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Abstract For tandem queues and forkljoin queueing networks with communication blocking, the stochas- 
tic comparison, reversibility and other equivalence properties have been studied. In this paper, we consider 
a forkljoin multi-stage production system with general blocking which includes the above models as special 
cases. Under the weak conditions of the initial numbers of items, we formulate this system into a generalized 
semi-Markov process (GSMP). Then we show the convex property of the GSMP, the stochastic comparison 
with respect to stochastic and convex ordering, the reversibility and the structural equivalence. 

1. Introduction 
Many practical models as production systems and communication networks are classified 

as a discrete event system, which has a discrete state space and a finite event space. The 
clocks for multiple events may run simultaneously, and the state changes only when an event 
occurs. As a model of the discrete event system, a generalized semi-Markov process (GSMP) 
is well-known. The framework of the GSMP is proposed by Mathes [l11 and it is applied to 
show the performance insensitivity of queueing systems by Schassberger [l41 and Whitt [18]. 
Recently, Glasserman and Yao [B]-[l01 gave attention to the structural properties of the 
GSMP, and investigated the stochastic comparison, reversibility and equivalence properties 
of (a, b, A;) tandem production lines with blocking. 

There are many studies which show the reversibility, equivalence properties and stochas- 
tic comparisons in various production models including tandem queues. Avi-itzhak and 
Yadin [2] considered a tandem queue with two single-server stations, no intermediate buffer 
and Poisson arrivals. They showed that when both service stations have either exponen- 
tial or constant services, the steady state distribution of the sojourn times of customers 
does not depend on arrangements of stations. Yamazaki and Sakasegawa [l91 dealt with 
tandem queues with multiple single-server stations and finite intermediate buffers. They 
showed that when there are n batch input jobs and no jobs at machines initially, the nth 
departure time has the same distribution as that in the reversed system, where stations and 
buffers are arranged in a reversed order. Muth [l21 considered a production line with unlim- 
ited raw material and no intermediate buffers. He showed that when a sequence of service 
times at each station forms independent and identically distributed random variables, the 
throughput is the same as that in the reversed system. Yamazaki et al. [20] considered a 
blocking system with two multi-server stations, and showed that the system has the same 
throughput as its reversed system. For a kanban controlled system, Tayur[17] showed its 
reversibility and discussed the performance comparison with respect to kanban allocations. 
Cheng and Yao [5] dealt with tandem queues with general blocking, called an (a, b, k) model, 
and investigated the stochastic comparison and convexity. Glasserman and Yao [g] and [l01 
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formulated the (a, b, k) model into a GSMP, and derived the reversibility using the convex 
property of GSMP. Cheng[6] showed that in the (a, b, k)  model the completion times of the 
nth processing are the same among several types of lines. Baccelli and Makowski[3] consid- 
eredane-stagefork/jokqueues a n d  showed their stochastie convex property. Ammer and 
Gershwin [l] considered fork/join queueing networks with finite buffers, exponential servers 
and communication blocking mechanism, and showed that two systems are stochastically 
equivalent when upstream servers of several buffers are exchanged with downstream servers 
and the initial number of items in each buffer is exchanged with the number of its empty 
space. Paik and Tcha [l31 generalized this result to the case in which the service times 
are generally distributed. Dallery and Towsley [7] showed the similar equivalence proper- 
ties for a closed tandem queue. Buzacott and Shanthikumar [4] discussed the reversibility, 
the stochastic comparison and optimal sequences of stations for tandem queues with finite 
buffers. 

In a production system, some stations receive material from different sources and pro- 
duce multiple parts which are sent to different stations. Their blocking mechanisms are 
production or kanban blocking, although only communication blocking is dealt with in [l] 
and [13]. In this paper, we consider a general fork/join multi-stage system with general 
blocking which includes (a, 6, k )  tandem queues and all the systems discussed in the above- 
mentioned papers. The purpose of this paper is to show the stochastic comparison, the 
reversibility and the structural equivalence property of the general fork/join systems with 
general blocking. We first give conditions under which each station in the system can process 
the items and then we formulate it into a GSMP. Then we show that when the processing, 
operation and walking times are comparable in the stochastic or convex order, the nth com- 
pletion times of processing at each station are comparable in the same order. This implies 
that the less the moments of processing times are, the larger the throughput of completed 
items at each station is. Therefore, reducing the variance of processing times of items is 
essential to increase the throughput. Then we show the reversibility that the distribution of 
the maximum of the nth completion times of all stations is the same as that in the reversed 
system in which the items are processed in the reversed order. We also show the structural 
equivalence property that two different systems under a structural condition have the same 
nth completion times at each station. When we design a production system, it is important 
to arrange the ordering of stations. The reversibility and the structural equivalence imply 
that the throughput is the same among several arrangements of stations, which reduces the 
number of ordering of stations to be considered. 

