
Journal of the Operations Research
Society of Japan

Vol. 40, No. 3, September 1997

A POLYNOMIAL ALGORITHM FOR ENUMERATING
ALL VERTICES OF A BASE POLYHEDRON

Ping Zhan
Edogawa University

(Received January 17, 1996; Final March 18, 1997)

Abstract In general, it is difficult to enumerate all vertices of a polytope in polynomial time. Here
we present a polynomial algorithm which enumerates all vertices of a submodular base polyhedron in
O(n31V)) time and in 0 (n 2) space, where V is the vertex set of a base polyhedron and n the dimension
of the underlying Euclidean space. Our algorithm is also polynomial delay, and a generalization of several
enumeration algorithms.

1. Introduction
We denote the set of reals by R. Given a finite set N = {1,2,- ,n}, function f : 2" -+R
is called a submodular function if

The problem considered here is to enumerate all vertices of the base polyhedron

where x(X) = x(e).
e s X

For enumeration problems, if the complexity of an algorithm can be expressed as

where p(m) is a polynomial function of input size m and Un} is a linear function of output
size n, we call the algorithm a polynomial enumerating algorithm. For a polytope defined
by a system of linear inequalities, it is well known that it is difficult to enumerate all ver-
tices of the polytope in polynomial complexity [3] [6] [l] [5]. In this paper, we introduce a
polynomial algorithm which enumerates all vertices of a base polyhedron in 0 (n3 I V I) time
and 0 (n2) space, where V is the vertex set of the base polyhedron and n the dimension of
the underlying Euclidean space.

We also introduce another concept about enumerating algorithms. An enumerating algo-
rithm is called polynomial delay if every additional extreme point is outputted in polynomial
time and polynomial space of the input size. Compare it with the polynomial algorithm
defined above, here polynomial algorithm means the total time and space needed in enu-
merating all objects, not time and space needed between two outputs. Put it in the other
way, for an enumerating algorithm, if the complexity between outputs is a linear function
of output size, it may be polynomial, but is not polynomial delay; while a polynomial delay
enumerating algorithm is always a polynomial enumerating algorithm. We will show that
our enumerating algorithm is also polynomial delay.

© 1997 The Operations Research Society of Japan

330 P. Zhan

Let E be a finite set and Z be a family of subsets of E) called independent sets. We say
that M = (E ,Z) is a matroid if the following axioms are satisfied:

(MO) 0 E 1;

(Ml) If If c I then 1-1;

(Ml) For every X E, every maximal independent subset of X has the same cardinality.

As analyzing algorithms that work on matroids we assume that each matroid is represented
by a subroutine that answers questions about independence of sets in the matroids. Here
we assume that there is an oracle computing the value of a submodular function.

It should be noted that our algorithm does not need the assumption of non-degeneracy
(used in the simplex method). While for a general polyhedron, degeneracy is a crucial prob-
lem even for a non-polynomial enumerating algorithm.

It should also be noted that the algorithm of this paper is a generalization of several
enumeration algorithms dealing with the problems such as:

(1) Spanning tree enumeration problem: For a graph G(V7 E) , without the loss of gener-
ality, we assume G(V, E) is connected. Let X be an edge subset of E. If f (X) + 1 equals to
the number of vertices connected to at least one edge in X , then enumerating all vertices of
a base polyhedron of f is equivalent to enumerating all spanning trees of the given graph
GP, E).

(2) Matroid base enumeration problem: Let M be a matroid (E , I) on E. For X C E, if
define f (X) to be the rank of X , i.e., the cardinality of a maximum independent set I E T
contained in X) then the vertex enumeration problem of B (f) here is also the rnatroid base
enumeration problem.

We point out that the algorithm here can be applied to global minimization problems of
a concave objective function on a polytope B(f) defined above. Spanning tree enumerating
algorithms can be applied to routing algorithms of computer networks [7]

2. Definitions and Preliminaries
A sequence of monotone increasing subsets

is called a chain. If there exists no chain which contains chain C as a proper subsequence,
C is called a maximal chain.

