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Abstract The optimal minimal-repair and replacement problem of a reliability system under the average 
cost criterion is formulated as a semi-Markov decision process, and it is shown that there is a ( t ,  T)-policy 
which is optimal among all allowable policies, under the assumption that the failure rate of the system 
monotonically increases to infinity. A ( t ,  T)-policy implies that a failure before age t  is minimally repaired, 
but the system is replaced when age T is reached or when the first failure after age t occurs whichever comes 
first. 

1. Introduction 
Minimal-repair and replacement are often used as practical maintenance activities of real 
reliability systems. A minimal repair is the maintenance activity to  repair the failed system 
so that its function is recovered, without changing its age, while a replacement restores 
the entire system into the new condition so that it behaves as a new system. Further, 
replacement is classified into preventive replacement or failure (or corrective) replacement 
according as whether the system is in operation or in failure. 

In the past three decades, vast literature has discussed various maintenance problems 
with the above maintenance activities. A pioneering work on the maintenance problem with 
minimal repair was done by Barlow and Hunter [2] in 1960 (see also Chapter 4 of Barlow and 
Proschan [3]). They proposed a periodic replacement policy with minimal repairs between 
replacements, and discussed the problem of determining an optimal preventive replacement 
age T to minimize the long-run average expected cost per unit time over the infinite horizon 
(the average cost in short). Since then, this basic model has been generalized and modified by 
many authors to handle more practical situations, as summarized in Ascher and Feingold [l], 
Nakagawa [5], and Valdez-Flores and Feldman [12]. The common question here is when to 
replace the system instead of performing minimal repair. 

It is noted that Barlow and Hunter [2] considered only minimall repair and preventive 
replacement as maintenance activities. Phelps [6] introduced failure replacement as a main- 
tenance activity, and discussed an optimal maintenance problem wit h minimal repair and 
failure replacement under the average cost criterion (since it was assumed in this model 
that the required costs for preventive and failure replacements are equal, the system should 
be replaced only when it is failed). He formulated the problem as a semi-Markov decision 
process, and, assuming that the failure time distribution has increasing failure rate (IFR), 
showed that the optimal policy has the following form: there exists a threshold age t such 
that a failure before age t is minimally repaired, but the system is replaced at the first failure 
after age t. Tahara and Nishida [l l] discussed the maintenance problem with both preven- 
tive replacement and failure replacement which have different costs. Under the criterion of 
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minimizing the expected total discounted cost over the infinite horizon (the discounted cost 
in short), and under the assumption that failure rate function monotonically increases to 
infinity, they showed, by using the technique of continuous-time stochastic dynamic pro- 
gramming, that there is a (t ,  T)-policy which is optimal. That is, there exists a pair of ages 
(t ,  T) such that a failure before age t is minimally repaired, but the system is replaced when 
age T is reached or when the first failure after age t occurs whichever comes first. Under the 
average cost criterion, however, they did not show the optimality of (t ,  T)-policy, though 
they characterized the optimal values of (t, T) in case that only ( t ,  T)-policies are allowed. 

It is known in the field of stochastic dynamic programming that there is substantial 
difference between discounted cost and average cost. In order to apply a certain limiting 
argument of the discounted cost problem to the average cost problem, we need to examine 
delicate conditions, such as the structures of state transitions and cost functions, and so on. 

In this paper we discuss the above problem of finding optimal policies with minimal- 
repair and both types of replacements under the average cost criterion. We formulate the 
problem as a semi-Markov decision process, and prove the optimality of a ( t ,  T)-policy, 
under the assumption that the failure rate function monotonically increases to infinity. In 
the theory of semi-Markov decision processes, average cost problems are usually addressed 
through discounted cost problems or finite horizon problems by using certain limiting argu- 
ments. In this paper, however, we apply a rather direct approach as it will be seen later, 
which is its most distinctive feature. 

