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Abstract This paper shows that row-continuous Markov chains with one or two boundaries have transient 
probabilities with matrix-geometric structure. Also explored is the relationship between the Green's function 
method and the matrix-geometric method of Neuts. A full probabilistic interpretation of transient rate 
matrices is given. 

1. Introduction 
A homogeneous row-continuous bivariate Markov chain with one or two boundaries is 

a natural extension of M/M/1 queueing systems with infinite or finite capacity. It is an 
extension in the sense that the transition rate matrix of a homogeneous row-continuous 
process is block tridiagonal while that of a birth-death process is tridiagonal. Because of 
this structural similarity, one may expect that a row-continuous Markov chain inherits some 
of the remarkably rich properties of the M/M/1 occupancy process. 

Neuts (1978, 1981) has exploited the block structure of transition rate matrices to  show 
that a homogeneous bivariate process with one boundary has a matrix geometric distribu- 
tion, a bivariate analogue of the geometric distribution of the occupancy process N(t) for 
M/M/l .  For more recent works along this line, readers are referred to Ramaswami (1990) 
and Asmussen and Ramaswami (1990). Keilson and Zachmann (1981, 1988) employed the 
Green's function method to study the stationary behavior as well as some transient as- 
pects of the homogeneous row-continuous process with one or two boundaries. The Green's 
function method, Keilson (1965)) relates a process with boundaries to the corresponding 
homogeneous process with no boundaries. The method is applicable to both stationary 
analysis and transient analysis. Extensive discussion of the Green's function method and 
applications may be found in Graves and Keilson (1 %l ) ,  and Keilson (1965, 1979). 

In this paper, the transient behavior of such processes with one or two boundaries is 
studied, and the matrix geometric structure of Neuts is established in the transient setting. 
The relationship between the Green function method and the matrix-geometric method of 
Neuts (1978, 1981) is also shown, providing a full probabilistic interpretation of transient 
rate matrices in terms of taboo ~robabilities. To be specific, consider the homogeneous row- 
continuous bivariate Markov chain with one boundary, -BI(t) = (Ji(t) ,  fVI(t)), where fV~(t) 
is the occupancy process and JI(t)  represents the internal motion and let pn( t )  = Ipn:;(t)] 
be defined by pnzj(t) = P{BI(t) = ( j ,  n)}. Then, one finds that when N1(0) = 0 
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where R+ (t) is a transient rate matrix and R!,?) ( t )  is the n-fold matrix convolution in time. 
The transient rate matrix R + ( t )  is related to a taboo probability interpretation similar 
to that of Neuts. Both probabilistic and analytic proofs are provided for (1.1). For the 
two-boundary process BII( t)  = (JII(t) , NII(t)) starting from the boundaries, the Laplace 
transform of the state probability vectors can be written as a sum of two matrix geometric 
terms. A well known matrix quadratic equation for the stationary rate matrix of Neuts is 
extended to a dynamic setting. 

Also studied are some special cases of row-continuous Markov chains. When BI ( t )  with 
one boundary has the Markov modulated structure and po(0) = e where e is the stationary 
probability vector of JI(t),  it can be shown that 

Here 1 is the vector with all components equal to 1. This implies that,  under the same 
condition, {.iVI(t)} is stochastically increasing in t ,  which extends the corresponding result for 
M / M / l  system. We also re-examine M/M/1 occupancy process using the results regarding 

B I ( ~ ) .  

2. Dynamic Analysis of Homogeneous Row-Continuous Markov Chain with 
One or Two Boundaries 

We first consider a bivariate (spatially) homogeneous row-continuous Markov chain 
B11(t) = (JII(t), NII(l)) with two boundaries. The state space of &(t) is given by IB = 
{(J', n) : 0 < j < J, 0 < n < N}. When the states for each row are treated as a block, the 
transition rate matrix v of -BII(^) has the block tridiagonal form 

