show that the (—, +)-edge eliniination preserves perfectness.

In Section 2, we introduce several definitions and results for bidirected graphs. Section 3
gives two proofs for which the (—, +)-edge elimination preserves the perfectness of bidirected
graphs. In Section 4, we deal with polynomial time reducibility of the generalized stable set
problem to the maximuin weighted stable set problem by using the (—, +)-edge elimination.

2 Preliminaries
Johnson and Padberg [21] indicated that bidirected graphs which are simple and transitive
are particular important in the following sense. A bidirected graph is called transitive, if
whenever there are edges e; = {i,j} and ey = {j,k} with opposite signs at j, then
there is also an edge e3 = {¢,k} whose signs at ¢ and k agree with those of e; and
es. Interpreting this in terms of the inequality system, this simply says that any degree-
two inequality which is implied by the existing inequalities must already be present. Thus,
any bidirected graph and its transitive closure have the same solution set. Moreover, any
bidirected graph can be transformed into its transitive closure in time polynomial in the
number of vertices. We say that a bidirected graph is simple if it has no selfloop and if it has
at most one edge for each pair of distinct vertices. Let G = (V, F) be a transitive bidirected
graph, and especially, let us consider the 0—1 solutions of G. If there are a (4, +)-selfloop
and a (—,—)-selfloop at some vertex ¢ then G has no 0—1 solution, because no 0—1
vector satisfies the induced equality x; +x; = 1. We note that the converse is also true, see
Theorem 2.1. If, for example, there is a (4, +)-selfloop at vertex ¢, then we must have the
inequality x; + x; < 1, and hence z; must be 0 and we may delete ¢ from G, since z;
is 0—1 valued and G is transitive. Suppose that there are a (+, +)-edge and a (~, —)-edge
incident to distinct vertices ¢ and j. Then the equality z; +x; =1 must be satisfied.
We can delete 7 because x; is uniquely determined by x;. Similarly, for any bidirected
graph G, we can either determine that it has no 0—1 solution, or reduce its vertex set to
be simple and transitive without changing the 0—1 solutions, by using such procedures in
time polynomial in the number of vertices. ‘

For our purpose, it is enough to deal with only simple and transitive bidirected graphs.
We call such a bidirected graph closed. Note that any simple undirected graph is closed.
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For a closed bidirected graph G, we denote an edge e as the pair (i,j), where i and j
are the two ends of e, and we draw each edge (¢.7) as below and consider an inequality
according to its type as,

.ty < 1 it (4,5) s a (4, +)-edge,
, = <=1 if (i,7) is a (—, —)-edge,
.= ;< 00 if (4,7) is a (4, —)-edge,

where z; is a variable corresponding to the vertex i. We remark that (7,7) and (j,1)
denote the same edge, however, if this edge is a (4, —)-edge with a minus sign at j, we say
that (i,7) isa (+,—)-edge and (j,¢) a (—,+)-edge.

We now define the 0—1 polytope P;(G) for G as

Pi(G) = conv{zx |  is a 0—1 solution of G},

the convex hull of all the 0—1 solutions of G. As all stable set polytopes of graphs have
full-dimension, P;(G) has also the same feature.

Theorem 2.1 ([21]):  For any closed bidirected graph G, Pi(G) is full-dimensional.

We next introduce bicliques, strong bicliques and corresponding valid inequalities for
Pi(G). For asubset C of vertices of G, let G[C] denote the subgraph of G induced
by C. A pair of disjoint subsets of vertices (C*,C7) is called a bicligue if the following
conditions hold:

(B1) there is an edge between any two vertices in CTUC™,
(B2) for any edge e of G[CTUC™], if an end vertex ¢ of e isin C* then e has
a plus sign at ¢, and if : € C~ then e has a minus sign at .

If a biclique C = (C*,C~) has at least two vertices, i.e., |[CTUCT| > 2, then the
partition is uniquely determined from C*tUC~ by

Ct = {ieCtuC~| thereis an edge of G[C*UC~] with a plus end at i},
C~ = {1eCtUC™| thereis an edge of G[C* UC~] with a minus end at 1}.

Thus we will regard a biclique as the set of its vertices and use C as CTUC~, whenever
there is no confusion. For two bicliques C' = (C*,C™) and D = (D*,D~), suppose that
CAD means the symmetric difference (CtUC™)A(DTUD™). Analogously, CUD, CND
and so on are defined.