First we introduce the following well known theorem.

Theorem 2.1 (Extreme point theorem [4, 3.221): A vector v is a vertex of a base polyhe-
dron of B(f} i f and only if for a maximal chain

we have

(2.5) v(j) = f(S,) - f (S i - l) (i = l ,2 , . . . ,n) ,

where {j} = Si -

From the extreme point theorem, it is clear that we can enumerate all vertices of a
base polyhedron by finding all possible chains. Such a naive way can not be a polynomial
algorithm since the number of vertices varies from one (when all equations (1.1) are satisfied

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Enumerating Vertices of a Polyhedron 331

with equality, called modular) to n! (when all equations (1.1) of nontrivial cases are satisfied
with inequality). To overcome this difficulty, we introduce following structures.

We introduce briefly certain poset and lattice related to a vertex of B(f). G' iven a vertex
v of B(/), define

(2.6) V(v) = { X \X CN, v(X) = f(X)}.
By the submodular property of f, we can show that V(v) is closed under intersection and
union, i.e., V(v) is a distributive lattice. For the distributive lattice, it is well known that
there exists a poset 'P(V(v)) = (N, 5) such that V(v) is isomorphic to P(V(v)). Now we
describe a way to construct P(V(v)). For a vertex v of a base polyhedron and an element
i in N, define a dependence function as

and define j -^_v i if and only if j ~ d e p (u , i). We say that i covers j if and only if j i
and there is no k(# i, j) such that j k -+, i. We use (i, j) to denote that i cov-
ers j . From the definition of dependence function, we know that if j -<v i , we have
dep(v, j) U dep(v, i) =dep(v, i) . This fact will be frequently used later, especially in the
case when i covers j. For the above poset, its Hasse diagram is defined as following. For
the vertex set N, a line running downward from i to j if and only if i covers j. Hasse
diagram of P(V(v)) = (N, &) is written by Gu below for simplicity. Conversely, given a Gu
of f , we may also form a chain giving v of B(/) as following. Put So = 0, Si+i = Si U {j}
(i = 0 , 1 , - , n - l), where j E N is a minimum element of N \ S,. We use this fact to
compute adjacent vertices (see Theorem 2.2).

For convenience and completeness, we give here a procedure [2] [4] to compute dep(v, i)
(i E N) and construct Gv for a vertex v â‚¬B(f

(0) Put G, := (N, 0) and S := 0. Put j := 0, repeat (1) and (2) until j = n.
(1) Put j := j+1. Finding an element i j E N - S with v(S+ij) = f (S+i j) . Put S := S+i j .
(2) Put T := S, W := 0. For each k := j - l , j - 2, , l , repeat the following (2-1) and
(2-2).

(2-1) If ik 6 W and v(T - ik) = f (T - ik), then put T := T - ii.
(2-2) If ik 4 W and v(T - ik) < f (T - ik), then add to Gu a line running downward from

i j to ik.
Put W := W ~ d e p (v , ik).

Put dep(v, ij) := T.

The following theorem is not explicitly stated in [4], it is a result of two theorems.

Theorem 2.2 (f4, 3.46-3.471): For a base polyhedron of B(f) , a vertex U is adjacent to
vertex v if and only if we may obtain a chain giving U from Hasse diagram Gv with a pair
(I, j) in Gv reversed.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

P. Zhan

^x(l) Figure 2.1 An example

Now we outline the basic idea of reverse search algorithm for enumeration [l]. Let
G(V, A) be a connected graph whose vertices are precisely the objects to be enumerated,
and suppose that there is a vertex v*, such that we can travel from every vertex v to v*
via an unique directed path of G(V, A). It is clear that these paths constitute a spanning
tree. If we reverse the directions of these paths, then we obtain a spanning tree with root
v*. From root v*, we can reach every vertex of graph G(V, A) by some search algorithms,
say, the depth first algorithm.