This paper is organized as follows. In section 2, we describe the general fork/join multi- 
stage production system, and give some conditions on the initial numbers of items. Then 
we derive necessary and sufficient conditions for each station to be in process. In section 3, 
we briefly review the GSMPs and their properties, and formulate the system into a GSMP. 
In section 4, we show the convex property of the GSMP and the stochastic comparison, 
the reversibility and the structural equivalence property of the general fork/join system. 
Concluding remarks are given in section 5, and the notations used throughout this paper 
are listed in Appendix. 

2. General Fork/Join Multi-Stage Production System 
We consider a fork/join multi-stage production system with M+2  stations {O, 1 , 2 , .  . . ,M 

+l}, shown in Figure 1. Each station i E M = {l, 2,. . . , M} has a set of immediate up- 
stream stations U(i) and that of immediate downstream stations D(i). Station 0 represents 
the input station and station M + 1 represents the output station. That is, 0 E U(i) if 
station i receives raw material from infinite resource and M + 1 G D(i) if an item processed 
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at station i leaves the system. Station i receives one item from each station j E U(i), pro- 
cesses the items and produces \ D(i) finished products, one of which is sent to each station 
k E D(i), where 1 D(i) 1 is the number of elements of D(i). There are two buffers between 
stations i and k E D(i ) .  The buffer in rear of station i and the buffer in front of station k 
are denoted by Bik and A^, respectively, where A& includes the item which is in process at 
station k. The process at station i proceeds as follows: 
1. Each item processed at station i which should be sent to station k E D(i) remains at 
buffer Bik if one of the following conditions hold: 
a) there are a& items in buffer A&, or 
b) for some k' E D(k), the sum of the numbers of items in buffers Aik and Bkk/ is cikkl. 
If neither of these conditions holds, the processed item is sent to Azk. 
2. Station i can process items only if there is at least one item in buffer Aji for every 
j G U(i) and the number of items in buffer Bik is less than bik for every k E D(i). We say 
that station i is blocked when the number of items in buffer Bik is bik for some k E D(i).  
In particular, if b* = 0 for some k E D(i),  we say that station i is blocked when the item 
produced at station i cannot be sent to buffer A&. 

The parameters aji and b* represent the capacities of buffers A,; and Bik, respectively, 
and cikp is a production control parameter. For each i E M,  j E U(i)/{O} and k E 
D(i)/{M + l}, we assume that 

We also set c&k = bik and = a+. 
The various well-known production systems with blocking can be regarded as the special 

cases of this fork/join multi-stage production system. When U(i) = {i - l} and D(i) = 
{z  + l}, the above model becomes a well-known (a, b, k) system, which is analyzed in Cheng 
and Yao[5], Glasserman and Yao[9], [l01 and Cheng[6]. In particular, 
a) if the system has the communication blocking mechanism, that is, station i is blocked if 
buffer A; is full, then a i i+~ = C ; ; + ~ ~ + Z  and bi,i+l = 0, 
b) if the system has the production blocking mechanism, that is, station i is blocked if the 
processed item at station i cannot be sent to station i+1, then = cii+li+~ and bi,i+l = 1, 
and 1 1 1 

station ~ ~ 2 ~ 4 ~ ~  
e Bik 

Fig. 1 Blocking Mechanism of the Model 
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c) if the system has the kanban blocking mechanism, where each station i can have at  most 
ki items which are waiting for processing, being processed or have already been processed, 
then a ~ + ~  = czi+li+2 = kz+l and bz,i+l = k;. 

When it holds that 6,; = 0 and c j ~  = a,;, the system is a fork /join queueing network 
with communication blocking, which is discussed by Ammer and Gershwin [l] and Paik and 
Tcha [13]. 

In this paper, we assume that at time 0, there are mÃ§ items between stations j and i for 
j G U(i)/{O} and i G A^. Let L(i) be the set consisting of the station sequences in which 
one of items processed at  station i will be processed later, that is, 

and for any sequence of stations I = (io, il , . . . , i t )  E L(+ its capacity ui is defined by 

Under the above blocking mechanism, the maximal numbers of items in buffers A$ and 
Bik are aji and bfi, respectively, and the sum of them must be no more than cj&. Therefore, 
we assume the following condition on the initial numbers: 

In the same way, the number of items on the closed sequence of stations I = (io, il, 
. . . , it, io) must be no more than c1 = + + - +ch,io,il. If it is equal to c/, 
however, then the items in buffer Bitit+ cannot go to the next buffer Aitit+, by the blocking 
mechanism. Thus the processing at any station it will stop after buffer Bitit+, is occupied. 
On the other hand, if there is no item on this sequence of stations, then all stations cannot 
start processing. The next condition prevent S these situations. 