A biclique C = (C*,C™) is said to be strong if in addition, it satisfies

(B3) C is maximal with respect to (B1) and (B2), that is, there is no biclique C =
(C*,C~) such that C+ CC+, C-CC~ and C #£C,
(B4) there is no vertex u € V '\ C' such that there are edges (u,i) with a plus sign
at ¢ for all i € Ct, and edges (u,i) with a minus sign at i forall i€ C~.
Note that (B4) implies (B3). Let us consider the bidirected graph of Figure 2. Sets {1,2,4}
and {1,2,3,4} satisfy (B1) but are not bicliques. {2,3,4} has properties (B1), (B2) and
also (B3), i.e., this is a maximal biclique. This set, however, is not strong because the
vertex 1 destroys the condition (B4) for {2,3,4}. For this instance, {1,2,3}, {1,4} and
(0,{3}) are examples of strong bicliques.
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Figure 2: Bicliques and strong bicliques.

Bicliques are analogies of cliques of undirected graphs, and as such, have corresponding
inequalities. For a given biclique C' = (C*,C™), the corresponding biclique inequality is

Z X+ Z (1 —;I'i) S 1.

ieCt e~

It turns out that biclique inequalities satisfy properties similar to clique inequalities of
undirected graphs.

Proposition 2.2 ([21]):  If G s a closed bidirected graph, then every 0—1 solution
satisfies the biclique inequalities of G.

Theorem 2.3 ([21]):  Let G be a closed bidirected graph. Then, a biclique inequality
induces a facet of Pi(G) if and only if the corresponding biclique is strong.

From the previous results we have
Theorem 2.4 ([21]):  For a closed bidirected graph G, the 0—1 solutions of G are
exactly the 0—1 solutions of

Z x; + Z (1—-2;,)<1 for all strong bicliques C' of G,
ieCt i€C—
0<a; <1 for all 1 € V.

It may seem that the constraints 0 < x; <1 for ¢ € V are necessary. However, these are
implied by the strong biclique inequalities from Proposition 2.5 below. For a vertex v € V,
we define NZ(v) as the set of vertices adjacent to v by edges incident to v with plus
signs, analogously define NZ(v), and set Ng(v) = NZ(v) U Ng(v).
Proposition 2.5 ([20]):  Let G be a closed bidirected graph and v a vertex of V.
(a) If NZ(v)# 0, there is a strong biclique C with v € CT. Moreover, if N&(v) = 0,
then ({v},0) is a strong biclique with the corresponding inequality x, < 1.
(b) If NG (v) # 0, there is a strong bicliqgue C with v € C~. Moreover, if Ng(v) = 0,
then (0,{v}) is a strong biclique with the corresponding inequality x, > 0.
We remark that Proposition 2.5 follows from Theorem 2.3 and from the fact that ({v},®)
and (@,{v}) are bicliques for any vertex wv.
Given a closed bidirected graph G, let the polytope Q(G) be defined as

Q(G) = {z € RV | = satisfies all strong biclique inequalities of G}.

By Proposition 2.5, Q(G) is bounded. For any simple undirected graph, the strong biclique
inequalities are precisely the maximal clique inequalities and the nonnegativity inequalities.
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The class of undirected graphs for which the strong biclique inequalities are the only facets,
are the perfect graphs [8]. See also [4, 5, 12, 1] for details of perfect graphs. Following
conventions for undirected graphs, we will say that a bidirected graph G is perfect, if
1t 1s closed and Pp(G) = Q(G). Obviously, this perfectness is a natural extension of
the perfectness of undirected graphs. Furthermore, the following interesting relation holds
between a bidirected graph G and its underlying graph G which is obtained from G by
changing all edges to (4, 4).

Theorem 2.6 ([20]): A closed bidirected graph G is perfect if and only if G is.

We add that the theorem can be also proved by using results in [16].

Bidirected graphs have generally three types of edges. However, we can eliminate all
(—, —)-edges while preserving the polyledral structures of the related polytopes. Consider
a simple transformation for bidirected graphs as below:

(2.1) given a vertex v, reverse the signs of the v side of all edges incident to .

This transformation is called the reflection of G at ». When we do reflection at v,

the new 0—1 solutions can be obtained from the 0—1 solutions of G by sunply reversing
all the Os and 1s in the vth coordinate. The facet inequalities and the objective functions
of the problem (1.1) may also be produced by replacing all of x, by 1 — x,. Hence,
in polyhedral terms, reflection consists of only mirroring and translation, and essentially
changes none of the structure of the associated polytope. Obviously, reflection preserves
perfectness. Moreover, the new problem of type (1.1) is equivalent to the original one.
Reflection, however, simplifies closed bidirected graphs as below.