In the reverse search algorithm with G(V,A), we emphasis following points: (1) Set
exactly one root vertex v* of V. (2) Define a local search function g : V\v* -+ V. (3) For
each vertex v C V, all vertices adjacent to v must be known.

3. An Enumerating Algorithm
In our reverse search algorithm, we define vertex v* = (v*, v*, - , v*) of a base ~ o l ~ h e d r o n
by v," = f ({ n , n - 1 , s - - , i }) - f ({n ,n - l , . . - , ; ' + l }) (i = n - l , . . - , l) and v; = f({n}).
Define local search function g: V\v* Ã‘ V

where i* = min{i 13j, (j , i) G Gv and i < j}, j' = max{j h i *) G Gv}, Xi (i E N) is
a characteristic vector and ?(v, j*, i*) called exchange capacity associated with v, j*, i* is
defined by

(3.9) E(v, j*, ?) = min{ f (X) - v(X) 1 j* E X N, i* 6 X}.

The computation of E(v, j*, i*) is not an easy work, but when v is a vertex, it can be done
easily. We show the formula of computing E(v,j*, i*) in Section 4.

If we assign weights wi (i G N) to elements i (i G N) with wl >> w2 >> - >> wn, we
know from submodular property that moving from v in the direction defined by g leads to
the adjacent vertex which decreases the value V w;vi (v = (vl, v% - - , vn) "'" G B(f)) mostly

i<-N
and v* is its minimum optimal solution.

In Hasse diagram Gv of vertex v, the pair of i and j with j > i is said to be true if
(i, j) G Gv and there is no k in N with k > j which satisfies

(1) (k, j) G Gv with

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Enumerating Vertices of a Polyhedron

or
(2) (k, 2) G G. with

An Algorithm: enumerating all vertices of a base polyhedron

Input: A finite set N = {l, 2, . . , n}, a submodular function f : 2^ +R.
Output: All vertices of the base polyhedron.
Step 0: Assume the optimum vertex v* = (v:, v;, . , v*) is determined by v,* = f ({n, n -
l , . . . ,if}) - f ({n ,n - l , . , - , i f + l}) (if = n - l , . . . , l), v; = f({n}). For v*, compute
dep(v*, if) for each if (if C N) and construct its Hasse diagram. Get the output of vertex
v*. Let v : = v * ; i := n - 1; j := i + 1. Go to Step 1.
Step 1: (reverse search)
1-1: If the pair of i and j is true, let T = dep(v, i) - i - j, compute c{v,j, i) = f (T + i) +
f(T + j) - f (T + i + j) - /IT), get the output U := v + c{v,}, i) (x j - xi). Put v := U,

compute dep(v, if) for each if (if 6 N) and construct its Hasse diagram. Also compute I
with l := min{if \ 3j, (j f , i') E Gv and if < jf}. Put i := 1; j := z + 1, go to the beginning
of Step 1.
1-2: Else if j < n, put j := j + 1, go to the beginning of Step 1.
Else if i > 1, put i := i - 1 and j := i + 1, go to the beginning of Step 1.
Else if v = v*, stop.
Else go to Step 2.
Step 2: (forward traverse)
Let i* = min{if \ Eij, (j f , i ') C Gv and if < jf}, and j* = max{jf 1 (jf, i*) G G^}.
Let T = dep(v,fl-z*-j*, compute E(v,i*, j*) = f (T+i*)+ / (T+j*) - f (T+i*+j*)- f (T) ,
put U := v + E(v, i', j*)(xr - X;). Put v := U, compute dep(v, i f) for each if (if E N) and
construct its Hasse diagram. Put i := i* and j := j*. Go to 1-2 of Step 1.

