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Abstract Bidirected graphs are a generalization of undirected graphs. For bidirected graphs, we can 
consider a problem whichi is a natural extension of the maximum weighted stable set problem for undirected 
graphs. Here we call this problem the generalized stable set problem. It is well known that the maximum 
weighted stable set problem is solvable in polynomial time for perfect undirected graphs. Perfectness is 
naturally extended to bidirected graphs in terms of polytopes. Furthermore, it has been proved that a 
bidirected graph is perfect if and only if its underlying graph is perfect. Thus it is natural to expect that 
the generalized stable set problem for perfect bidirected graphs can be solved in polynomial time. In this 
paper, we show that the problem for any bidirected graph is reducible to  the maximum weighted stable set 
problem for a certain undirected graph is in time polynomial in the number of vertices, and moreover, prove 
that this reduction preserves perfectness. That  is, this paper gives an affirmative answer to  our expectation. 

1 Introduction 
Bidirected graphs, first int,roducecl by Eclinonds and Johnson [l11 a're a generalization of 
undirected graphs. A bidirected graph G = (V, E) has a set of vertices V, a,nd a set 
of edges E, in which each edge e E E has two vertices 2 , j  G V as its ends and two 
associated signs at  i and j .  We say that an edge e is incident to i ,  j V if e has 
i and j as its ends and that e is incident t o  i with a plus (or minus) sign if e has a. 
plus (or n~inus) sign at i .  We call e a selfloop if Â¥/ = j .  The edges are classified into three 
types: the (+, +)-edges a,re t,he edges with two plus signs at their ends, t3he ( -, -)-edges are 
the edges wit,h two minus signs, and the (+, -)-edges (and tjhe (-, +)-edges) are the edges 
with one plus and one minus sign. Two vertices i and j are said to  be adjacent if there is 
an edge incident to these. Undirect,ed graphs may be interpret,ed as bidirected gra,phs with 
only (+, +)-edges. 

By associating a va,riable xi with each vertex i E V, we may consider the following 
inequality system: 

xi+xj< 1 for each (+, +)-edge incident to  i and j ,  
-xiÃ‘xj<:- for each (-,-)-edge incident to  i and j ,  

xi-xj< 0 for each (+, -)-edge incident to  i and j .  

Such systems are called degree-two inequality systems, and have been studied by Johnson 
and Padberg [X], Bourjolly [7], Ando, Fujisliige and Nemoto 121, a,nd Ando [l]. We will call 
the degree-two inequality system arising from G the system of G,  and any solution t'o the 
system, a solution of G. We note here t,liat besides having a natural correspondence wit,h 
bidirected graphs, degree-two inequality systems may also be regarded as a complete set of 
implicants with length at  most two. Studies from this approach include those by Hausmanii 
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Figure 1: A small example of tlie facility location problem. 

and Korte [17], and Ikebe and Tamura [19]. 
Here we consider an opt,imization problem over the 0-1 solutions of a given bidirected 

graph G as below: 

1 . 1 )  r n a x i m i z e { ~  W,,T, 1 X = (.ri)iev is a 0- 1 solution of G}, 
i(-V 

for a given integral weight vect,or W = ( Z U ; ) ~ ~ ~  E 2 .  This problem includes tthe set. packing 
problem, the maximum weightred st,able set problem a,nd so on. Here we ca,ll tlie problem the 
generalized stable set problem. The next facility loca,tion problem is asn example which may 
be formulated as (1.1) and seems not to be easily formulated as the maximum weighted 
stable set problem. An instance consists of facilities .F = {Fl, . , Fs}  and pot'ential 
loca,t,ions C = {Ll, , L/}. If facility F, is built, it will ma,ke a profit of pi in it's dura.ble 
years. On the other hand, ea,ch 10cat~ion L, costs c, and has a set ^'(LA F of facilities 
which can be built in L,. The objective of the problem is t,o maximize the amount, of gains 
under the following constraints: 

(a) a set CF of pa,irs of facilities such that both of eacli pa,ir may not be built in the 
same location is given, 

(b) a. set CL of pairs of locations such that both of each pair may not be bought is 
given, 

(c) each facility is built in at most one location. 

Constraint (c) is not fatal because we may assign different names to the same fa,cility. This 
problem ca,ii be formulated in terms of bidirected graphs. Let us consider a vertex, denoted 
by L, for convenience, for each location L, E C and a vertex, denoted by F',, for each 
facility Fi G .F(Lj). Let G be the bidirected graph with these vertices and with edge set 
defined in the following way: 

join F! and FL by a (+, +)-edge if F,, F,, E .F(L,} and {F,,  Fh} Cp, by (a) ,  
join L, and Lk by a (+,+)-edge if {Lj, Lk} E C L ,  by (b), 
join F', and F! by a (+, +)-edge if F, E n by (c), 
join L, and F', by a (-, +)-edge. 