Lemma 2.7 ([3, 22]):  All(—, —)-edges can be eliminated by a sequence of reflections.

We remark that elimination of all (—, —)-edges is done in time polynomial in the number
of vertices. A bidirected graph having no (—, —)-edge is called pure. Any biclique C of
a pure bidirected graph has at most one vertex in its minus part, i.e., |C7| < 1. In the
sequel of the paper, we only consider pure and closed bidirected graphs.

3 An edge elimination for bidirected graphs

Let G be a pure and closed bidirected graph. For a vertex v with Ng(v) # 0, let us
denote by G/wv the graph obtained by deleting all edges incident to v with a minus sign.
Obviously, G/4wv is closed. We call this transformation the (—, +)-edge elimination at wv.
In this section, we will prove that if G 1is perfect then G-Av is also perfect. Here we
assume that NJ(v) # @ since if N} (v) is vacant then G/wv is obviously perfect if G is,
because G/v consists of two disjoint perfect bidirected graphs G[V '\ {v}] and G[{v}].

We first discuss how the (—,+)-edge elimination at v changes P;(G) and Q(G).

The degree-two inequality system of G/Av is a subsystem of the system of G. Thus, it is
clear that P;(G) C P;(G+Av). Generally, new 0—1 solutions are created by a (—, +)-edge
elimination.

Proposition 3.1. Let © be a 0—1 solution of G with x, = 1. Then the 0—1 wvector
Z obtained from x by exchanging 1 for 0 in the vth coordinate is a solution of GAwv.

Proof. If z; =0 forall ¢ € N3(v) then Z is a solution of G because there is
no (—,—)-edge, that is, & is also a solution of G/wv. Otherwise, however, Z is also a
solution of G/Awv, since there is no edge joiﬁing v and i € Ng(v) in GAuv. |
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We now examine how the set of strong bicliques changes with the (—, +)-edge elimination
at v.

Proposition 3.2. Let C' be a strong biclique of G with v ¢ C. Then C s also
a strong biclique of G+v. The converse also holds if in addition one of the following
conditions C C Ng(zr), C C Ng(v) or CZ Ng(v) holds.
Proof. The set C satisfies (B1) and (B2) in G/Av because v g C' and the edges
which are eliminated are incident to v. Obviously, (B4) is preserved by any elimination of
edges.

Suppose that C' is a strong biclique of G/Awv. Trivially, C is a biclique of G. If
C C Ni(v) then C is clearly strong in G. If C' C Ng(v), we assume on the contrary
that C is not strong in G. Then v must break the strongness of C in G, and
hence, C'U{v} must be a biclique of G. Since NF(v)# @ and G is transitive, for any
u € Nt (v), CU{u} is abiclique of G (also of Gv ). However, this is a contradiction.
Hence (' 1is a strong biclique of (. Next suppose that C & Ng(v). Then, if C is
not strong in G, there is a vertex wu(# v) which destroys (B4) for C. However, this
contradicts the fact that C is strong in G-wv. Hence the converse holds if C C N2 (v)
or C C N;(v) or C ¢ Ng(v). [
Proposition 3.3. Let C = (C*T,C7) be a strong biclique of G with v € C*. Then
C s also a strong biclique of G/wv. The converse also holds.
Proof. Since v € C*, C is a biclique of G/4wv. Obviously, (B4) is satisfied by C.

If C with ve& CT is astrong biclique of G/4v then C is a biclique of G. Assume
on the contrary that C is not strong in G. However, this immediately implies that C is
not strong in G/Awv from (B4). Hence the converse holds. |

Every biclique of G containing v in its minus part disappears in G/wv if it has
at least two vertices. Furthermore, some bicliques not strong in G may become strong
in G/Av. We recall that a biclique C = (C*,C~) may be interpreted as its vertex set
C=CtucC.

Proposition 3.4. Let C = (C*,C~) and D = (D*,D™) be bicliques of G with
veCt and ve D~. Then C =CAD is a biclique of G/v. Furthermore, C and D
are strong if C is.