where all elements are matrices of order J + 1. Throughout the paper, v indicates a tran- 
sition rate matrix with zero diagonal elements rather than an infinitesimal generator. The 
matrices OQ and O N  represent the possible irregular boundary behavior of the process. Sim- 
ple retaining boundaries for which virtual transitions outside the state space are censored 
have 00 = O N  = 0.  Also considered in this section is the process BI ( t )  = (J1(t), NI(t)) with 
one boundary at 0 and N = m. The associated spatially homogeneous process BH(t) = 
(Ju(t) ,  NH(t)) is a process with state space EH = {(J',n) : 0 < j < J ,  -m < n < m}, 
governed by the same set of transition rate matrices p , A  and 0 but with no boundary at 
levels 0 and N of the occupancy process. The chain B H ( t )  is spatially homogeneous in the 
sense that the transition rates <i,m,,~j,n, for the chain have the form 

which depends only on n - m for any (i,ij}. Here = 1 if m = n and Ln = 0 otherwise. 
The analysis in this section is based on the results obtained in Keilson and Zachmann 

(1981, 1988), which are summarized in the following. The transient Green's function for the 
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Because of the simple boundaryless structure of B H ( t ) , g n ( t )  has a nice analytical structure. 
Specifically, by conditioning on the first visit to level n, it is seen in Keilson and Zachmann 
(1981, 1988) that 

Here SÂ (t) = [s*:ij (t)] = [ ~ ( i , ~ ) , ( j , r n * ~ )  (t)] is the upward (downward) matrix first passage 
time density ~ m n  (t)  = [ ~ ( ~ , ~ ) , ( j , ~ )  (t)] defined by 

d 
s(ilm),(j,n) ( t)  = -,A:m),(j,n) W 
Sum),(j,n) (t) = P{the first visit of .BH(-) to row n happens before time t 

with landing state ( j ,  n) 1 JH(0) = i, NH(0) = m} 

and sg l ( t )  is the n-fold matrix convolution of S*(() with itself. The simplicity of (2.2) 
arises from the boundaryless structure for which son(t) = s \ ( t ) ,  n > 0, and son(^) = 

s ' l l ( t ) ,  n < 0. The compensation method relates the Green's functions gn( t )  of B H ( t )  
and the state probabilities p_(<) = (pnZj(t)) of the bounded process BII ( t )  where pntj(t) = 

P{J1i(t) = J, NIl(t) = n}. Let the initial probability distribution of BII( t)  be given by 
(f JLoi i.e., f = ( fn:j), fn:j = P{JII(0) = 7, NII(0) = n}. For notational convenience we 
define /AD = [&Gik] and \E) = [Sij^T'~ik]. A similar notation will be used to represent 

k k 
other diagonal matrices. The relationship between the Green's functions and the state 
probabilities of the bounded process B n ( t )  is given in Keilson and Zachmann (1981, 1988) 

where * indicates a convolution in time, and C n ( t )  = (CnZj(t)), - m  < n < m ,  axe called 
compensation functions and are given as 

The matrix geometric structure of the transient behavior can best be observed in the Laplace - 
00 

transform domain. Let T ~ ( s )  = e-stpn(t)dt, yn(s) = L e-stgn(t)dt, and n*(s) 
P 0 0  

L ests*(t)dt .  It should be noted that the boundaryless process Jn( t )  itself is Markov 

with transition rate matrix VQ = p, + 0 + A. Let e be the stationary probability vector 
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of Ju(t) .  It ha,s been shown in Keilson and Zachrnann (1981, 1988) that,  if the process 
B&) has a bias toward the positive or negative side, i.e., e(\ - p)l # 0, then yo( s )  is 
non-singular. Throughout the paper, we assume that e(\ - 41 # 0. Then, one has the 
following theorem. 

Theorem 2.1. For the two boundary process B n ( f ) ,  

and 

DN(s) = ( A D  + @ D  - @ + @ N  - @ N D  - \ o - - ( s ) ) Y ~ ( ~ ) .  

Proof: From (2.3) and (2.4) one sees for -m < n < oo that 

Since -yn(s) = v'+(s)fo(s), n > 0, and 7,(s) = c!"'(s)~~(s) for n 5 0 (see (2.2)), one has 
f o r O < n <  N 

completing the proof. 