The last construction means that Fi cannot be built in L, if Lj  is not bought. Then 
any 0-1 solution X of G is a feasible facility location and vice versa,. (When ~y = 1, 
if v corresponds to a location then it is bought, and if it corresponds to a facility then it 
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The Generalized Stable Set Problem 4 03 

is built.) Assigning weight p, for vertex Ff and -c, for vertex L,, the problem is 
formulated in the form of (1.1). Figure 1 gives an example of the facility location problem. 
I11 the figure, we draw (+. +)-edges and (+, - )-edges by using ordinary undirectecl edges 
and directed edges respectively. 

It is well known that the maximum weighted stable set problem for perfect graphs can 
be solved in polynomial time [13. 14. 151. On the other hand, the concept of perfectness may 
be extended to bidirected graphs, see Section 2. Moreover. Ikebe and Tamura [20] proved 
that a bidirected graph G is perfect if and only if its underlying graph G_ is perfect, where 
G is defined as the undirected graph obtained by exchanging all edges for (+, +)-edges. 
From the above facts, one may naturally expect that the generalized stable set problem 
(1.1) can be solved in time polynomial for perfect bidirected graphs. The main aim of this 
paper is to verify the expectat ion. To do this. we prove that (1.1) for any perfect bidirect ed 
graph can be reduced to the maximum weighted stable set problem for a certain perfect 
undirectecl graph in time polynomial in the number of vertices. Combining this and the 
excellent method of Grotschcl, Lovfisz and Schrijver [13, 14. 151, we attain our aim. For this 
reduction, a ( -, +)-edge elimination, which will be defined in Section 3, plays an important 
role. We will show that the ( - . +)-edge elimination preserves perfectness. 

In Section 2, we introduce several definitions and results for bidirectecl graphs. Section 3 
gives two proofs for which the (-, +)-edge elimination preserves the perfectness of bidirected 
graphs. In Section 4, we deal with polynomial time reducibility of the generalized stable set 
problem to the maximum weighted stable set problem by using the (-, +)-edge elii~linat~ion. 

2 Preliminaries 
Johnson a,nd Padberg [21] indica,t,ed t,hat l~idirect,ed graphs which are simple and t'ransit'ive 
are particular importa,nt in the following sense. A bi~lirect~ecl gra,ph is called transitive, if 
whenever there a,re edges el = { i j }  and e2 = {j ,  k} with oppo~i t~e  signs at  j ,  then 
there is also a,n edge e3 = { i ,  k} whose signs at  i and k a,gree wit'li those of e\ and 
62 .  Interpret,ing this in t,erms of tjhe inequality syst~eni, tallis simply says t,ha,t any degree- 
two inequality which is implied by the existing inequalities must already be present. Thus, 
any bidirected graph and its transitive closure have the same solution set,. Moreover, any 
bidirected graph ca,n be t,ransformed int,o its tra,nsitive closure in time polynomia,l in the 
number of vertices. We say that a, bidirected graph is simple if it has no selfloop and if it has 
at  most one edge for each pa,ir of distinct vert,ices. Let G = (V, E) be a tra,nsitlive bidirected 
graph, and especially, let us consider t,he 0-1 ~olut~ions of G. If there a*re a (+, +)-selfloop 
and a (-, -)-selfloop a,t some vertex i t,hen G ha,s no 0-1 solut,ion, because 110 0-1 
vector satisfies the induced equality X,: + xi = 1. We note that the converse is also true, see 
Theorem 2.1. If, for example, there is a (+, +)-selfloop at vertex i ,  t(l1en we must have the 
inequality xi + xi < 1, and hence xi must be 0 and we may delete i from G, since a',: 

is 0-1 valued and G is transitive. Suppose that there are a (+, +)-edge and a (-, -)-edge 
incident to distinct vertices z and j .  Then the equality xi + XJ = 1 must be satisfied. 
We can delete i because :c,: is uniquely determined by q. Similarly, for any biclirected 

graph G, we can either determine ttliat it has no 0-1 solution, or reduce itss vertex set to  
be simple a,nd t,ransit,ive wit,hout changing the 0- 1 sol~t~ions,  by using such procedures in 
time polynomial in the number of vert'ices. 

For our purpose, it is enough to deal witjh only simple a,nd t,ransit,ive bidirected gra,phs. 
We call such a bidirected graph closed. Not,e that any simple ~ndirect~ed graph is closed. 
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4 04 A. Tamura 

For a closed l~iclirectecl graph G, we denote an eclge e as the pair ( L  . j )  , where /' and j 
are the two ends of e, and we draw each edge ( i ,  j )  as below and consider an inequality 
according to its type as, 

a , .r,+.r, < l if (i, j )  is a (+, +)-cdge, 
4 , -X,-.i,<-l if ( i ,  j) is a (-, -)-edge, 
>0 , .h-xJ< 0 if (i, j )  is a (+, -)-edge, 

where xi is a variable corresponding t,o the vertex i. We remark t,ha,t (i, j) and ( j ,  i )  
denote the same edge, however, if this eclge is a (+, -)-edge with a minus sign at j ,  we say 
that (i, j) is a (+,-)-edge and ( j ,  i )  a (-,+)-edge. 