2. Optimal Minimal-Repair and Replacement Problem 
We consider a binary-state reliability system described as follows. 

The system takes one of the two states: "1" and " 0 "  where state 1 denotes the 
operating state (or normal state) and state 0 denotes the failed state (or malfunctioning 
state). 

The cumulative distribution function of the failure time X is F ( x )  and it has a con- 
tinuous density function f (X). We use the following notations: 

F ( x )  := 1 - F ( x )  : the reliability (or survival) function, 

h(x) := : the failure rate (or hazard rate) function, 
F ( x )  

1 +m +m +m 
- := 1 xdF(x)  = 1 X f (x)dx = 1 F(x)dx : the mean time to failure (MTTF 
P 

in short). 

The following three maintenance activities are used. 

( f )  failure replacement to replace a failed system with a new one, 

(P) - preventive replacement to replace preventively an operating system with a new 
one, 

(m) minimal repair to repair a failed system to recover its function without changing 
its age. 

For notational convenience, we refer these activities as f ,  p, and m, respectively. It is 
assumed that the time required for performing these activities is negligible but they 
incur the expected costs C/, Cp, and Cm respectively. 

Our problem is to find a policy that minimizes the average cost, i.e., the sum of the 
expected cost S per unit time for minimal-repair, preventive replacement, and failure re- 
placement costs, averaged over the infinite time horizon. The following assumptions, which 
are reasonable and adopted in most of the literature, are made throughout this paper. 
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(A2) The failure rate function monotonically increases to infinity, i.e., 

h(x1) < 12(x2) for 0 5 a;1 < x2 < +m, 

and 
lim h(x) = +m 

x++m 

3. Formulation as Semi-Markov Decision Process 

The system at time t (2 0) is completely described by S i t )  := (X( t ) ,  Y ( t)) ,  where 

X ( t )  := [the age of the system at  time t], 

1 if the system is operating at time t ,  
Y(t)  := 

0 if the system is in failure at time t. 

Given the system history (S(u); 0 < u < t ) ,  our problem is to determine, at  time t ,  
whether to execute activity p or not if Y(t)  = l, 
which of the activities .f and m to execute if Y(t)  = 0, 

in order to minimize the average cost (defined at  the end of previous section). 
Tahara and Nishida [l11 discussed the same maintenance problem under the criterion 

of minimizing the discounted cost by using the technique of continuous-time stochastic 
dynamic programming. However, t,his approach cannot be applied to our a,verage cost 
problem directly because supporting theory is not sufficient for continuous-time and average 
cost problems so far. On the other hand, noting that an event occurs only when a failure 
of the system occurs or an activity p takes place, we can formulate this problem a,s the 
following semi-Markov decision process, in which decisions on maintenance activities are 
made just after the decision epochs at  which system events occur. 

[Formulation as Semi-Markov Decision Process] 
State Space: 

S := {(o, l)} U {(a;, 0) : 0 < x < +m}, 

where 
( 0 , l )  : the state just after the system is preventively replaced to be new, 

x , 0 )  : the failed state of the system with age X (> 0). 
Action Space: The set A(s) of allowable actions in state s ( C  S) is given by: 

where these actions have the following interpretations: 
T : the age when the next preventive replacement is planned, where T = +m means that 

no activity is taken until the next failure occurs, 

(m, T) : the failed system is minimally repaired, and the next preventive replacement is 
planned at age T, 
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(f,  T )  : the failed system is replaced to be new, and the next preventive replacement is 
planned at  age T. 

The overa,ll action space is denoted by 

To complete the formulation as a semi-Ma,rkov decision process, we must derive, for 
each s (E S) and a ( E  A(s)), the state transition probability measure p(-Is, a), the expected 
time t(s ,  a )  and the expected cost c(s, a )  till the next decision epoch. However, we omit the 
details since they are directly derived from the above interpretation. 