. . 
(A2) For any closed sequence of stations I = (io,il,. . . , z k , z o )  such that it ? D(it-i1,t = 
1, .  . . , k and &, G D(ik),  

Fig. 2 An example model 
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Even if conditions (Al)  and (A2) are satisfied, the system can not always start processing 
items at any machine. To illustrate this, we consider the fork/join multi-stage production 
system in Figure 2, in which bji = aj; = 1 and C,jit  = 2 for all i E M = {l, 2,3,4}, 
1 6 U(i)/{O} and k E D(i)/{5], and m12 = m34 = 2 and m32 = m14 = 0. Then all stations 
cannot start processing items because stations 1 and 3 are blocked while stations 2 and 4 
are starved. The following condition (A3) prohibits this type of deadlock. 

(A3) For any sequence of stations I = (io, G, . . . , i t ,  io) (i,? # iii j # Z) such that there is a 

sequence (ko, ki,k2,. . . , kTn) where 0 = t o  < kl < km-1 < k, km = 0, it  E D(&-1) for 
(ikJ-liik,-l+i) . , i t , ) ,  j 1 , s  . . . and it  E U(it-l) for (ik1,ikJ-,+1, . . . , i t , ) ,  j = 2,4, .  . ., 
it holds that 
i) there is a sequence I' = ( h m ,  ikm+1, . . . , Gm+,) with it  E D(&-]) which satisfies mi,it 

( ; ,P)â It 
< UJ, or 
ii) there is a sequence I' = (ikm, ikm+'ii . . . , Gm+ l )  with if ? which satisfies E m;,,; 

(i,it) E I t  
> 0. 

. . 
In the above system, for I = ( ~ , i l , i 2 , z y , z o )  = (1,2,3,4,1) and (ko,k1, k2,kS,k4) = 

(0,1,2,3, O ) ,  there is no sequence I' that satisfies i) or ii). In this paper, we assume that 
the initial parameters satisfy (A1 ) through (A3). 

Before formulating the model into a GSMP, we have to determine the set of events which 
may occur when the current numbers of items in all buffers are given. Let s i k  denote the 
sum of numbers of items in buffers Bik and Aik . 

Lemma 2.1 Suppose that conditions (Al )  through (A3) are satisfied. Station i is processing 
items if and only if 

1) > 0 for all j E U(i)/{O}, and 

2) sit,itt1 < U; for all I E L(i). 
( i t , i t+i)â‚  

Proof: We can show this lemma in the same way as in the (a, b, k) lines [g]. Station i is 
processing items if and only if there is an item in buffer An for every j E U(i)/{O} and 
station i is not blocked. When station i is not blocked, there is an item between stations j 
and i if and only if there is an item in buffer An. Hence station i is processing items if and 
only if 1) holds and station i is not blocked. Therefore, it suffices to show that station i is 
not blocked if and only if 2) holds. 

We assume that station i = io is blocked because there are b i ;  items in buffer B,,, for 
some ii E D(i).  If this blocking occurs by a;;  items in A;, , then S;;, = b i i  + a i i  = uii1, 
which violates 2). Otherwise, the sum of the numbers of items in buffers A,;, and B  ̂ is 
ciili2 for some i2 E D ( h ) ,  and then there is an item in BÃ£i because ciili2 2 a,,, . Therefore, 
there are ahi2 items in buffer AGi2 or there are chi2ig items in buffers Aili2 and all 
together for some iy 6 ?( id .  In the same way, we obtain that if station io = i is blocked 
then one of the following events occurs: 
a) There is some sequence of stations IÃ = (iO, i l ,  . . . , i t )  where ( ~ j , + ~ )  # (ij!, !,I+]) for 
j # j' such that the number of items in buffer BiOi is b G i ,  the sum of numbers of items in 
buffers A , _ , ;  and is cij-l,i,,;,+l for j = 1,2 , .  . . , k - 1, and the number of items in 
buffer Aik-, ,ik is aik-1 ,ik > or . . 
b) there is a sequence of stations Ib = ( h i b . .  . , zk,zk+l,. . . ,  ik'iik) where (ijij+l) # 
(41, $I+]) for j # j', j, j' <: k' such that the number of items in buffer Bioil is bin;, , the 
sum of numbers of items in buffers A;_,;. and Bij7ij+l is c;j_l,ij,ij+l for j = 1 ,2 , .  . . , k' - 1, 
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the one in buffers Ahl l ;k l  and B;,,,& is ~ i ~ ~ ~ , ; ~ ~ , ; ~  and the one in buffers A+, and B;,,;,+, 
Is 'ik1 ,ik,ikt1 . . 
In case b), however, we have for I' = (L ik+l, . . . , z k l ,  z k )  

Since the sum of numbers of items in buffers on the closed sequence I' is constant, we have 

which contradicts (A2). Therefore if station i is blocked then case a) occurs, and 2) does 
not hold for Ia = (iQ, i l ,  . . . , ik )  E L(i). 