We now define the 0- 1 polytope PI(G} for G as 

PI(G) = conv{x 1 X is a 0-1 solution of G}, 

the convex hull of a,ll the 0- 1 solutions of G.  As all stable set polyt,opes of graphs have 
full-dimension, PI(G) has also the same feature. 

Theorem 2.1 ([21]): For any closed bidirected graph G, PI(G) is full-dimensional. 

We next introduce bicliques, strong bicliques and corresponding valid inequalities for 
PI(G). For a subset C of vertices of G, let G[C] denote the subgraph of G induced 
by C. A pair of disjoint subset,s of vertices (C'+, C )  is called a biclique if the following 
conditions hold: 

(Bl)  t,here is an edge between any two vertices in C+ U C-, 

(B2) for any edge e of G[C+ U C ] ,  if an end vertex i of e is in C+ then e has 
a plus sign at i, and if i E C then e has a minus sign at i .  

If a biclique C = (C+,  C-) has at least two vertices, i.e., [C+ U C-[ > 2, then the 
partition is uniquely determined from C^ U C by 

C+ = {i 6 C+ U C- 1 there is an edge of G[C+ U C"] wit,li a plus end at  i}, 

C- = {i E C^ U C- 1 there is an edge of G[C+ U C ]  with a minus end at  i}. 

Thus we will regard a biclique as the set of its vertices and use C as C+ U C ,  whenever 
there is no confusion. For two bicliques C=((?^, C )  and D = (D+, D ) ,  suppose that 
CAD means the symmetric difference ( C+ U C-)^(D+ U D- ). Analogously, CUD,  CUD 
and so on are defined. 

A biclique C = (p, C-) is said to  be strong if in addition, it satisfies 

(B3) C is maximal with respect to ( B l )  and (B2), that is, there is no biclique = 

(C+, C-) such that C+ C C+, C- C C- and M, 
(B4) there is no vertex n E V \ C such that there are edges (Â¥I/, i) with a plus sign 

at i for all i E C+, and edges (u, i )  with a minus sign a t  i for all i E C .  

Note that (B4) implies (B3). Let us consider the bidirected graph of Figure 2. Sets {l, 2,4} 
and {l, 2,3,4} satisfy (B l )  but are not bicliques. {2,3,4} has properties (B l ) ,  (B2) and 
also (B3), i.e., this is a maximal biclique. This set, however, is not strong because the 
vertex 1 destroys the condition (B4) for {2,3,4}. For this instance, {l, 2,3}, { l ,  4} and 
(0, {3}) a,re examples of strong bicliques. 
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The dcncralizcd Stciblc Set Problem 

Figure 2: Bicliques and strong bicliques. 

Bicliques are analogies of cliques of undirected graphs, and as such, have corresponding 
inequalities. For a given biclique C'=( C+, C ), the corresponding bicliqz~e inequality is 

It turns out that biclique ii~equalit~ies satisfy properties similar to  clique inequalities of 
undirect,ed graphs. 
Proposition 2.2 ([21]): If G is  a closed bidirected graph. then every 0-1 solution 
satisfies the biclique inequalities of G. 

Theorem 2.3 ([21]): Let G be a closed b'idirected graph. Then,  a hiclique inequality 
induces a facet of Pi{G) if and only if the corresponding biclique is  strong. 

From the previous  result,^ we have 
Theorem 2.4 ([21]): For a closed bidirected graph C;, the 0-1 solutions of G are 
exactly the 0-1 solutions of 

xi + (1 - .ri) 5 1 for (ill strong bicliyues C of G, 
i~c+ ?<-C- 

0 < .I-, < 1 for all i ? V. 

It may seem that the constraints 0 .rl < 1 for / E V are necessary. However, these are 
implied by the strong biclique inequalities from Proposition 2.5 below. For a vertex r G V, 
we define -'VT&(v) as the set of vertices adjacent to v by edges incident to v with plus 
signs, analogously define AT; ( c ) ,  and set Â ( t l )  = A/^ ( P )  U AT/-; ( c) .  

Proposition 2.5 ([20]): Let G be a closed bidirected graph and 11 a vertex of 1 '. 

(a) If N & ( u )  # 0, there is  a strong biclique C with r 6 C+. Moreouer. 
then ({v}, 0)  i s  a strong biclique with the corresponding inequality 

(b) If N a z i )  # 0, there is  a strong hiclique C with v G C .  Moreover, 
then (0, {U}) is  a strong bicliqtie with the corresponding inequality 

We remark that Proposition 2.5 follows from Theorem 2.3 and from the fact 
and (0, {v}) are bicliques for any vertex D .  

Given a closed biclire~t~ecl graph G, let the polytope Q(G)  be defined as 

Q(G} = {X G R'' 1 X satisfies all st,rong biclique inequalities of G}. 