Next, we define the sample space, histories, a,nd policies. 
H := ,S X (A X R+ X S)Â¡ : the sample space, where R+ denotes the set of nonnega,tive 

reals. 
The sa,mple space Q up to the k-th component has the following interpreta,tion. 
Hk := S X (A X R+ X S)^ : the set of all possible histories prior to the k-th decision epoch, 

i.e., hk E f^k has the form 

h. = (so) for k = 0, 

where 
ti ((E R+) : the i-th decision epoch, where to := 0, 

ui := ti - ti-l : the i-th decision interval, 

si ( G  S) : the state at ti, 

ai (E A(si)) : the action taken at ti. 
A policy TT is now defined as a sequence 

where TT/; ( k  = 0,1, . S) is a, transition probability measure from Hk to A; i.e., 7rk(Bl h/;) for 
each set B (C A(sk)) gives the conditional probability that action a^ is chosen at  the k-th 
decision epoch tk from set B, given the past history h^ ( E  HA;). Of course 7rA-(A(sk)lhk) = 1 
holds if the last component of hk is s k .  The set of all allowable policies is denoted by II. An 
important class of policies is that of stationary policies. A policy TT 6 11 is called stationary 
if there is a function U : S -+ A independent of k such that 

u(s) E A(s) for all s E S, 

for all hk E HA; and k = 0,1, -. That is, action uk = u(sk)  is always taken with probability 
1 if the state at tk  is sk. Such a stationary policy defined by U is denoted as TT = urn. 

The average cost which we want to minimize is now described as follows: 

gT(s) := lim sup k=O N for s 6 S, 
N++m 

Y, E,[t('Si!, At)ISo = S] 
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where E, [-l denotes the expectation opera,tor under policy T T ,  and ,5\- and A/; are random 
variables representing the k-th state and action, respectively. 

The following theorem is known for a semi-Markov decision process (e.g., Theorem 2 of 
Ross [8]; see also Chapter 7 of Ross [7]). 

Theorem 3 . 1  If there exist a bounded function 'U* : S -+ R and a, constant g" satisfying 
the following optimality equations: 

T 
v*(O,l)= inf {rpm - lT ~ ( ~ ) d "  + 1 v*(u, O)dF(u) + F(T)V*(O, l)  

o<r<+oo  0 

=ni in[  o<T<+w inf { C j + ~ p - ; Â ¥ ' ( ~ ) - g * / " T ~ ( u ) d u  o v * ( u , o ) ~ F ( u ) + F ( T ) ~ * ( o , I )  , 1 - - - 
F(T) T 1 

ini { ~ ~ + ~ , - - g * [ ~ d u + l  fi, o)=--ciF(uj + % % 1 * ( 0 ,  l)}] 
,z-<T<+oo F(x1 F(x1 F(x1 Fix} 
for ~ < x < + o o ,  (3.7) 

then the following properties hold. 
(1) 

inf g,(s) = g* for all s E ,S. 
wen 

(2) For an axbitrary small E (> O ) ,  there exists a stationary policy 7r (E)  such that 

gw(e) (S) <. inf g, (S) + E = g* + E for all s E S. 
7rel-I 

Such a policy 7 r ( ~ )  is called an E-optimal stationary policy. 

(3) If, for each s (E S), there exists a minimizer of the right hand side of (3.6) or (3.7)) 
the stationary policy ~ ( 0 )  composed of such actions is 0-optimal (or simply optimal). 