Inversely, assume that 2) does not hold for some I = (iQ, i l ,  . . . , ik} E L(i). From the 
blocking mechanism, the sum of numbers of items in buffers A,; and B& is no more than 
cj;h and the numbers of A,; and Bik are no more than a,; and b;k, respectively. Since 
X(it , i t+l)e~ w ~ , ; ~ + ~  5 UI and ~ ( i t , i t + l ) e I  sit,itt1 shows the sum of the numbers of items in 
buffers B;,,;,, A,,;, , B;,,,,, - -, B;,-,,;, and for all I = {io, i i ,  . . . , ik} E L(i), it holds 

that 0 <: ')^,(it,it+l)eI <: U /  for all I E L(?). Therefore, we have 

which implies that there are bGl items in buffer B & ,  and station i is blocked. B 

3. Formulation into a Generalized Semi-Markov Process(GSMP) 
3.1. A Generalized Semi-Markov Process 

For this paper to be self-contained, we explain a generalized semi-Markov process (so, S, A, 
E ,  ̂ >, U) in the following and show its properties related to our model (See [g] and [10]). 

Let S be a countable state space, SQ denote an initial state, A be a finite event set 
{ai, 02,. . . , aM}, Â£(S be the set of events which may occur in state S,  where A = U.~Â£(S . 
The transition function $(S, a) denotes the state just after event a occurs in state s and the 
sequence of clock samples U denotes {(c<^ (n), . . . , UaJn)), n E Z }  where ua (n) is the nth 
clock of event a and Z = {l, 2, . . .}. 

The GSMP (so, S, A, Â£ ̂>,W) behaves as follows: At time TO = 0, we set clock c(&) 

= wai(l)  and n; = 1 for each a; E Â£(so) and clock c(a;)=O and n; = 0 for each Â£(so) 
For each n E Z, the nth event occurs at time rn = ~ ~ - 1  + min {~(a;)} = rn-1 + 

a i â ‚ ¬ & ( s n -  

and the state is moved to sn = ̂ > ( s ~ - ~ ,  on). At time T ~ ,  the clock of event a;, c(ai),  is set 
as follows: 
If a; E Â £ ( ~ n ) / ( Â £ ( Â ¥ ~ n - l ) / { o T  then set c(a;) = uai(nai  + 1) and let nai increase by 1, 
If a; E E ( s ~ )  n (Â£{sn-1 / {pn}) then let clock c(a;) decrease by rn - rn-1 , and 
If a; 6 Â£(sn then set c(&;) = 0. 

We define a generalized semi-Markov scheme (GSMS) by Q = (so, S, A, Â£ $) . We call 
an event sequence 17 = + - . ftn a string. When there are some event E Â£(so and some 
state sequence ( s l , .  . . , s ~ + ~ )  such that /3; E Â£(S; and s ; + ~  = ̂ >(S;, Pi), i = 0,1 , .  . . , n, then 
string o- = . . . ftn is said to be feasible in SQ. For string 17, [U]; denotes the number of 
occurrences of event a;. [g] = {[o]~ , .  . . , [g]^} is called a score of a. 

We say that Q is noninterruptive if ,B G Â£(^>(S a)) whenever a, /? G Â£(S for a # /3 
and s E S, and Q is permutable if Â £ ( 4 ( ~ ~ , 0 - ~ )  =   so,^)) whenever 171 and 172 are 
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feasible in SO and [all = [ 0 2 ] ,  where <ji(s, 0) = <fi(- . <ji(<ji(so, A)), h), , ,&) for feasible 
string a = ,&/?l . ,&. We also say that Q satisfies convexity condition (CX) if it holds that 
{Â£(a-\ n Â£(ad - Au, ,fi2,in 2 Â£'(0:i) whenever strings al,a2 and (73 are feasible in so and 
031 > [ a i ]A[a2] ,  where Aq,u2,a = {G; [03}, > [ 0 i ] i ~ [ a 2 ] i } ,  xf \y = (min{xi, yi}, rma{x2, y d 7  
. . ,  min{xM,y~})  for X = { X I ,  . . . ,  x d  and y = {yl, . . . ,  y ~ }  and Â£(a = Â£(4>(sa,a)) It 
is known that the GSMS Q is noninterruptive and permutable if it satisfies (CX). 

For each string a and event a, C A, we define 

where l{-} is an indicator function. y (a )  = {X,,, (a), . . . , xam(a)} is called a characteristic 
function of GSMS Q. When GSMS Q is permutable, then Â£{o and y ( a )  can be represented 
as Â£(X and \ ( X )  = {xai (X), . . . , xaM (X)}  respectively, where X = [a] and xni (X)  = x a  + 
l{ai G Â£(X)} N = {X E 2"' X = [a] for some a being feasible in SO } is called a 
score space of Q. We say that X is increasing if y ( a )  5 ~ ( 0 ' )  for feasible strings a, a' with 
X = [a], y = [a'] and X <: y, and that X is increasing and supermodular if X is increasing 
and 

x(x)  + x(y) <: x(x  A Y) + x(x  V Y). (1) 
for any feasible X ,  y, X A y, X V y E N, where X V y = (max{xi, yi}, . . . , m a x { x ~ ,  y ~ } ) .  