By Proposition 2.5, Q(G)  is bounded. For any simple unclirected graph, the strong biclique 
inequalities are precisely the maximal clique inequalities and the nonnegativity inequalities. 
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The class of imdirecied graplis for which the strong biclique inequalities are t lie only facet s ,  
are the perfect graplis [8]. See also [4, 5, 12, 151 for details of perfect graphs. Following 
conventions for undirected graphs. we will say that a bidirected graph G is perfect, if 
it is closed and PAG) = Q(G). Obviously, this perfectness is a natural extension of 
the perfectness of undirected graplis. Furt,liermore, t lie following interesting relation holds 
between a bidirected graph G and its underlying graph G_ which is obtained from G by 
changing all edges to ( +, + ). 
Theorem 2.6 ([20]): A closed hidirected grapl~ G i s  perfect if and only  if G_ is. 

We add that the theorem can be also proved by using results in [16]. 
Biclirect ed graplis have generally three types of edges. However. we can eliminate all 

( -  -)-edges while preserving the polyhedral structures of tlie related polytopes. Consider 
a simple transformation for bidirect ed graphs as below: 

(2.1) given a vertex v ,  reverse the signs of the 11 side of all edges incident to  P. 

This transformation is called the reflection of G at P. When we do reflection at v .  
the new 0-1 solutions can be obtained from tlie 0-1 solutions of G by simply reversing 
all the 0s and Is  in the ~ t h  coordinate. The facet inequalities and the objective functions 
of the problem (1.1) may also be produced by replacing all of X(, by 1 - X,.. Hence. 
in polyhedral t errns, reflect ion consists of only mirroring and translation, and essentially 
changes none of the structure of tlie associated polytope. Obviously, reflection preserves 
perfectness. Moreover, the new problem of type (1.1) is equivalent to the original one. 
Reflection, however, simplifies closed bidirected graphs as below. 

Lemma 2.7 ([3, 221): All (-, -)-edges can be eliminated by a sequence of reflections. 

We remark that elimination of all ( -  -)-edges is done in time in the number 
of vertices. A bidirected graph having no (-, - )-edge is called pure. Any biclique C of 
a pure bidirected graph has at most one vertex in its minus part, i.e., I C  1 < 1. In tlie 
sequel of the paper, we only consider pure and closed bidirected graplis. 

3 An edge elimination for bidirected graphs 
Let G be a pure and closed bidirected graph. For a vertex L? witli ;\Z(il) # 0, let us 
denote by G+v tJhe graph obtained by deleting all edges incident to  v witli a minus sign. 
Obviously, G+v is closed. We call this transformation the (-, +)-edge elimination a t  v. 
In this section, we will prove that if G is perfect then G+ is also perfect. Here we 
assume that N a v )  # 0 since if AT; f v )  is vacant then G+v is obviously perfect if G is, 
because G-f->v consists of two disjoint perfect biclirected graphs G[I7 \ {U}] ancl G[{u}]. 

We first discuss how the (-, +)-edge elimination at 71 changes PI (G)  and Q(G).  
The degree-two inequality system of G+ is a subsysten~ of the system of G. Thus, it is 
clear that P d G )  5 PI (G+u). Generally, new 0-1 solutions are ~ r e a t ~ e d  by a (-, +)-edge 
elimination. 

Proposition 3.1. Let X be a 0- 1 solution of G with G = 1. Then the 0- 1 vector 
2 obtained from X by exchanging 1 for 0 in the vth coordinate is  a solution of C$+'z?. 
Proof. If xi = 0 for all i G NG(v)  then 53 is a solution of G because there is 
no (-, -)-edge, that is, 2 is also a solution of G+v. Otherwise, however, 2 is also a 
solution of G+v, since there is no edge joi&g U and i E &(v) in G+v. I 
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We now exa,mine how t'he set of strong bicliques changes with t,he (-, +)-edge elimination 
at v. 

Proposition 3.2. Let C be a strong biclique of G with 'v 6 C. Then  C is  also 
a stronq biclique of G*. The converse also holds i f  i n  addition one of the following 
conditions C C N/;(v), C A'̂  c )  or C g lVo(r) holds. 
Proof. The set C satisfies ( B l )  and (B2) in G+v beca,use v 6 C a,nd t'he edges 
which a,re elimina,ted are incident to v.  Obviously, (B4) is preserved by a,ny elimination of 
edges. 

Suppose that C is a st,rong biclique of G+v. Trivially, C is a biclique of G. If 
C Q N ~ . ( Z J )  t,hen C is clearly strong in G. If C  C N&), we assume on t,he contra,ry 
that C is not strong in G. Then v must break t,he st,rongness of C in G,  and 
hence, C U {v} must be a biclique of G. Since LW$(v)  # 0 and G is tra,nsitive, for any 
U 6 hT$(v), C U {U} is a. biclique of G (a,lso of G+?) ). However, this is a contradiction. 
Hence C is a strong biclicpe of G. Next suppose that C <2 ATC-;(~u). Then, if C is 
not strong in G, there is a vertex u (# v) which destroys (B4) for C. However, this 
contradicts the fact tfha,t C is st,rong in G+v. Hence the converse holds if C  C A~$(u) 
or C C N ~ ( ' v )  or C g AG(v). H 
Proposition 3.3. Let C = (C^,  C )  be a strong biclique of G with v G C^. Then  
C is also a strong biclique of G++'v. The converse also holds. 
Proof. Since v E C+,  C is a biclique of G+v. Obviously, (B4) is sa,t;isfied by C. 