The following statements establish the matrix geometric structure of row-continuous Markov 
chains with one or two boundaries in a transient setting. 

Theorem 2.2. For the one boundary process B i ( t )  with Ni(0) = 0, n n ( s )  = n o ( s ) p ~ ( s ) ,  
n > 0. 

Proof: The transient probabilities of the one boundary case fall out from Theorem 2.1 
by eliminating the second term corresponding to the reflected probability flow from the 
boundary at N. Hence, using f = &ofo,  one sees that for n > 0 

Thus, vo(s)  = no(s )Do(s )  + f o ~ o ( s ) ,  which implies v n ( s )  = vo(.s)p',(s), completing the 
proof. 

The proofs of the following statements are similar to that of Theorem 2.2 and are omitted. 
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Theorem 2.3. For the two boundary process B\\(t) with all the initial support in the 
boundaries, i.e., f = Snofo + n n ( s )  has the following matrix geometric structure: 

Corollary 2.4. For the one boundary process B$), 

Corollary 2.5. For the one boundary process B I ( t ) ,  if the initial distribution has bounded 

support with f m  = 0, m > M, for some M > 0, nn(s) for n 2 M has the purely geometric 
structure: 

~ M + n ( s )  = %(s)P"i{s), n 2 0. 

It is noted that the preceding results of the transient matrix geometric structure for the 
process with one boundary B I ( t )  are valid for sta,ble as well as unstable systems. 

As pointed out in Keilson and Zachmann (1981, 1988), the matrix geometric stationary 
probabilities of the one boundary process in Neuts (1978, 1981)) can be obtained in terms 

of the ergodic Green's function gnZm gn(t)dt  = ~ ~ ( 0 ) .  Here, we assume that B H ( ~ )  is r 
transient having bias towards the negative side, e ( A  - p)l < 0, so that the ergodic Green's 
functions gnZm7 -m < n < m ,  exist and B I ( t )  has stationary probabilities en, n 2 0. 
Since gn( t )  Ã 0 as t -+ oo for every n, one sees from Corollary 2.4 that the stationary 
probabilities en  = limpn(;), 0 $: n < N ,  of the one boundary process B x ( t )  are given by 

t+00 

Also for the case of two boundary process BII ( t ) ,  the stationary probabilities can be found 
from Theorem 2.1 as 

see Keilson and Zachma,nu (1981, 1988). 

3. Dynamic Quadratic Equations for Transient Rate Matrices and the Relation 
to Matrix-Geometric Method of Neuts. 

In the setting of Neuts (1981), consider a discrete time row-continuous process Bxk) = 
(J;(k), N;(k)) with one boundary governed by the upward transition probability matrix 
a+, transverse transition probability matrix an, and downward transition probability matrix 
a-. Neuts (1981) shows that the stationary probabilities (e,,)ro of B;(&) have the matrix 
geometric form en = eoR*" with R' = [R:j] defined by 

Here m~$,:)(,,~) is the taboo probability that, starting from the state (i, m )  at time 0, the 
chain BT(k) is in (7, n)  at time k without having returned to the level m in time interval 
[l. k ] .  It is also shown that 72" is the minimal nonnegative solution of a matrix quadratic 
equaiton: 

(3.2) R* = fi"a- + R*ao + a+. 
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One may expect that p+(O) corresponds to the rate matrix R *  of Neuts (1981),  defined in 
terms of taboo probabilities, and is related to a matrix quadratic equation similar to (3.2) .  
However, it is not apriori clear that p + ( 0 )  corresponds to R*. In the following, it is shown 

that R+(t) and R _ ( ( )  defined by e - " R + ( t ) d t  = p + ( s )  are related to taboo probabilities r 
and satisfy a dynamic form of the matrix quadratic equation (3.2) .  Some preliminary results 
are needed. Let V D  = + @ik + Aik ) ]  and I be the identity matrix. 

k 

Lamma 3.1. 