Proof. We note that C = (C U D)\ {v} because the facts that » € CT N D~ and
that C' and D are bicliques imply C N D = {v}. Since G is transitive, there is an edge
between any two verticesin C'\ {v} and D\ {v}, and the sign at each vertex agrees with
the sign of the partition the vertex is in. Thus, C isa biclique of GAwv.

Suppose that C is strong. Assume on the contrary that D does not satisfy (B4).
Then there is a vertex « ¢ D such that there are edges (u,:) with a plus end at ¢ for
each i € D' and edges with a minus end at i for each 7 € D™, especially for v € D~
Then u ¢ C. Since G is transitive, this means that for every i € C'\ {v}, there is an
edge (u,1) whose sign of the s side agrees in the sense of (B4). However, this implies that
v hinders C' from satisfying (B4). This is a contradiction. Similarly, one can prove that
C is strong. |

We remark that every biclique of G/Av is originally a biclique of G. For the strong
bicliques of G-wv, the followings hold.

Lemma 3.5. Let C be any strong biclique of G/Av. Then one of the followings holds.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



408 A. Tamura

(a) vgC and C is also a strong biclique of G,

(b) there are strong bicliques C' and D of G such that v € CtYND~ and C = CAD,
(c) ve C*, and C is also a strong biclique of G,

(d) C=(0.{v})

Proof. We consider the three cases: v € CT, v e €~ and v ¢ C. In the first case, we
can conclude (¢) because €' is a biclique of G and must be strong from Proposition 3.3.
In the second case, C' must be (§,{v}) because all edges incident to v have a plus sign
at v in G- v. Suppose that the last case holds. Evidently € is a biclique of G. If
CcC Ng(v) or CC Ng(v) or C ¢ Ng(v) then C is strong in G from Proposition 3.2.
In these subcases, (a) holds. Finally, let us consider the subcase when CA‘ Z Ni(v), NG (v)
and C C Ng(v). Let C =(CNNF@)U{v} and D = (C N N5(v))U{v}. Then C
and D have at least two vertices. For an} ue C\{v} and w € D \ {v}, (w,w) and
(u,v) ({(u,w) and (v,w)) have the same sign at u (at w) because G is closed. Thus
C and D form bicliques in G. Obviously, C = CAD. By Proposition 3.4, C' and D
must be strong, that is, (b) holds. |

We consider the relation between Q(G) and Q(G-wv). It is obvious that Q(G) C
Q(G+Awv). For any vector & and any biclique C, let

Cle)= Y x4+ Y (1-a)

1€eCH\{v} €eC- \{v}

That is, the biclique inequality corresponding to C' is represented as C(x) 4+ x, < 1 if
veClCt, Clz)+1-z,<1 if v € C™, otherwise C(z) < 1. Suppose that {Cy,---,C}
is the set of strong bicliques of G containing v in their plus parts, and that {D,,---, D,}
is the set of those containing v in their minus parts.

Lemma 3.6.  For any y € Q(GAv), there exists y € Q(G) such that y; = g; for all
i #v. More exactly, max;{D;(y)} <1—max;{Ci(y)} holds, and y € Q(G) if and only
of

max{D;(§)} < yo < 1 - max{Ci(@)}.

Proof.  From Proposition 3.2, y satisfies all of the inequalities corresponding to all
strong bicliques of G not containing v, regardless of the value of y,. Hence, it suffices to
determine the value of y, so that all inequalities for strong bicliques of G containing v
are satisfied. Since the symmetric difference of C; and D; (i =1,---,5, j=1,---.,t) isa
biclique of G/Awv, we must have

Ci(@)+Dj(g)g 1, (i:l,...78’ j:l,m,t).

Hence

max{D;(§)} < 1 - max{Ci()}.

Since any strong biclique of G other than Cy,---,C, Dy,---, D; does not contain wv, if
Yy 1s in the range between these two values then y € Q(G), and vice versa. |

We say that a vector y lies on a biclique inequality or the corresponding biclique if it
satisfies the inequality with equality. Note that if we set y, = max;{D;(g)}, then y will lie
on the biclique inequality for any D; attaining the maximum, and if y, = l—max,;{Ci(y)},
then y will lie on any C; attaining the maximum.
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Figure 3: An imperfect bidirected graph G such that GA v is perfect.