If C wit,h v E C+ is a st,rong biclique of G+ then C is a bicliqne of G. Assume 
on the contra,ry that C is not strong in G. However, t,his immeclia,t~ely implies t h t  C is 
not strong in G/>tl from (B4). Hence t,he converse holds. U 

Every biclique of G conta,ining v in its minus pa,rt clisa'ppears in G+v if it has 
at least two vertices. Furt~hermore, some bicliques not stlrong in G may become strong 
in G f i .  We recall tlmt a biclique C  = (C^ ,  C )  may be int,erpretecl as its vertex set, 
C = C + u C - .  

Proposition 3.4. Let C = (C+, C-) and D = (D^, D-) be bicliques of G with 
v C-^ and v E D". Then C = C A D  is a biclique of G+v. Furthemore,  C  and D  
are strong if is. 
Proof. We note that C = (C U D )  \ {v} beca,use the fact>s that v E C ^  n D- and 
that C and D are bicliques imply C n D = {v}. Since G is tra,nsitive, t,here is an edge 
between any two vertices in C \ {I?] and D \ {v], a,nd the sign at  ea,cli vertex agrees wit,h 
the sign of t,he partition the vertex is in. Thus, is a biclique of G+. 

Suppose that C is strong. Assume on the contrary tjlmt D does not sa,tisfy (B4). 
Then there is a vertex 'U. 6 D such t , l~at  there are edges (U, i )  with a plus end a,t i for 
each i G D+ and edges wit,h a minus end at  i for each i G D ,  especially for v G D .  
Then U $? C. Since G is transitive, this means that for every i E C \ { v } ,  there is a,n 
edge ( U ,  i )  whose sign of the i side agrees in t,he sense of (B4). However, t,his implies t,llat 
u hinders 6 from satisfying (B4). This is a contradiction. Similarly, one can prove that 
C is strong. I 

We remark that every biclique of G+ is originally a biclique of G. For t,he strong 
bicliques of G-/->v, the followings hold. 

Lemma 3.5. Let C be any strong hiclique of G+v. Then one of the followings holds. 
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(a)  c g' C and C is also a strong bichque of G, 

(b)  there are strong bzclipes C and D  of G such that r E C+ n D- and C = C A D ,  
(c) v E C+, and is also a strong biclique of G, 

(d)  C = (Ãˆ {P}). 
Proof. We consider the three cases: v E C + ,  v E C and c p. In the first case, we 
can conclude (c) because p is a biclique of G and must be strong from Proposit,ion 3.3. 
In the second case, E must be (0, {v}} because all edges incident to v have a plus sign 
at v in G*. Suppose that the last case holds. Evidently is a biclique of G. If 
C N:(P) or C C -W;(il) or p g ATG(tl) then is strong in G from Proposition 3.2. 

In these subcases, ( a )  holds. Finally, let us consider the subcase when g -V/^(tl), N ~ z I )  
and I? C NG(ti). Let C  = (I? n !V$(v)) U {Ãˆ and D = (I? 1-1 * ! ; ( U ) )  U {v}. Then C  
and D have at least two vertices. For any U E C  \ {v} and i r  E D  \ {v}, (11, i n )  and 

(U, v) ((U, W )  and ( U ,  W ) )  have the same sign at  U (at zu) because G is closed. Thus 
C and D  form bicliques in G. Obviously, C = C A D .  B y  Proposition 3.4, C and D 
must be strong, that is, (b) holds. I 

We consider the relation between Q(G) and Q(G+v). It is obvious that Q(G) g 
Q(G-^v}. For any vector X and any biclique C, let 

That is, t,he biclique inequality corresponding t,o C is represented as C{x)  + .z.~, < 1 if 
v C+,  C ( x )  + l - X,, 5 l if v E C-, ot,herwise C(x) < 1. Suppose t,hat {Ci, - - - , C S }  
is the set of strong bicliques of G containing v in their plus parts, and t,hat {Di ,  . , DJ 
is the set of those containing U in their minus part,s. 