(End)

Let us illustrate the algorithm by an example shown in Figure 2.1. The graph G of
Figure 3.1 describes the adjacent relations of vertices, and the heavy-lines are the spanning
tree of search paths. Table 3.1 shows how vertices are searched by the algorithm. Note
when we reach the vertex U , we do not need to traverse to the vertex v by judging whether
the edge (U , v) is the edge of the spanning tree.

Gu Gv

Figure 3.1 The example of Figure 2.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

P. Zhan

Table 3.1. T h e enumerating process o f the example

number

1
2
3
4
5
6
7
8

Step

- 0
1
2
1
1
2
2
1

output vertex v

X

U

X

W

v
W

X

X

4. The Validity of the Algorithm

Gv

G.
GU
Gx
G,.
Gv
G,.
G.
Gx

Lemma 4.1: Assume that v is a vertex of B (f) obtained from adjacent vertex U by v=u+
E (u , j , i) (%- x i) - Let S; and Sk be the sets which are satisfied with

(4.10)

and
(4.11) sk = n { ~
Then we have S'i, = Sk and also

Denote dep(v, i) - i - j by T.
f (T + i + j) > O .

Sk = dep(v, i) U dep(v, k) - i - j - k .
Then E(u, j , i) = -E(v , i , j) = f (T + j) + f (T + i) - f (T) -

proof. Since v (S ; + i + j + k) = u(S'i, + i + j + k) = f(S',. + i + j + k) , we have 5;. 3 S t .
Conversely, u (S k + j + i + k) = v(Sk + j + i + k) = f (Sk + i + j + k) , we have Sk 2 S [- i.e.,
s'k = S k .

Since v (S k + j + i + k) = f (S k + j + i + k) , from the definition o f the dependence function,
we have Sk + j + i + k 2 dep(v, i) U dep(v, k) , i.e., Sk 2 dep(v, i) U dep(v, k) - j - i - k .
Conversely, note dep(v , t) E ^{v} (t E N) and ^ (v) is closed under union operation, we
know
(4.12) v (dep(v, i) U dep(v, k)) = f (dep(v, i) U dep(v, k)) .
From the minimum property o f S k i we have dep(v, i) U dep(v, k) 2 Sk + j + i + k , i.e.,
dep(v, i) U dep(v, k) - j - i - k 2 Sk . Thus, we showed dep(v, i) U dep(v, k) - j - i- k = Sk .

T h e result c{u, j , i) > 0 comes from the fact that j covers i in Gu. T h e equation E(u, j , i) =
f (T + j) + f (T + i) - f (T) - f (T + i + j) comes from following equations

and

and the relation v = U + E(u,j, i) (~ , - X ;) , while the other entries o f vectors v and u remain
unchanged. D

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Enumerating Vertices o f a Polyhedron 335

It should be noted that in the above lemma if i and j are the maximum elements in the
set Sk + i + j, i.e., there is no element t in dep(v, k) which satisfies t >-y i and t >-y j, then
Sk can be replaced by T. We replace Sk by S below for simplicity

Now we give the necessary and sufficient conditions which are related to the definition of
g. First we have:

Lemma 4.2: Let U be a vertex obtained from Gv with a pair (4 j) in Gv reversed. Then
j=max{ jt 1 (jt , i) E Gu and i < j ' } if and only if the pair of i and j is true) i.e.) (i , j) E Gv
and there is no k in N with k > j which satisfies

(1) (k , j) G Gv with

or
(2) (k , i) G Gv with

where S = dep(v, i) (J dep(v, k) - i - j - k-

Note: Conditions (1) and (2) of the lemma are shown as Gv(l) and GÃˆ(2 in Figure 4.1.

<^(l)

Figure 4.1.