D 

The function v*(-) in the optimality equaptrions (3.6) and (3.7) is ca,lled the relakive cost 
function or the differential cost function. The value v*(sl) - v* (s2)  could be regarded as the 
difference between the expected total costs over a sufficient large planning horizon under 
an optimal policy due to starting from states s l  and 53. Beca,use v*(-)  is determined only 
within an additive constant, we normalize, without a,ny loss of generality, as: 

In this case, (3.6) and (3.7) become: 

T 
v*(O,l) = inf 

O<T<+CG 
{C~F(T) - g* q U ) d u  + L v*(ui o ) ~ F ( u )  = 0, 

0 1 
- - 
FtT) 1 v*(x, 01 = min [cj, x<T<+oo inf {cm + cp- - g* lT W d u  + iT O)==-----~F(~~}] 
F(x )  c F ( x )  F ( x )  

for O < x < + o o .  
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4. (t, T)-Policy 

Definition 4 . 1  For 0 t <: T <: +m, a stationary policy uw defined by U : 5 + A is 
called (t , T)-policy if 

for S = (0, l) ,  
for S = (x,0)  with 0 < x < t, 

( f ,T) for s = ( x , O )  with t < x .  

In this section, we confine ourselves to the class of (t, T)-policies, and find a. pair (t*, T*) 
that minimizes the average cost in this class. 

According to the well-known result in renewal reward process theory (e.g., Section 3.9 
of Ross [8]), the average cost under (t ,  T)-policy is independent of the initial state a,nd is 
given by the expected cost divided by the expected time duration between two successive 
replacement S: 

We now introduce for 0 5 x 5 t 5 T 5 +m the following functions: 

t 
B((0, l ) ,  t ,  T) := cm f h(u)du + (F ( t )  - F(T)) + C,F(T) 

Â¥ 
0 F ( t )  

A(s, t ,  T) and B(s ,  t ,  T) respectively represent the expected time and cost till the first re- 
placement, when we start from state S (E S) under (t, T)-policy. Using these functions, the 
above g ( t , ~ )  becomes 

Furthermore, let us denote the optimal average cost due to a (t, T)-policy by 

and define 

The following is well-known in fractional programming (e.g., Schaible and Ibaraki [g]). 
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Theorem 4 .1  Consider the following two problems: 

PI: inf W O ,  l ) ,  t ,  T)  
O<t<T^+m A((0, l) ,  t, T )  ' 

P2: inf G((0, l ) ,  t ,  T).  
O<Ã‡T<+o 

A solution (t*, T*) is optimal in P I  if and only if it is optimal in P2. Furthermore such an 
optimal solution (t*, T*) satisfies 

G((0, l), t*, T*) = 0. (4.12) 

D 

Based on this theorem, we characterize (t*, T*) by examining problem P2. We start with 
a preliminary lemma, which is easy to show (see Appendices). 

Lemma 4 .1  

(C, - 0 )  < g 5 C,^. (4.13) 

Theorem 4. 2 There exists unique (t*, T*) attaining 

9 = 9(t*,T*) = min g(t ,T) 
OÃ‡<T<+o 

such that 

(1) 
0 < t* < T* < +m, 

(2) 
g = (Cf - C,)h(T*). 

Furthermore, if t* > 0 then 

(3)  

(4) 

(5) 

Proof. 
that 

By Theorem 4.1, we will find ( t ,  T)  that minimizes G((0, l), t ,  T) .  To this end, note 

Since (C, - C,)h(O) < g (by Lemma 4.1), Cf - C, > 0 (by Assumption 2.1 (Al)) ,  and h(T) 
monotonically increases to infinity (by Assumption 2.1 (A2)), we conclude that 

(C, - CP)h(T) - g 
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cha,nges its sign from - to + only once at T* as T moves from 0 to +m, i.e., 

g = (Cf - Cp)h(T*). 

Next we consider the one-dimensional minirniza,tion of G((0, l ) ,  t, T*) over t 6 [O, T*]. 

= h(t) {B((o, l) ,  t ,  T*) - gA((0, l ) ,  t ,  T*) + (C,. - Cf) - cm f h(u)du + gt 
0 

Note that 

by Assumption 2.1 (Al) .  Further we have 

= (Cf - C,) 

> 0 for O < t < T * ,  

where the second equality holds because 

g = (Cf - Cp)h(T*), 

and the first inequality follows from 

by Assumption 2.1 (A2). 
We now consider two cases. 