Lemma 3.6. For any y E Q(G/>v), there exists y E Q(@ such that y, = iji for all 
i # v. More exactly, maxj{Dj(y)} < 1 - maxi{Ci(5j)} holds, and y E Q(G) if and only 

if 
max{Dj(y)} < y, < 1 - max{ C,( l/)}. 
.l 

Proof. From Proposition 3.2, y satisfies all of the inequalit,ies corresponding to  all 
strong bicliques of G not conta,ining v, regardless of t,he value of g;, . Hence, it suffices to 
determine the value of yÃ so that all inequalities for strong bicliques of G conta,ining v 
are satisfied. Since the symmetric difference of C; a,nd D, ( i  = 1, - . , -5, j = 1, , t )  is a, 
biclique of G h ,  we must have 

Since any strong biclique of G other tha,n C\, , CA, -Dl, - , -Df does not cont,ain v ,  if 
yv is in the range between these two values then y E Q(G), and vice versa. I 

We say that a vector y lies on a biclique inequality or the corresponding biclique if it 
satisfies the inequality with equality. Note that if we set y, = n ~ a x j  {Dj( y )}  , t,hen y will lie 
on the biclique inequality for any Dj  attaining the maximum, and if 5, = l -maxi {Ci(y)}, 
then y will lie on any C, attaining the maximum. 
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Figure 3: An imperfect bidirected graph G such that G7411 is perfect. 

Theorem 3.7. For a closed bzdirected graph G. if G i s  perfect then G+v i s  also 
perfect. 
Proof. Assume on the contrary that Q(G+) has a non-integral extreme point y. 
We first suppose that c;, = 0. By Lemma 3.6 we know that there is some y E Q ( G )  
with ift = c, for /' # Q .  Since y is non-integral, and G is perfect, there must exist some 
0- 1 solutions X ,  - . , X of G such that y can be expressed as a convex combination 
y = E J = ~  \}X-i of these points. 011 the other hand, from Proposition 3.1, we also know 
that the vectors ZJ, obtained by setting the ut\i coordinate to 0 in x-i are 0-1 solutions 
of G+v, implying that y = = I  A I 3 .  But since y is non-integral, it must be that 

# 9,  which contradicts the assumption that y is an extreme point of Q(G+). 
Now suppose Uy > 0. Since is an extreme point, it must lie on some strong biclique 

6 such that v E C^. By Lemma 3.5, C is also a strong biclique of G. From Lemma 3.6, 
y is also contained in Q(G).  Since y is non-integral and G is perfect, y can be 
represented by a convex combination of some 0-1 solutions x l ,  - . - . X of G. Obviously, 
xl ,  - , X' are solutions of G+c and y # X' ( i  = 1, + + , C). This is a contradiction. H 

Unfortunately, the converse of Theorem 3.7 is not true. For example, the closed bidi- 
rected graph in Figure 3 is imperfect because of Theorem 2.6 and of the fact that its 
underlying graph contains the 5-hole as an induced subgraph. However, G+ is a perfect 
graph. 

Several transformations of graphs preserving perfectness, for example, complements of 
graphs, multiplications of vertices, substitutions and compositions of graphs, have been 
studied [23, 6, 9, 10, 181. Our (- , +)-edge elimination also indicates an edge-transformation 
preserving perfectness. Let H be a simple undirected graph and let v be a vertex of 
H. Now we consider a partition S U T of the neighbor N&) of U (we assume that 
S,T # 0.) It is easy to show that the bidirected graph obtained from H by replacing all 
edges joining v and vertices of S for (-, +)-edges is closed if and only if any i G S and 
any j ? T are adjacent. Then, the next lemma directly follows from Theorem 3.7. 

Lemma 3.8. Let H be a perfect graph and let v be a vertex of H.  For any partition 
S U T of NH(v) with S, T # 0, if any i 6 S and j .̂ T are (icljacent, then the graph 
H' obtained by eliminating all edges joining v and i E S is also perfect. 

Conversely, by combining Theorem 2.6 and Lemma 3.8, we can easily prove Theorem 3.7. 
Before doing t,his, we verify Lemma 3.8 in terms of graphs. 

Proof of Lemma 3.8. Let w ( H )  a,nd \{H) denote the maximum clique size of H 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



and the chromatic number of H ,  respectively. It is enough to show tliat w ( H f  ) = ,\(Hf) 
since for any induced subgraph of H, the construction of Lemma 3.8 is defined similarly. 
If there is a maximum clique of H which docs not contain v ,  then d ( H f )  = (̂H) 
and \ (H ' )  = \ ( H ) ,  obviously. Now suppose tliat all the maximum cli(1ues of H contain 
v. Let us consider the induced subgraph H" = H [ V  \ { v } } .  Since H" is also perfect, 
w ( H f ' )  = ^ { H )  - 1 = \ ( H )  - 1 = \ (H f ' ) .  By the assumption of Lemma 3.8, there is a 
vertex ti 6 S whose color is distinct from all colors of the vertices of T. If we paint v 
the same color as U ,  we obtain a vertex coloring of H'. Hence 

holds. That is, H' is perfect. I 

By using this, we give a short proof of Theorem 3.7. 