Proof. First we show necessity. The fact that i covers j in Gv is clear.
We show condition (1) by contradiction. If there is a k which is satisfied with (l), it must

satisfy k i. Otherwise, by Lemma 4.1, we have

If k does not satisfy k i , from the definition of S, we know that j and i are the maximum
elements in the set S + k + i + j of Gu. Hence we have

Note that k is the maximum element in the set S + k of Gu, hence u(S) = f (S). It is clear
that because v(k) = u(k), and j, k and i are the maximum elements in the set S + i + j + k
of GÃˆ we obtain v (S) = f (S). Substituting these equations into (4.21), we obtain

(4.22) v(S + k) = f (S+ k),

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

336 P. Zhan

which contradicts to j -+, k. Thus we proved k i.
Now there are two possibilities. One is that k covers i in Gu, this is impossible since j is

the maximum index element among the elements covering i by the assumption of necessity.
The other case is that there-is a t with-k t and t->n i. -It-is clear t h a t - o ~ r l ~ j eaa-be such
a t , but it is impossible since k satisfies modular equation (4.17). So k covers i . This is the
same as the first case. Hence there is no k satisfying condition (1).

For condition (2) (note the equation v(S) = f [S) of condition (2) means that there is
no t other than k and i in depfv, k) which satisfies t +v j), if we suppose that there is a k
which is satisfied with condition (2), by the same argument as (l), we have

which is contradiction to j -<v i k and therefore also contradiction to the necessity
assumption.

For sufficiency, it is trivial if there is no k other than j covering i in Gu. If there is such
a k covering i in Gu (then f (S + i + j) + f (S + i + k) = f (S + i) + f (S + i + J + k) and
v(S) = f(S) are satisfied), we show that it must cover j or i in Gv.

Replace i by j and U by v, as almost the same argument in the proof of necessity, we can
prove j k. Therefore, we know that there are two possibilities: k covers j, or k covers i
(and i covers j) in Gv. The former is possible when the equation

holds with equality. The latter possibility occurs when k holds with inequality. This is a
contradiction to sufficient conditions of (1) and (2). Hence j is the maximum index element
among elements which covers i in Gu.

The validity of the expression of S is immediately followed from Lemma 4.1

It should be noted (it has been used in the proof of the necessity) that v(S) = f (S) is
implied by condition (1).

Lemma 4.3: Let U be a vertex obtained from Gv with a pair (i, j) (i < j) in Gv reversed.
Then there is no pair (m,1) 6 Gu with m > I and I < i if and only if there is no pair
(k, l) E Gv with k > I (here k may be m).

Proof. First we show sufficiency by contradiction. The outline of proof is: Assume that
there exists a pair (m, 1) in Gu with m > I, then in Gv at least one of the following three
cases occurs, m covers I, j covers I or i covers I in Gv Since all of m, i and j are greater
than I, which contradicts to the assumption of sufficiency.

Note the relation m > I < i < j, there are several cases.

Case 1: j = m. In this case, j covers i and also j covers l in Gu, see Figure 4.2.

y i

Figure 4.2.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Enumerating Vertices o f a Polyhedron 33 7

First we show i >-y 1. Otherwise, let S = { t 1 t j } - i, S' = { t \ t -<v i } - j, as shown in
Lemma 4.1, we can prove S = S', which contradicts to I E S and l 4. S'. Thus we proved
i >Ã I. Here it is clear that I is covered else by i or by j in Gv, a contradiction.

In Cases 2 6: Suppose S = { t \ t m}.

Case 2: Both i and j are not in S (i # m). It is clear that (m, l) E Gu also means (m, 1) E Gv.

Case 3: Both i and j are in S. It is clear that the pair (m, 1) in Gu does not satisfy m -<U l.
We also know that there is no t which satisfies m >y t and t > v l. From m covering 1 in Gu,
we have strict inequality f (S + m - l) + f (S) > f (S - 1) + f[S + m). Hence m covers l in
GU .
Case 4: i E S and j S (j # m). The argument is similar to that of Case 3.

Case 5: i S and j E S (j # m). The fact (j, I) E Gu implies that this case does not occur.
. .