p + ( s )  = A ( s I  + V D  - 6 - AU- (S))- '  and p-(S)  = p ( s I  + V D  - 6 - p n + ( s ) ) '  

Proof: The forward Kolmogorov equation at level one for the homogeneous process is 
given by 

d t 
-gl ( t )  = - g l ( t ) ~ D  + gl (00 + ~ o ( t ) ~  + /" gi ( x ) A s -  ( t  - ' I d x  
dt 0 

Taking the Laplace transform of the both sides and rearranging the terms, one has v i  ( S )  = 
x ( s ) \ { s I  +vD -6  - A u . ( s ) ) - ~ .  Thus, p + ( s )  = -r i1(~)71(~) = A ( s I  +vD - 6 - A u - ( s ) ) - ~ ,  
proving the first equation. The second equation can be obtained from the Kolmogorov 
equation at level -1.  D 

Lemma 3.2. 
p+ ( s ) p  = A u _ ( s )  and p _ ( s ) u  = A u +  ( S ) .  

Proof: Let 

(3.3) 

corresponding to the state probabilities of Markov chain governed by the defective infinites- 
imal generator - V D  + 6. As in Keilson and Zachmann (1981, l 9 8 8 ) ,  the Laplace transforms 
of the first passage time density matrices satisfy 

the probabilistic meaning of which should be clear. Equation (3.3)  and the second equation 
in (3.4) imply ( s I  + V D  - 6 - A u _ ( s ) ) u _ ( s )  = p. One also sees from Lemma 3.1 that 
p + ( s ) ( s I  + V D  - 6 - A u _ ( s ) ) u . ( s )  = \ U - ( S ) .  Thus, p + ( s ) p  = A u _ ( s )  follows from the 
last two equations. The second equation is immediate from the first equation by switching 
the upward motion and the downward motion. D 

It should be noted that Lemma 3.2 relates the upward and downward first passage time 
density matrices s+(t) and s _ ( t )  by 

We are now in a position to show a dynamic form of the quadratic equations for transient 
rate matrices R+(t) and R- ( t )  in the Laplace transform domain. 

Theorem 3.3. p + ( s )  and p _ ( s )  satisfies the matrix quadratic equations: 
(a) A + p+(s) ( -SJ  - V D  + 6 )  + p ' ( s ) p  = 0 , and 
(b) ft + p _ ( s ) ( - s I  - V D  + V )  + p^.(s)A = 0 , respectively. 

Proof Substituting the first equation of Lemma 3.2 into the first equation of Lemma 3.1, 
one has p+(s )  = A ( s I  + V D  - 0 - p + ( s ) p ) ' .  The quadratic equation (a) for p + ( s )  follows 
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by rearranging the terms. Since the boundaryless process B n ( t )  is structurally symmetric 
with respect to A and p, the quadratic equation (b) for p _ ( s )  follows immediately from (a). 
D 

Clearly Theorem 3.3 implies that the stationary rate matrix p+(O) satisfies the quadratic 
equation, R2p + R{ff  - uD) + A = 0, in Neuts (1981). 

The following theorem provides the probabilistic interpretation of the transient rate 
matrices. 

Theorem 3.4. 

where n*lP(i,n)(j,n) (t) is the taboo probability that,  starting from the state ( i ,  n) at  time 0, 
the homogeneous chain B u ( t )  is in (j, n)  at  time t without having visited to the level n 41 1 
in time interval (0, t]. 

Proof: Consider a defective Markov chain B O ( t )  in {(j, n)  : 1 <, j <, J, 1 < n} by censoring 
all transitions of B H ( t )  from level 0 to level 1. Then it is clear that 

00 

Let nnn(s) = / e-",_l Pnn (t)dt where n- 1Pnn (t)  = [n- 1P (k,n)(j ,n) (01. By conditioning 

on the first transition of BO( t ) ,  it can be seen that 

Rearranging the terms, 

Thus one sees from Lemma 3.1 that 

which implies the first equation. The case of R- ( t )  can be proved similarly. 