Proof of Theorem 3.7. Let H = G, S = N E ( 7 7 )  and T = N z ( o ) .  The bonly if' 
part of Theorem 2.6 implies that H  is perfect. Since G is transitive, H ,  P, S and T 
satisfy the condition of Lemma 3.8. Then it follows from Lemma 3.8 t,liat H' is perfect. 
Obviously, H' = G+. From the 'if' part of Theorem 2.6, G+ is also perfect,. I 

The second proof is very short even though the proof of Lemma 3.8 is contained in it. 
However, this proof uses Theorem 2.6. In order to prove this, discussions more difficult and 
detailed than the first proof are necessary. Furthermore, from the second proof, we do not 
obtain anything of essent,ial properties of (-, +)-edge eliminations. It seems that the first 
proof of Theorem 3.7 is not unnecessary. 

4 A reduction of the generalized stable set problem 
We recall the generalized stable set problem for a given closed bi~lirect~ed graph G and for 
a given integral weight vect,or W E 2" : 

For the maximum weighted stable set problem, we may assume that tot > 0 for all i E V, 
because if wv < 0 for some v E V then there is a maximum weighted stable set not 
containing v, that is, we can delete all vertices with nonpositive weights. In this section, 
we introduce a reduction of the problem (4.1) according to the sign pat tern of t,he weight) 
vector W. However, the reduction is not so trivial as the case of the maximum weightled 
stable set problem. We will use (-, +)-edge eliminations. 

Let G be a pure and closed bidirected graph and let W E 2'. We call a vertex positive 
if there is no edge incident to it with a minus sign, otherwise nonpositive. If, for example, a 
positive vertex v has a nonpositive weight wv, then there is an optimal 0-1 solution X 
with xV = 0, because for any 0-1 solution y of G, the 0-1 vector obtained from y by 
replacing yv for 0 is also a solution of G having an objective value greater than or equal 
to zuÃˆgi Thus, we can delete v from G. Let us next assume t,hat a nonpositive 
vertex v has a nonnegative weight zuv . Then the next lemma holds. 

Lemma 4.1. If a nonpositive vertex v has a nonnegative weight wL,, then 
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Proof. Since P I (G)  C P[(G++;-) .  

Let 2 E PI(G+v) be an optimal 0-1 solution of the right-hand side problem. If X y  = 1 
then 2 is also a solution of G which attains the maximum of the left-hand side problem. 
Suppose that X y  = 0. If 5 = 0 for all i G N c ( v )  then 2 is a solution of G, and 
hence, the equation holds. If the 0-1 vector 2' obtained from 2 by replacing K, for 
1 is a solution of G+ then it is also an optimal solution of both problems. Assume on 
the contrary that ?, = 1 for some i G A z ( c )  and 2' is not a solution of G+. This 
implies that there is either U E A'$+(V) with F,, = 1 or U G A '& (P )  with = 0. Here 
N $ ( u )  is defined as the set of vertices adjacent to  v by a (+, -)-edge incident to U 

with a plus sign, hT$'(u) is defined analogously. In the former case there is a (+, +)-edge 
joining i and U : in the latter case, a (+, -)-edge, since G is transitive. However, in 
both cases, 2 does not satisfy the inequality corresponding to the edge ( 2 ,  U ) .  This is a 
contradiction. Hence there is a 0- 1 vector which is optimal for both problems. I 

Lemma 4.1 guarantees that if all nonpositive vertices have nonnegative weights then 
the original problem (4.1) can be reduced to t'he maximum weighted st,a,ble set problem. 
Furthermore, from Theorem 3.7, if the original bidirected graph is perfect t>hen we can solve 
the problem (4.1) in polynomial time by using the method of Grotschel, LovAsz and Schrijver 
[13, 14, 151, for such special weight vectors. Their method gives not only t,he optimal value 
but also a maximum weight,ed stable set for perfect gra'phs. 

However, for any int,egral weight vector, the problem (4.1) is reducible to the maximum 
weighted stable set problem. The idea is very simple. From the above discussion, we can 
at least assume that wi > 0 for all positive vertices i and wi < 0 for all nonpositive 
vertices i .  One can easily prove that there is a nonpositive vert,ex v such tha,t all edges 
incident to v with plus signs are (+, +)-edges (see [20, Proposition 2.101). Now we apply 
the reflection (2.1) of G at U. This transformatlion does not crea,tre any (-, -)-edge, does 
not change the opt,imiza,t,ion problem (4.1) essentially, and t,ransforms t,he objective function 
xigv wixi to tyixi + (-tuI,)x,, + W,,. Then, in tthe new problem, the nonpositive vertex 
v has a positive weight. Performing the ( -, +)-edge elimination at  c, we can clecrea,se the 
number of nonpositive vertices. By repeating such procedures, the problem (4.1) for a,ny 
closed bidirected graph can be reduced to the maximum weighted sta,ble set problem for 
some undirected graph. Obviously, t,his reduction is done in t,ime polynomial in the number 
of vertices, and preserves perfectness. We remark that each maximal stable set of the final 
graph corresponds to  a 0-1 solution of the original bidirected graph from the proof of 
Lemma 4.1, and that an optimal 0-1 solution of the original problem ca,n be reconstructed 
from the maximum weighted sta,ble set (see the exa,mple below). Hence we obtain our main 
theorem. 