Theorem 3.7. For a closed bidirected graph G, if G 1is perfect then G/v s also
perfect.
Proof.  Assume on the contrary that @Q(G+/wv) has a non-integral extreme point 4.
We first suppose that 7, = 0. By Lemma 3.6 we know that there is some y € Q(G)
with y; = 7; for ¢ # v. Since y is non-integral, and G is perfect, there must exist some
0-1 solutions z!,---,z’ of G such that y can be expressed as a convex combination
Yy = 2521 /\ja:j of 'these points. Ou the other hand, from Proposition 3.1, we also know
that the vectors @’, obtained by setting the vth coordinate to 0 in @’/ are 0—1 solutions
of Gﬁv, implying that y = Egzl A jo:j. But since ¥ is non-integral, it must be that
Yy # &7, which contradicts the assumption that 4 is an extreme point of Q(GAuv).

Now suppose 7, > 0. Since ¥y is an extreme point, it must lie on some strong biclique
C such that v e Ct. By Lemma 3.5, C is also a strong biclique of G. From Lemma 3.6,
Yy is also contained in Q(G). Since ¥y is non-integral and G is perfect, ¥y can be
represented by a convex combination of some 0—1 solutions «!,---, 2’ of G. Obviously,

x!, .-, x’ are solutions of GAv and y#x' (i =1,-.-,0). This is a contradiction.  H

Unfortunately, the converse of Theorem 3.7 is not true. For example, the closed bidi-
rected graph in Figure 3 is imperfect because of Theorem 2.6 and of the fact that its
underlying graph contains the 5-hole as an induced subgrapl. However, G/Av is a perfect
graph.

Several transformations of graphs preserving perfectness, for example, complements of
graphs, multiplications of vertices, substitutions and compositions of graphs, have been
studied [23, 6, 9, 10, 18]. Our (—, +)-edge elimination also indicates an edge-transformation
preserving perfectness. Let H be a simple undirected graph and let v be a vertex of
H. Now we consider a partition S UT of the neighbor Ngx(v) of v (we assume that
S, T # §.) It is easy to show that the bidirected graph obtained from H by replacing all
edges joining v and vertices of S for (—,+)-edges is closed if and only if any 7 € S and
any j € T' are adjacent. Then, the next lemma directly follows from Theorem 3.7.

Lemma 3.8. Let H be a perfect graph and let v be a vertex of H. For any partition
SUT of Ng(v) with ST #0, ifany 1 € S and j €T are adjacent, then the graph
H' obtained by eliminating all edges joining v and i € S is also perfect.

Conversely, by combining Theorem 2.6 and Lemma 3.8, we can easily prove Theorem 3.7.
Before doing this, we verify Lemma 3.8 in terms of graphs.

Proof of Lemma 3.8. Let w(H) and Y(H) denote the maximum clique size of H
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and the chromatic number of H, respectively. It is enough to show that w(H') = \(H')

since for any induced subgraph of H, the construction of Lemma 3.8 is defined similarly.
If there is a maximum clique of H which does not contain v, then w(H') = w(H)

and Y(H') = \(H), obviously. Now suppose that all the maximum cliques of H contain
v. Let us cousider the induced subgraph H” = H[V \ {v}]. Since H" is also perfect,
wH") = w(H) -1 = \(H) —1 = \(H"). By the assumption of Lemma 3.8, there is a
vertex u € S whose color is distinct from all colors of the vertices of 7. If we paint v

the same color as u, we obtain a vertex coloring of H’'. Hence

w(H") Cw(H") < x(H') = x(H") = w(H")
holds. That is, H’ is perfect. [ |
By using this, we give a short proof of Theorem 3.7.

Proof of Theorem 3.7. Let H =G, S = N;(v) and T = Nf(v). The ‘only if’
part of Theorem 2.6 implies that H 1is perfect. Since G 1is transitive, H, v, § and T
satisfy the condition of Lemma 3.8. Then it follows from Lemma 3.8 that H’ is perfect.
Obviously, H' = G/Awv. From the ‘if’ part of Theorem 2.6, G/4v is also perfect. i

The second proof is very short even though the proof of Lemma 3.8 is contained in it.
However, this proof uses Theorem 2.6. In order to prove this, discussions more difficult and
detailed than the first proof are necessary. Furthermore, from the second proof, we do not
obtain anything of essential properties of (—, +)-edge eliminations. It seems that the first
proof of Theorem 3.7 is not unnecessary.