Theorem 3.4 clarifies the probabilistic meaning of previous results given in terms of 
Laplace transforms. In particular, for the one boundary process with N(0) = 0, Theorem 
2.2 is equivalent to 

Theorem 3.4 actually provides an alternative probabilistic proof for Theorem 2.2. Consider 
the one boundary process B d t )  with N(0) = 0. Then, by conditioning on the state of the 
last visit to level n from below, one sees from Theorem 3.4 that for every n 2 0 
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which proves Theorem 2.2. When the process does not start from level 0, e.g. when 
N{0) = M > 0, B I ( t )  may reach level n without hitting level 0 with positive probability. 
This breaks the purely geometric structure of transient state probabilities. The argument 
used in (3.6), however, shows that pm( t )  for n > M, has the following geometric structure: 

t 
p,(') = / p,w(x)~(^"-M)(t  - aÂ¥)dx 

. o  
It is instructive to exhibit the discrete time version of Theorem 3.4. Consider the discrete 

time row-continuous process B p )  = (J:(k), N;(k)), k = 0,1, - - -, with one boundary 
discussed at the beginning of this section. Let r z ( u ) ,  n > 0, be the generating function 
of the state probability vector of BT(k), and let %(U) ,  -m < n < oo, be the generating 
functions of the Green's function associated with the discrete time process B i ( k )  without 
boundaries. If B p )  starts from the boundary, then it ca,n be shown that 7rz(u) has a 
matrix geometric structure. That is, r ; (u)  = r ~ ( u ) p ~ ( u )  where p+(u)  is given by 

which is the discrete time analogue of Lemma 3.1. Here <r*(u) is the generating function 
of the upward first passage time distribution of Bu(k) .  Also, using the argument similar to 
the proof of Theorem 3.4, the generating function of the taboo probability matrix can be 

- 1 
shown to satisfy n_ i^7k(u )  = (l - uao  - ua+(r* (U))  . Thus, one sees that 

where the obvious nota,tion has been used. This equation, after setting U = 1, agrees with 
(3.1) as expected. A similar equation can be obtained for p? (U)  as well. 

4. Markov Modulated Process and M/M/l  System 
In this section, we investigate some special cases of the process with one boundary 

considered in the previous section. Specifically, the Markov modulated process and the 
dynamics of M/M/1 are studied. 

Let A = AD, p = pD, Oo = 0 and N = m in (2.1). One then has the Markov modulated 
process as a special case of the row-continuous Markov chain B I ( t )  = (JI(t) ,  flT1(t)) with 
one boundary defined in Section 2. For this case, it is clear that JI( t )  itself is Markov with 
transition rate matrix VQ and infinitesimal generator Q. given by 

Let e be the stationary probability vector of JI(t), i.e. eQo = 0 and e l  = 1. Also denote 
the busy period of &(t)  (the first passage time of NI(t) from 1 to 0) by TB. 

Theorem 4.1. 
(a) For the Markov modulated process case, the one boundary process -B1(t) = (J1(t), W t ) )  
with f = Snofo has the state probabilities 

(b) In particular, if f = hoe, 
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Proof: Since Ji(t) itself is Markov with the infinitesimal generator Qo, ~ ( s )  
00 

X T,(s) = f o(s I  - Q ~ ) ' .  One also sees from Theorem 2.2 that ~ ( s )  = no{s)(~-p+(s)) - l .  
0 

Thus 

(4.2) nob) = f o ( s I  - Q o ) - l ( I -  P+(s)). 

This proves (a) using Theorem 2.2 again. If f., = Snoe, (a) implies that 

00 

Thus, X ~ f c ( s ) l  = e p x ( s l / s ,  which proves (b). For (c), first note that the Kolmogorov 
k=n 

d t 
equation of BI ( t )  at row 0 is -po(t) = -po(t)(So + AD) + po(t)S + / p0(x) \Es-  (t  - s)dx. 

dt 0 
Thus, 

(4.3) ~ o ( s )  = f 0 (31 - Q. + AD(I  - U-(S)))-' . 
Since (4.2) and (4.3) are valid for all probability vectors f y  and all the matrices involved 
are nonsingular for Re(s) > 0, 

Thus, 

(via (b)) 

e 1 
= - ( s l  + AD + - v. - A D u -  (S)) ( s I  - Q ~ ) - '  l - - (via (4.4)) 

S S 

1 d 
The last equality follows from (sI - Qo)-'1 = -1. Hence one sees that -EINI(t)] 

S dt 
= E d i i P { T B  > t I = J', NI(0) = 11, proving (C). 