T* - 
(i) C,. - (Cf - C,)F(T*) - g L F(u)du 2 0. Then 

d 
-G((O,l), t ,T*) > 0 for 0 < t<r, 
dt 

and t* = 0 is the unique minimum solution of G((0, l),  t ,  T*). 
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changes its sign exactly once from - to + as t moves from 0 to T *  and the unique zero 
point t* minimizes G((O,l) , t ,T*) .  From (4.21), such t* satisfies (4.17). Therefore, from 
(4.21) again, 

and this implies (4.18). Further, we have from (4.21) that 

B(((), l ) ,  t*, T * )  - gA((0, l ) ,  t*, T * )  + (Cm - C / )  - Cm I h(u)du + gt* = 0. 
0 

This and relation 
B((0 ,  l ) ,  t*, T*)  - gA((0, l ) ,  t*, T * )  = 0 

shown by Theorem 4.1 together prove (4.19). 
In the remaining part we show that (t*,  T * )  is the minimum solution of G((0, l ) ,  t ,  T )  

over the whole domain 0 < t < T ,  that is, 

G((0, l ) ,  t*, T * )  < G((0, l ) ,  t ,  T )  for 0 < t <T. 

a )  If 0 < t < T*, then 

where the first inequality holds because 

changes its sign from - to + exactly once at T = T* as T moves from t to +m, while 
the second inequality follows from the argument of the first part of this proof. 

(b) If T* < t < T ,  then 

The first inequality holds because 
- 

9 F ( T )  -G((O, l ) ,  t ,  T )  = -=-{(C, - C.)h(T) - g1 9T F( t )  

is always positive for T* 5 t < T .  The second inequality of (4.22) follows from the 
fact that 

G((0, l ) ,  t ,  t )  = Cm f h(u)du + C, - gt 
0 

is increasing in t when T* < t because 

d 
-G(((),  dt l ) ,  t ,  t )  = Cmh(t) - g > (Cm + Cp - C f ) h ( T * )  > 0. (4.23) 

Finally, the third inequality of (4.22) was shown in the first part of bhis proof. 
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Remark  4. l 
(l)  The relations (21, (3)?  and (5) in Theorem 4.2 yield a simultaneous systen~ of two 

nonlinear eq~a~ t io i~ s  with unknowi~ (t * T* ) wl~icll can be solved numerically by a, 
certa,in standa,rd computational method7 e.g. Newton-Raphson method. 

(2) Tahara and Nisl~ida, [ll] also obtained some characterization similar to Tlleorem 4.2 
by examining the optimality conditions of the minimization problem P1 in Theorem 
4.1 instead of P2. However? the derivation process by our approach of investigating 
P2 includes a lot of information useful to our subsequent argument. C! 

5. Optimali ty of (t ,  T)-Policy 

In this section, we show that a (t ,  T)-policy is optimal over the set II of all allowable policies. 
Of course, among (t,  T)-policies, (t*, T*)-policy of Section 4 is the only candidate for the 
optim~~in.  Define 

v(07 l )  = inf G((07 l ) , t , T ) ,  
O<t<T<+m 

v(x,O) = min Cj, inf G ( ( x ~ o ) , ~ ~ T ) }  for 0 < X < +m 
x<t<T<+co 

In the following, we will show that function v : S + 7C is. the relative cost function of 
(t*? T*)-policy, and that the function v(.) and the constant g of (4.7) respectively serve as 
v*(-) and g* in Theorem 3.1. 

First we have the following two lemmas. 

Lemma 5. l 

(1) 
inf G((0, l )?  t,  T) = G((0, l ) ,  t*7 T*) = O 7  

O<t<T<+m 

G((x70), t*,T*) if O < x < t * ,  

inf G((x7 0), t l  T) = G((xl O),x, T*) if t* 5 X < T*, 
O<t<T<+m 

G((x7 O),x7 X )  if T* 5 X. 