Theorem 4.2. The generalized stable set problem for any bidirected graph may be reduced 
to the maximum weighted stable set problem for a certain undirected graph in  time polynomial 
in  the number of vertices. Furthermore, this reduction preserves perfectness. Hence, if 
a given bidirected graph is perfect then the problem is solvable in  time polynomial i n  the 
encoding length of the problem. 

We finally explain the procedure proposed in this pamper by using an example of the 
facility location problem in Figure 1. Here we assume that pi, cj > 0 and tha,t variable 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A. Tamura 

reflect,ions and 

( -, +)-edge elimin a t '  ions 

at ve~t~ices L\, L2 and Ly 

Figure 4: An example of the reduction. 

x\ is assigned to vertex F: and yj to vertex L j .  Then the objective function is 

l 1 9  2 3 plxl +p2(x2 + .I,) + ~ 3 ( x ;  + X3} + p4(x4 + X,) - c1yi - C2y.2 - C,,,!;.. 

Step 1. Construction of the transitive closure: Since the bidirected graph of Figure 1 
is not transitive, let us make its transit'ive closure, the left-hand side biclirectecl graph 
G' in Figure 4, where added edges are drawn by t)hin lines. 

Step 2. Reduction to a closed bidirected graph: In this case, G1 is simple, i.e., 
closed. Furthermore G1 is perfect because the complement of its underlying graph 
is easily checked to be perfect. 

Step 3. Reduction to a pure bidirected graph: There is nothing to do because G' 
is also pure. 

Step 4. Reduction to an undirected graph: We first select a noupositive vertex Ll 
because -cl < 0 and there is no (+, -)-edge incident to L\  with a plus sign. 
Let G1:Ll denote the bidirected graph obtained from G1 by the reflection at 
Ll .  The (-,+)-edge elimination at Ll for G1:Ll eliminates edges joining L\ 
and {L2, L&, F& F=}. Let G2 = (G1:L1)++L1. Continuously, performing the 
reflections and the (- , +)-edge eliminations at L2 and Â£3 generates bidirected 
graphs G2:L2, G3 = (G2:L* G3:L3 and G4 = (G3:L3)/.L3 which is the 
right-hand side undirected graph in Figure 4. The objective function for G4 is 

Step 5. Optimal solution construction process: Let us find a maximum weighted sta- 
ble set for G4 and t,he weight vector. In this case all maxima.1 st,a,ble sets of G4 are 
listed below 

1 0-1 solutions of G1 
- - 

maximal stable sets of G4 

{ F } ,  L2, La} 
{F21 L27 L3} 
{F;, F-', F?, Ll} 

objective values 

P1 - c1 
P2 + P3 - C l  

P2 + P3 + p4 - c2 - c3 
P2 + p4 - c2 
P2 + p4 - C2 - c3 
P3 - C3 

P4 - c3 
0 
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We assume that. pi = q = 1 for all i and j .  For inst,an(:e, {F!, L^,  L^} is 
a,n optimal st,able set of G4. We can ~ons t~ruct  an optimal ~olut~ion of t,he origina,l 
problenl from the sttable set by reversely following up t~lie recluct,ion in tjhe previous 
step. From the proof of Lemma 4.1, {F! ,  F::, Â£2 L3) is an opt,imal solut,ion for 
G 3 : ~ 3 .  Then {F;, F;,  L2} is an opt2imal solution of the problem for G3. In the 
sa,me way, {F*, L^} a,nd {F& F:} arc optimal solutions for G2:L2 and G2, 
respectively. From tlhe maxima1it.y of {F. .  F:, L2, L3} in G4, it can be shown that 
{F}, F:, Li} is not a solution of G2 = (G1:Ll)/ÃˆLi as follows: Â£ must be adjacent 
to a vertex of the maximal st'able set in G4; if L1 is aclja,cent tjo F; (or F }̂ 
then G2 ha,s a (+,+)-edge incident, to Ll  and (or F;); ot~lierwise G2 ha,s a 
(+, -)-edge incident t>o L1 and L,2 (or L3) with a plus sign at L i ;  in both cases, 
{F& F;, L\}  is not a so l~ t~ ion  of G'. Then, from the proof of Lemma 4.1, {F^ F:} 
is an optimal solution of the problem for @:L1, and then {F^ L^} is 'n 
optimal solut,ion of the original problem. Tliat is, an optimal solution for the original 
problem can be obt,ained from a nx~ximum weightJed stable set (must be inc,lusion-wise 
maximal) of the final unclirected gra,ph by reflections applied in t>he previous step (see 
the above list). 
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N o t e  added in proof. After submitting our paper, [24] was published. In this paper, a result equivalent to  

Theorem 2.6 was independently proved by using contexts similar to those of our paper, i.e.,the facts that 

the generalized stable set problem can be transformed to the maximum weighted stable set problem and 

that the perfectness is preserved by the transformation. However, the paper does not discuss the complexity 

of the generalized stable set problem for perfect bidirected graphs. 
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