2 3 

We note in the preceding analysis that the Markov property of JI(t) is essential. Thus, the 
fact that A and p are diagonal is a critical assumption. 

It is known that the M/M/1 occupancy process N(t) given N(0) = 0 is stochastically 
increasing in t, see Keilson (1979). The following statement extends this monotonicity result 
to the Markov modulated process. Since Theorem 3.4 implies R + ( t )  2 0 for every t > 0, 
one sees from Theorem 4.1 (b) that 
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Corollary 4.2. For the Markov modula,ted process with f Ã  = Snoe, the occupancy process 
NI(t) is stochastically increasing in t .  

We now consider the following special case of the Markov modulated process B d t ) .  Suppose 
that A = AD and p = d. That is, only the arrival rate is dependent on Ji( t ) .  It should be 
noted that S_ (<)  corresponds to sBp( t )  where sBP( t )  is the matrix density corresponding to 
the busy period TB of B1(s) .  Then one has 

Theorem 4.3. For Ma,rkov modulated process B i ( t )  with A = AD, p = P I ,  and Ni(0) = 0, 

Proof: From Theorem 2.1 and (3.5), it can be seen that p+(s)  = f<1(s)71(s) = f o l ( s )  

X u + ( s ) ~ ~ ( . s )  = ( S ) ~ ~ ( S ) A U .  ( s ) p l  = \cc-. (S)/^. Thus the result follows from Theo- 
rem 2.2. 0 

We next re-examine the M/M/1 occupancy process using the previous results. Let N( t )  
be the number of customers in the system with upward and downward transition rate A 
and JJ,̂  respectively, and let pn(t) = P{N(t) = n}. Also let s+ ( t )  and S-(^)  be the upward 
and the downward first passage time density, respectively, of the homogeneous boundaryless 
process ATH ( t)  corresponding to the M/M/l .  It should be noted from Lemma 3.2 and (3.5) 
that 

(4.5) p+ (4 = P- is) = G+ (4 
where p = A/^. Thus the geometric structure of N( t )  with N(0) = 0 can be seen from 
Theorem 2.2 and Theorem 3.4 as 

where oPll( t )  is the taboo probability of NH(t) being at 1 without having returned to 0 
starting from 0. Note that (4.6) implies that 

The state probabilities pn(t) can be written in terms of more familiar entities than (4.6). 
Let SBp(t) and sBp(t) be the busy period distribution of M/M/l  system and its density. 

Proposition 4.4. For the M/M/l  occupancy process with N(0) = 0, 
t 

(a) P ~ ( O  = p"/ 0 p d t  - x ) s ~ ~ ( x ) ~ x ,  

(b) P{N(t) 2 n} = pnsB"p'(t). 
Proof: Part (a) immediately follows from Theorem 4.3. Part (b) follows from Theorem 
4.1 (b) and (4.5). Q 

5. Concluding Remarks 
The structural properties of row-continuous Markov chains exhibited in this paper can 

possibly be exploited for the numerical evaluation of transient probabilities of such processes. 
Once the transient probabilities at boundaries are obtained, all the other probabilities would 
be calculated fairly easily because of the geometric structure. Thus, a development of 
numerical method for the evaluation of probabilities at  boundaries is of considerable interest. 
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This paper deals with bivariate Markov chains that are skip-free on both sides. It is 
shown in Neuts (1981) that the matrix geometric structure of stationary probabilities holds 
for Markov chains that  are skip-free only on one side. Of interest is an extension of the 
present analysis to this case. 
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