Proof. The relation (l) follows from Theorem 4.1. To show (2)? note that 

by the definitions of A(s, t, T), B(s, t,  T), and G(s, t ,  T). Therefore? similarly to (4-20) and 

(4.211, 

Now by an argument similar to the proof of Theorem 4.2, we obtain the following properties. 
(i) 0 < X 5 t*: 

inf G( (x70) , t7T)  = inf G( (x70)? t7T*)  = G((x,O),t*?T*). 
x<t<T<+m x<t<T* 
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(ii) t* 5 X 5 T*: 

(iii) T* 5 X :  

inf G ( ( x , O ) ~ ~ ~ T ) =  inf G ( ( ~ , O ) ~ t , t ) = G ( ( x , O ) ~ x ~ x ) .  
x<t<T<+m x<t<+m 

c! 
The next lelnlna implies that function v : S -+ 'R is the relative cost function of (t*? T*) -  

policy. 

Lemma 5. 2 Function v ( . )  of (5.1) and (5.2) satisfies 

v(07 l )  = G((0,  l ) ,  t*,  T * )  = 0, 

v(x,O) = G((x7  0 ) ,  t*,  T*)  for 0 < X 5 t*? 
for t* 5 X .  

Furthermore v(x7  0)  is bounded? continuous, and nondecreasing in X .  

Proof. (5.6)  was shown in Theorem 4.1. (5.7) is proved as follows. 
(i) 0 < X 5 t*: B y  Lemma 5.1 (2 ) ,  we have 

inf G((x ,  0 ) ,  t ,  T )  = G((x7  O ) ?  t*? T* )  
x<t<T<+m 

Because 
d 

-G((x ,  dx (l)7 t*,  T * )  = -Cmh(x) + g 

is decreasing in X ,  and 

-Cmh(t*) + g 2 0 

by Theore~n 4.2 (41, G ( ( x ,  O),t*? T * )  is increasing in X over the interval (07 t*]. Fur- 
t hermore 

t* 
G((t*,O)?t*,T*) = Cnl - Cnl J /i(u)du+gt* = C f  

0 

by Theorem 4.2 (5) .  Thus 

v(x7  0 )  = min C f 7  inf G((x?  0 ) ,  t7  T ) }  
x<t<T<+m 

= G ( ( x ,  O),t*? T * )  for 0 < X 5 t*> 

and v(x7  0) is increasing in X E (07 t*].  
(ii) t* 5 X 5 T*: From Lemma 5.1  (2)> we have 

inf G ( ( x ~ O ) ~ ~ ? T )  = G ( ( x 7 0 ) 7 ~ ? T * )  
z<t<T<+m 
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by the definition of function G(-).  Noting that 

- 
d F(T*) T* F'(,u) 

-G((x, 0), X ,  T*) = -(Cf - CP)h(x)- - g l ~ ( ~ )  1 m + g 
dx F ( X )  

= (Cf--CP) du + l}] 

and 

we have 

G((t*, 0), t*, T*) = Cj,  

= min{Cj,G((x,O),x,T*)} 

= Cj for t* 5 X 5 T*. 

(iii) T* 5 X: F'ronl Lemma 5.1 (21, we have 

v(x,O) = min{Cf, x<t<~<+Ci> inf G ( ( x , o ) , ~ , T ) }  

Next we evaluate the values of the right hand side of the optimality equations (3.8) and 
(3.9) in which v*(-) and g* are replaced with v(-)  and g, respectively. To this end, we prepaxe 
the following lemma. Since its proof is straightforwardly done, it is given in Appendices. 