4 A reduction of the generalized stable set problem
We recall the generalized stable set problem for a given closed bidirected graph G and for
a given integral weight vector w € Z" :

(4.1) maximize{)_ w;z; | ® € P;(G)}.
eV

For the maximum weighted stable set problem, we may assume that w; >0 forall : € V,
because if w, < 0 for some v € V then there is a maximum weighted stable set not
containing v, that is, we can delete all vertices with nonpositive weights. In this section,
we introduce a reduction of the problem (4.1) according to the sign pattern of the weight
vector w. However, the reduction is not so trivial as the case of the maximum weighted
stable set problem. We will use (—, +)-edge eliminations.

Let G be a pure and closed bidirected graph and let w € Z". We call a vertex positive
if there is no edge incident to it with a minus sign, otherwise nonpositive. If, for example, a
positive vertex v has a nonpositive weight w,, then there is an optimal 0—1 solution @
with z, = 0, because for any 0—1 solution y of G, the 0—1 vector obtained from y by
replacing y, for 0 is also a solution of G having an objective value greater than or equal
to Yy wiyi. Thus, we can delete v from G. Let us next assume that a nonpositive
vertex v has a nonnegative weight w,. Then the next lemma holds.

Lemma 4.1. If a nonpositive vertex v has a nonnegative weight w,, then

max{ Y w;z; | ® € Pi(G)} = max{)_ wiz; |z € P(GAv)}.

eV eV
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Proof. Since P;(G) C Pi(GAv),

nl&X{Z wir; | € P(G)} < max{z wia; | © € Pr{(GAv)}.
eV eV
Let & € Pi(G+/v) be an optimal 0—1 solution of the right-hand side problem. If z, =1
then & is also a solution of G which attains the maximum of the left-hand side problem.
Suppose that z, = 0. If 2; =0 for all ¢ € Ng(v) then Z is a solution of G, and
hence, the equation holds. If the 0—1 vector Z' obtained from # by replacing 7z, for
1 is a solution of GAwv then it is also an optimal solution of hoth problems. Assume on
the contrary that #; = 1 for some 7 € N;(v) and Z' is not a solution of Gswv. This
implies that there is either v € NG (v) with &, =1 or u € Ni~(v) with 7, = 0. Here
N~ (v) is defined as the set of vertices adjacent to v by a (+, —)-edge incident to v
with a plus sign, NZ"(v) is defined analogously. In the former case there is a (+, +)-edge
joining ¢ and wu ; in the latter case, a (+, —)-edge, since G is transitive. However, in
both cases, & does not satisfy the inequality corresponding to the edge (i,u). This is a
contradiction. Hence there is a 0—1 vector which is optimal for both problems. |

Lemma 4.1 guarantees that if all nonpositive vertices have nonnegative weights then
the original problem (4.1) can be reduced to the maximum weighted stable set problem.
Furthermore, from Theorem 3.7, if the original bidirected graph is perfect then we can solve
the problem (4.1) in polynomial time by using the method of Grotschel, Lovasz and Schrijver
[13, 14, 15], for such special weight vectors. Their method gives not only the optimal value
but also a maximum weighted stable set for perfect graphs.

However, for any integral weight vector, the problem (4.1) is reducible to the maximum
weighted stable set problem. The idea is very simple. From the above discussion, we can
at least assume that w; > 0 for all positive vertices 7 and w; < 0 for all nonpositive
vertices 7. One can easily prove that there is a nonpositive vertex v such that all edges
incident to v with plus signs are (4, +)-edges (see [20, Proposition 2.10]). Now we apply
the reflection (2.1) of G at v. This transformation does not create any (—, —)-edge, does
not change the optimization problem (4.1) essentially, and transforms the objective function
Yiev Wiki to Pz, wiTi + (—w,)x, +w,. Then, in the new problem, the nonpositive vertex
v has a positive weight. Performing the (—, +)-edge elimination at v, we can decrease the
number of nonpositive vertices. By repeating such procedures, the problem (4.1) for any
closed bidirected graph can be reduced to the maximum weighted stable set problem for
some undirected graph. Obviously, this reduction is done in time polynomial in the number
of vertices, and preserves perfectness. We remark that each maximal stable set of the final
graph corresponds to a 0—1 solution of the original bidirected graph from the proof of
Lemma 4.1, and that an optimal 0—1 solution of the original problem can be reconstructed
from the maximum weighted stable set (see the example below). Hence we obtain our main
theorem.

Theorem 4.2.  The generalized stable set problem for any bidirected graph may be reduced
to the mazimum weighted stable set problem for a certain undirected graph in time polynomial
in the number of vertices. Furthermore, this reduction preserves perfectness. Hence, if
a gien bidirected graph is perfect then the problem is solvable in time polynomial in the
encoding length of the problem.