When G is permutable, set A(a,n = {X ? N : xa = n - l, a E Â£(X) for X = [a]. We 
say that y 6 Non is a minimal element of Non if it holds that X < y implies X = y for all 
X G Na,n* 

We give the well-known lemmas in the following (see [10]). 

Lemma 3.1 a) If GSMS Q is noninterruptive and permutable, then X is increasing. 
b) GSMS Q satisfies (CX) if and only if X is increasing and supermodular. 

Lemma 3.2 If Q satisfies Property (CX), then X V y C N and X A y C JV whenever X,  y E N. 
There is a unique minimal element X (a, n)  = {xn (a, n);  fi E A} of Non and 

where Ta(n) denotes the nth epoch when event a occurs. 

Lemma 3.3 We suppose that Q satisfies (CX). We also assume that for each a G A 
4 = {uff(n),  n G Z }  is a sequence of mutually independent random variables and these 
sequences are mutually independent between different events. Then for such two sequences 
{w,,(n)} and {w'{n}}, it follows that 
if ua,(n)  <:& d ( n ) ' f o r  all i E M, n C 2, then Tai(n) TA,(") for all i E M, n C 2, and 
if ua i (n)  SicZ U;>,(") for all i E M, n 6 2, then Ta,(n) <:m TA(n) for all i E M, n E 2, 
where and denote stochastic ordering and nondecreasing convex ordering, respec- 
tively(SeeStoyan[15]). 

Lemma 3.2 shows that if the GSMP satisfies (CX) condition then the n th  occurrence 
epoch of any event a is increasing and convex in U. 

3.2. GSMP Formulation 
From Lemma 2.1, we can formulate the forkljoin multi-stage production systems into the 
following GSMP (so, S,A, Â£ 4,) U): 
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(i't,t't+l)?I 

so = {(m.k); k E Â£>(!) /{  + l } , !  E M }  
A = {a,; i  E M } ,  where the event a, denotes the end of processing at  station i. 
Â £ ( S  = {a.; sJi > 0 for all j E U(i ) / {o} ,  ~ ( , , , i ~ + , ) ~ ;  s ,~ , ;~ , .~  < "I for a11 I E ~ ( i ) } ,  for each 
S E S ,  

where e;j denotes a unit vector with nieM \D{i)/{M+ l }  1 dimensions whose the j th  element 
of station i  is one, and 
wai ( n )  = S;(n) for i  E M and n  E Z, 
where Si(n) is a random variable which represents the nth processing time at station i  for 
i  E M and n  E Z. 

4. Stochastic Properties of the General Fork/Join System 
4.1. Convex Property 
Let X ;  be the number of occurrences of event a; for i  E M .  Then we have 

s;k = m* + x i  - xk for i  M and k E D(i ) / {M + l } .  

Theorem 4.1 The GSMS = ( so ,  S,  A, Â£ $) defined in section 3  satisfies Property ( C X ) .  
Proof: Since the system <? is noninterruptive and permutable, Lemma 3.1 implies that the 
characteristic function is increasing. To show the supermodularity of characteristic function 
X, it suffices to prove that 

If a; Â £ ( X  and a; Â£(y  then it obviously holds. Assume that a; C Â £ ( X  and a, E Â £ ( Y )  
and let a set of stations for which there exists a station sequence ( io,  i l ,  . . . , k )  in L(i)  be 
denoted by D{i). Then for all j E U(i) ,  

and for all k E ~ ( i )  and I = ( i , .  . . , k )  E L(i),  

Therefore, it holds that a; E Â£( V y )  and a; E Â £ (  A y). If a; E Â £ ( X  and a; 6 Â£(y)  we 
can show that a; E Â £ (  V y )  if X ;  2 y; and a; E Â£(  A y )  otherwise. W 

Let T;(n) be the nth completion epoch of processing at station i .  Then we have the 
following theorem. 
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Theorem 4.2 For each i  E M and n G Z ,  

T; (n )  = Si ( n )  + max T; ( n  - l ) ,  max {Tj (n  - m,.)}, 
^ U [ t )  

t - l  

( i o ,  ..., i t ) g L ( i ) , & = k  7 = 0 

where Ti(n) = 0 for n < 0. 
Proof: Since the GSMS Q has the property (CX), there is a unique minimal element x ( q ,  n). 
It is obvious that xff(o';- ,n)  = n - 1. If j E U ( ^ ) ,  then sjz = mji + xj - X i  where X J  

is the number of the completions of processing at station j, and hence by Lemma 2.1 
m,; + X (a,, n )  - (n  - 1 )  = 1 ,  that is, 

Therefore, we have equation ( 2 )  from Lemma 3.2. Note that if j E U(i)  and j G ~ ( i ) ,  then 
G (ai, n)  becomes the maximum of the above two values, and if j U(i)  U D (z), then the 
number of the occurrences of event a, does not affect the maximum of (2). W 

Using Theorem 4.2 and initial conditions ( A l )  to (A3), we show that station z A 
finishes the nth service in a finite period with probability one. 