Lemma 5.3 For any X E [O,t*), 

The next lemma, evaluakes the right hand side of the optimality eq.ua,tion (3.8) in wl~ ic l~  
v*(*) a,nd g* are replaced with , U ( - )  and g?  respectively. 
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Lemma 5 . 4  Define 

Proof. Since 

= Cj  for t* 5 T,  

we lla,ve 

Hence 

5 0 for 0 < T < t * )  
< 0 for t* 5 T < T* ,  
= 0 for T = T*? 
> 0 for T* < T.  

Further n7e have fro111 Lenuna 5.3 that 

= G((0, l ) ,  t * )  T * )  = 0.  

The next lemna evaluates the nla,in part of the right hand side of the opti~nality equation 
(3.9) in which v * ( . )  and g* are replaced wit11 V ( + )  a,nd g )  respectively. 

Lemma 5. 5 Define 

Then the fol lo~vi~~g properties llold. 
( l )  For 0 < x 5 t* (< T* ) :  
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(2)  For t* 5 X < T* ,  

inf E(x7  T )  = E ( x 7  T * )  = G ( ( x )  O ) ?  X) T * )  2 Cj. 
x<T<+m 

(3)  For T* 5 x7 

inf E ( X ~ T ) = E ( X ~ X ) = G ( ( X ~ O ) ~ X , X ) = C ~ ~ + C ~ > C ~ .  
x<T<+m 

Proof. Since 

a,n argunlent similar to the proof of Lemma 5. l  yields the following. 
( l )  0  < X 5 t* (< T * ) :  

inf E ( x 7 T )  = E ( x 7 T * )  
x<T<+m 

wllere the third equality llolds by Lemma 5.3 
( 2 )  t* 5 x  5 T*: 

= G ( ( x 7  0 ) )  x7 T*) .  

inf E ( x 7 T ) =  E ( x l x ) = C m + C p .  
x<T<+m 

Tlms we cornplete the proof of the following theorern. 

Theorem 5. l If we let 

v*(.) = v(+); g* = g >  
then the opti~nality ecluatio~~s (3.8) and (3.9) hold. Moreover7 ( t* ,  TV)-policy is optinlal over 
the set II of all a,llowa,ble policies. g 
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6. Concluding Remark 
In this paper we discussed the optimal minimal-repair and replacement problem under the 
a,verage cost criterion. We formulated the problem as a semi-Markov decision process, and 
showed that an optimal policy of all allowable policies is in the class of ( t ,  T)-policies under 
the assumption the fa,ilure rate function monotonically increases to infinity. Further we 
characterized the optimal pair (t*, T*). 

In this paper, we assumed that the costs incurred for minimal-repair and replacement 
are independent of the system age. The problems with age-dependent cost structures seem 
to be practically more important. Recently, Segawa, Ohnishi, and Ibaraki [l01 discussed 
a such optimal minimal-repair and failure-replacement problem under an assumption that 
preventive replacements are not allowed. Optimal maintenance problems of reliability sys- 
tems with agedependent cost structures which consider minimal-repair, and both of failure 
and preventive replacements are left for future researches. 
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A. Appendices 

Proof of Lemma 4.1. The second inequa,lity of (4.13) is obvious because 
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where we note that (0, +m)-policy means to use only failure repla,cement. Since, by de 
I'HGspitaPs rule, 

the first inequality of (4.13) can be proved by showing tha,t, for a, sufficiently la,rge but finite 
t+,  there exists some 6 (> 0) such that 

for 0 < - t < - t^ and t < T < +m, which implies 

The above second inequality holds because 

by using the well-known fact that IFR implies NBUE (New Better that Used in Expectation) 
(e.g., Chapter 6 of Barlow and Proschan [4]). 

(A.1) is proved by multiplying the left hand side by F[t): 

where the last inequality holds because, by Assumption 2.1 (A2), 

and 
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Therefore, let 6 = Cp to prove (A.  l ) .  

Proof of  Lemma 5.S. By Lemma 5.2 we have 

Further, for any x G (0, t*) ,  

where the first equality holds by the def id ion  of G( - ) ,  and the second one follows from the 
following identities: 
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