We finally explain the procedure proposed in this paper by using an example of the
facility location problem in Figure 1. Here we assume that p;, ¢; > 0 and that variable
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Reduction

/

reflections and
(—,+)-edge eliminations
at vertices L1, Ly and Ls

Figure 4: An example of the reduction.

2! is assigned to vertex F/ and y; to vertex L;. Then the objective function is

p1&1 + po(xh + 23) + p3(ah + 23) + pa(a? + 23) — 1y — cay — 3y,

Step 1. Construction of the transitive closure: Since the bidirected graph of Figure 1
. 1s not transitive, let us make its transitive closure, the left-hand side bidirected graph
G! in Figure 4, where added edges are drawn by thin lines.

Step 2. Reduction to a closed bidirected graph: In this case, G! is simple, i.e.,
closed. Furthermore G! is perfect because the complement of its underlying graph
is easily checked to be perfect.

Step 3. Reduction to a pure bidirected graph: There is nothing to do because G!
is also pure.

Step 4. Reduction to an undirected graph: We first select a nonpositive vertex L,
because —c; < 0 and there is no (4, —)-edge incident to L; with a plus sign.
Let GY:L; denote the bidirected graph obtained from G! by the reflection at
L;. The (—,+)-edge elimination at L; for G:L; eliminates edges joining L,
and {Lo, L3, F§,F2, F}, F}}. Let G? = (G':L,)/AL,. Continuously, performing the
reflections and the (—,+)-edge eliminations at L, and Lz, generates bidirected
graphs G*Ly, G® = (G*Ly)A Ly, G3:Ly and G* = (G3:L3)# L3 which is the
right-hand side undirected graph in Figure 4. The objective function for G* is

pizy + pa(zy + 23) + ps(x} + @) + pa(zf + Z3) + ey + coyp + cays — (€1 + ¢ + c3).

Step 5. Optimal solution construction process: Let us find a maximum weighted sta-
ble set for G* and the weight vector. In this case all maximal stable sets of G* are
listed below.

0-1 solutions of G! | maximal stable sets of G* objective values
{Ll,Fll} {Fll,LQ,Lg} D1—C
{Ll?FQI’FSl} {Fle’Fs’IvL2>L3} P2t+p3s—a1
{Lo, L3, F3, F}, F3} | {F§,F}, F3, Ly} P2tpstps—ca—c3
{LQaFZQ’FzIZ} ' {Fé?szi?’leLil} D2+ ps—C2
{Lo, L3, F3, F}} {F3,F}, Ly} P2+ ps—C2—C3
{Ls, F3} {F3, L1, Lo} Ps — c3
{Ls, F{} {F3, L1, Ly} Ps—c3
0 {L1, Ly, L3} 0
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We assume that p; = ¢; =1 for all ¢ and j. For instance, {FJ, FJ, Ly, L3} is
an optimal stable set of G*. We can construct an optimal solution of the original
problem from the stable set by reversely following up the reduction in the previous
step. From the proof of Lemma 4.1, {F;,E%,LQ,Lg} 1s an optimal solution for
G3:Ly. Then {Fj, F; Ly} is an optimal solution of the problem for G*. In the
same way, {Fy,F3,Ly} and {F}, Fj} are optimal solutions for G*:L, and G2
respectively. From the maximality of {Fy, Fj, Lo, L3} in G*, it can be shown that
{F3,F} L} isnot asolution of G? = (G':L,)/4L;, asfollows: L; must be adjacent
to a vertex of the maximal stable set in G* if L; is adjacent to F) (or Fj)
then G? has a (+,+)-edge incident to Ly and Fj (or Fj); otherwise G? has a
(+, —)-edge incident to L; and Ly (or L3) with a plus sign at L;; in both cases,
{F3,F}, L} is not a solution of G? Then, from the proof of Lemma 4.1, {Fj, F}}
is an optimal solution of the problem for G':L;, and then {Fj,Fj,L;} is an
optimal solution of the original problem. That is, an optimal solution for the original
problem can be obtained from a maximum weighted stable set (must be inclusion-wise
maximal) of the final undirected graph by reflections applied in the previous step (see
the above list).
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that the perfectness is preserved by the transformation. However, the paper does not discuss the complexity

of the generalized stable set problem for perfect bidirected graphs.
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