Theorem 4.3 For each n G Z ,  Ti(n) is finite with probability one for all i  G M ,  when 
n 

P ( X S ; ( m )  < oo, i G A) = 1. 
m=l 

Proof: We define the notation ( j ,  m') Ã ( i ,  m) ,  which represents x a  (a;-, m )  = m' for i,j E 
M and m, m' E 2'. From equation ( 2 )  ( j ,  m') Ã‘ ( I ,  m )  implies that m' < m and (ĵ  m'+ l) -+ 
z , m  + 1 ) .  Hence it is sufficient to show that the first event a; occurs for all i  E M with 
probability one. Theorem 4.2 implies that we have that ( j ,  1 )  + ( i ,  1 )  if and only if either 
j E U(i) and m,; = 0 or j E ~ ( i )  and U ;  = E{,si m;p-iip for some I = (i". . . , i t )  G L(i) with 

= j .  Under initial assumptions (A2) and (A3) there is no station sequence (io, ii ,  . . . , ik, id 
such that (io, l )  -+ ( i l ,  l )  Ã‘ . . . Ã‘ ( ik ,  l )  Ã‘ (io, l ) .  Then there exist station i  such that 
U(i) = { O } ,  which is in Â£(so) Since the system is noninterruptive and the event set is finite, 
the first event a; occurs for all i E M in a finite period. W 

4.2. Stochastic Comparison 
The following theorem shows that two systems with different clock distributions of events 
are comparable with respect to the event epochs. 

Theorem 4.4 For two sequences of processing times W = {Si(n);  i E J U , ~  G Z }  and 
W' = { S W ;  i  M ,  n E Z } ,  we denote the epochs when the nth processing is finished at 
station i by Ti(n) and Ti(n), respectively. If each of W and W' forms sequences of independent 
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random variables, then 
Sz(n) <^st Sxn)  implies that Tz(n) <^st Tl(n), and 
Sz(n) <tcx S'An} implies that Ti{n) Licx T m .  
Proof: We obtain the result from Theorem 4.1 and Lemma 3.3. U 

This theorem shows that the less the moments of processing times are, the larger the 
throughput of the completed products at each station is. To increase the throughput requires 
reducing the variance of processing times of items. 

4.3. Reversibility 
For the fork/join multi-stage production system, called the original system in the follow- 

ing, we define the reversed system with parameters m-, a:j, K,i, ciiT, the sets UT (9, DT (i) 
and processing times S*) such that 
1) for each i E M, 

where 0 E UT(i) if M + 1 C D(?'), and M + 1 E DT(i) if 0 G U(i), 
2) for any sequence (io, ii ,  . . . , i t )  G L(?), 

3) S^m} = Si (n+  1 - m )  for i G M and m = 1,2  , . . . ,  n. 
We also define LT(i) and DT(i) in the same way as in L(i) and ~ ( i } ,  respectively. 
Condition 2) is satisfied if one of the following conditions holds. For any i E M, j E U(i) 

and k E D(+ 
a) a T  2.1 = h i -  . z 7 bki = aik and ĉ ., = cjfi, 
b) bik = b, a,?; + b = c,&, a ?  2.7 = a .  ]i-l & = & and c^, = a^ + 6 for some constant b, 

c) a* = = di for all j and k, bik = b, aT-  = a . .  = d;, bki = b and c\- - = a\, = dk for 
2 .l .l 2 1-3 

some constants b and di, or 
d) a,; = cjik = bik = di for all j and k, aT -  = d V - = dk, c^, = d; for some constants d;, 

%,l .n kz 
i E M .  

To show the equivalence property between the original and reversed systems, we derive 
the relation between the maximum of the nth completion times of processing at  all stations, 
r n a x ^ ~  Ti (n), and the processing times {Sdm); i G M,  m = 1,2, . . . , n}. Since the original 
system satisfies Property (CX), a unique minimal element x(a ,  m) exists for each a E A and 
m G Z .  Consider an activity network V = (N, E) with a node set N = {(i, m); i G M, m = 

1, . . . , n} and an arc set E = {(j, m') + ( i ,  m); x a  (a;, m) = m', (j, m'), (i, m) E N}, which 
is shown in Figure 3 a). Let II(n) be the set of all paths from (i, 1) to (j, n) for all pairs of 
stations (i,j} in V. Then Theorem 4.2 implies that 

max Ti(n) = max Si(m). 
&M Ten(n) ( i , Ã £ ~ ) ~  

Since the reversed system can be formulated into a GSMP Q, Theorem 4.1 leads to the 
property (CX) of 6'. Consider an activity network V = (NT,  ET) with a node set NT = 
{(i, m); i E M, m = l , .  . . , n}  and an arc set E'r = {(j, m') -+ (i, m); x:(a;,m) = m', 
(j, m'), (i", m) G NT}, shown in Figure 3 b), where xT (a, m) is a minimal element in the 
reversed system. Let T ( n )  denote the set of all paths from (i, 1) to (j, n)  for any pair of 
stations (Q) in VT. Then 

max T^{n) = max S: (m). 
GM T'-E r . 1 ~  ( n )  

( 2 , r n ) G ~ ~  
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1 2 n  times 
1 0-0- -0 

2 o-o- 
\ / \  

1 \ l  MO-O- 
machines 

(a) original system 

n n - 1 1 times 
1 0-0- -0 

machines 
(b) reversed system 

Fig. 3 Activity Networks 

Theorem 4.5 
max TzT (n )  = max T; (n )  . 
zâ‚ %â‚ 

Proof: lij E U ( i )  then i S U T ( j )  and 

X (a,, m)  = m - m:, = m - m,,; = X ^  (a; ,  m) .  
a ,  

If k S D ( i )  then i S ~ " ( k )  and 

- - m -  min 
I = ( i o ,  ,...A) ^:L(i),i.,=k 

{ U I  - X m,.,/} = za,,(ai,m). 
( ' )  e I 

Therefore, ( j ,  m') -+ ( i ,  m )  in E if and only if (; ,m1) -+ ( j ,  m )  in ET,  which implies that 
( j ,ml )  -+ ( i ,  m)  in E if and only if ( i ,  n  + 1 - m)  -+ (j, n + 1 - m') in ET. Since S,"(m) = 
Sdn + 1 - m)  for i  6 M and m = 1 , .  . . ,n ,  

max S:(m) = max X S;(m). W 
7rrâ‚¬nr(,r 

( , m ) ~ ~ ~  (i,rn)(:7r 

Instead of 3 ) )  we assume that in the original and reversed systems, 
3)' {$ (m) ;  m = 1,2,. . . , n ]  is a sequence of independent and identically distributed random 
variables for each i  C M and Si(m) and Sj (ml)  are mutually independent for all i,j E M, 
i # j  and m,ml= 1 , 2  , . . . ,  n. 
Then the following corollary is obtained immediately. 

Corollary 4.1 If {S i (m)}  satisfies 3)', then we have 
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For the (a, b, k) system such that m,j = 0, it is clear that TM(n) = maxiem Ti(n) and 
T:(n) = maxi6m T^{n). Hence Theorem 4.5 implies that TM (n) = TT(n). This stochas- 
tic equivalence property has been shown in [g]. For the forkljoin queueing system with 
communication blocking, this property is discussed in [13]. 

4.4. Structural Equivalence 
In the original system, suppose that a,; + b;k = Cjik for any i G M ,  j G U(i) and k ? D(^). 
Then blocking at station i occurs only if there are a& items in buffer A^ for some k (E D(?). 
Therefore, in the same way as in the proof of Theorem 4.2, we have 

T;(n) = Si(n) + max Ti(n - l), m a ~  {Tj(n - mj;)}, max {Tk(n - ( ~ ( i , ~ )  - mik))}} , (4) 
J â ‚ ¬ U (  kâ‚¬D( 

where U(+) = bik + aik. 

For this original system, we consider a locally reversed system Q' in which the precedence 
relations between some pairs of stations are reversed and the numbers of the initial inventory 
and the initial empty spaces in buffers between these stations are exchanged. That is, 
parameters m:,., D', a', b1 and c' of 6' satisfy that for some pairs of stations (Il,  jl), . . . , ( ip, jp)  
such that j, 6 D(iJ,  q = 1 , 2  , . . .  , p ,  

and if k G 17%) then c & ,  = ayq  + b; , .  Other parameters and processing times are the 
same as those in the original system, and if U1(i) becomes empty then put U1(i) = {O}, and 
if ~ ' ( i )  becomes empty then put ~ ' ( i )  = {M + l}. Then we obtain the following theorem. 

Theorem 4.6 Let Ti(n) be the nth completion epoch of processing at station i of the locally 
reversed system. Then it holds that T'(n) = T;(n) for i G M and n E Z .  
Proof: The recursive equations in the locally reversed system coincide with (4) in the original 
system. B 

This structural equivalence property has been shown for the (a, b, k )  system in [g] and 
for the forkljoin queueing network with communication blocking in [13]. 

Corollary 4.1 and Theorem 4.6 imply that if two different systems have the reversibility 
or structural equivalence relations, then the throughput of the completed products in one 
system is the same as that in another system. 

4.5. An Example 
To illustrate the reversibility or structural equivalence, we consider the forkljoin multi-stage 
production system in Figure 4 a), which is the same as in Figure 2 except the initial numbers 
of items. For this system we have several different systems in b) through f )  of Figure 4, 
whose parameters are a;^ = bik = 1 and c,i* = 2 for all i G M, j G U(?) and k E D(^).  
Figure 4 b) is the reversed system of Figure 4 a) ,  and c) and e) Figrue 4 are structurally 
equivalent to Figure 4 a). Figure 4 d) and Figure 4 f )  are the reversed systems of c) and 
e), respectively. Note that c) and d) become equivalent to cyclic closed queueing networks 
with blocking by removing the input and output stations. Corollary 4.1 and Theorem 4.6 
show that all systems have the same throughput of completed products. 
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a) Original System 

c) Structurally equivalent (1) 

e) Structurally equivalent (2)  

b) Reversed System 

d)  Reversed System of c) 

f )  Reversed System of e) 

Fig. 4 Equivalent Systems 

5. Concluding Remarks 
In this paper, we formulate the general forkljoin multi-stage production system with 

general blocking into the GSMP, which includes open and closed (a, b, k)  systems. We derive 
the convex property of the GSMP and show the stochastic comparison, the reversibility and 
the structural equivalence property of the general fork/join production system. 

If a GSMP is a subscheme of another GSMP, and both GSMPs are irreducible, that 
is, for each GSMP any state in its state space is reachable from another state, then we 
can compare the performance of these systems. For example, Tayur [l G ]  considered the 
irreducible kanban systems and discussed optimal allocations of kanbans. For the closed 
(a,  b, k )  system, Glasserman and Yao [ l O ]  discussed the relation between the nth completion 
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time of processing and parameters {a, b, k}. It is not easy, however, to  find the relations 
between the set of the reachable states and its initial inventory in the general fork/join 
system. Therefore, it seems difficult to compare two systems with different parameter set 
{a, b, c} except special cases such as the closed (a ,  b, k}  model. --- 

Acknowledgment S.  The authors would like to express their appreciation to  an anonymous 
referee for his/ her helpful comments. 
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Appendix 
For the convenience of the readers the notations used in this paper are listed in the following: 
Fork/ Join Production Systems 
M = {1,2) .  . . , M}: the set of actual stations, 
stations 0, M + l :  the input and output stations, respectively, 
U(i): a set of immediate upstream stations U(i)) 
D(i): a set of immediate downstream stations D( i ) )  
1 D(i)  1 : the number of element S of D(i)  ) 
Bik(Aik): the buffer in rear of station i (the buffer in front of station k) 
bik (aik): the capacities of buffers Bik (Aik), 
cjik: the capacity of the total numbers of items in buffers Bji and Aik, 

. , 

L(i) = {(zo, 21) . . . , it); io = 2 ,  i l  E D(io), i2 â D(i1)) . . . , it E D(it-l) ,  (ij, i j+l) # ( ik,  
f o r j  # k )  i t  # M + l , t  2 l}, 

U I  = bi0,il E;;; CiJ-l,iJ,iJ+l + ait-i,it for I = {'h,. . . , i t }  E L(i),  
mik: the initial total number of the items in buffers Bik and Aik) 
sik: the variable representing the total number of the items in buffers Bik and Aik, 
Sk(n): the random variable denoting the nth processing time at machine k, 
T,(n):  the random variable denoting the n th  completion epoch of processing a t  machine k, 
~ ( i ) :  a set of stations k for which there exists a station sequence (io, i*, . . . , k )  in L(i). 
GSMP:(so, S) A) E, 4) U) 

S: a countable state space) 
SO: an initial state, 
A = {al, a2, . . . , a ~ } :  a finite event set, 
Â£(S) the set of events which may occur in state S) A = uSE(s). 
$(S, a ) :  the transition function representing the state just after event a occurs in state S, 

U = {(wa1 (n), . . . , waM(n))) n E Z } :  ua(n )  is the nth clock of event a) 

= ,f?oP1 a string (the event sequence), 
xai(o) = [o]i + l{ai E Â£(o)} a characteristic function of GSMS g) 
N = {X E Zy : X = [o] for some o being feasible in SO }: a score space of G ,  
Na,n {X E N :  xa.= n - E Â£(X)  for X = [o], 
X V y = (max{x1,~1}, . . ~ ~ ~ { x M ~ Y M } ) )  

X A  y = (min{xl?~l})  - - - ,  ~ ~ ~ { x M , Y M } ) ,  
x(o, n)  = {xD(a, n)}: a minimal element, 
Ta(n): the nth epoch when event a occurs in GSMP. 
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