Case 6: m = 2, i.e., we have j covering i(= m) and i covering 1 in Gu. With the same
argument as that in Case 1, we can show i >-y 1. When S' = { t It j} - m = S, then
either i or j covers I in Gv, as shown in Figure 4.3. Otherwise, there is a t (t 4. {i, j}) with
j covering t in Gu. If t < I, it is the same as in Case 1. If t > I, two possibilities occur. One
with t covering I is the same as in Case 2. The other is that t does not cover I in Gu, then
1 is covered by i or j , also as shown in Figure 4.3.

Gvd)

Figure 4.3.

For necessity, we show if there is a pair (m, 1) with l < i and m > l in Gv, then (k, l) E Gu
with k > I (note that k may be m here). It should be noted that the proof is symmetric to
that of sufficiency if we exchange j with i.

Case 1: m = i in Gv. Then i(= m) covers l and also i covers j in G v As in Case 1 of
sufficiency, there are two possibilities: j covers l or i covers I in Gu.

Case 2: Neither m = i nor m = j . By the same argument in the proof of sufficiency, l must
be covered by m in Gu.

Case 3: m = j. Then i covers j(= m) and j covers I in Gv. Again, as in Case 6 of sufficiency,
we can prove (k , 1) E G. with k > I. D

When we consider a pair (i, j) in Lemma 4.3, we have to check every edge in Gv to
make sure whether the condition of Lemma 4.3 is satisfied. But it can be done without any
local information around i and j . This observation is important to the complexity of the
algorithm. In the algorithm, computing I := min{ i', 1 3j1, (i',j') G Gv with i' < j'} and
searching only i with i < I is based on Lemma 4.3. Taking this fact and true judgment into
account considerably saves the time complexity of the algorithm.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

338 P. Zhan

Lemma 4.4: In Step 1 of the algorithm, g(v + E(v, j, i)(xj - xi)) = v.

Proof. The condition of Lemma 4.3 is satisfied since we only consider i < l , where (I =
.l .l -1 .l

mm{ z 1 3; , (1 , z) G, _ and-i! < j'}) . Weexchange 2 a n d j d the_pair_ (i, .;') with j > i
only when the condition of Lemma 4.2 is satisfied.

It should be noted that the only edges which are omitted in reverse search algorithm are
those which do not satisfy the condition of Lemma 4.3. Therefore those edges can not be
the edges of the spanning tree defined by g. This fact together with Lemma 4.4 and the
validity of reverse search show that the outputs of the above algorithm are all vertices of a
base polyhedron.

Theorem 4.5: There is an implementation of reverse search for enumerating vertices of a
base polyhedron with time complexity O(n3\V\} and space complexity 0 (n2) .

Proof. First we consider the time complexity. Suppose that we are given submodular
function. Then the time for computing f (X) for any X IV is constant since our oracle
assumption.

In Step 0, the time for computing v* is 0 (n) , and the time for computing dep(v*, i) for
each i = (l, 2, - - , n) and its Hasse diagram is known to be bounded by 0 (n2) (see the
algorithm given in Section 2).

In the reverse search of the algorithm, the time to check whether the pair of i and j is
true is bounded by O(n). Note that there can be at most n2 - 1 such pairs (the number of
edges) in a Hasse diagram and these are done for each vertex of the base polyhedron. Hence
the total time for this implementation is bounded by O(n31Vi). Now consider the time for
computing dep(v, i) (i = 1,2 , , n), a Hasse diagram and the index I defined in Step 1- 1.
As described in Step 0, the time is bounded by 0 (n2) . Since these are also done for each
vertex, the total time bound is O(n21Vl). It is clear that the time complexity in Step 1-2 is

O(n2IVl)
In the forward search, the time for computing i* is bounded by 0 (n2) and the time for

j* is O(n), the time for computing dependence functions and a Hasse diagram is bounded
by O(n2). Hence the total time for the forward search is bounded by O(n2 IV)).

Summarizing above arguments, the time for enumerating all vertices of a base polyhedron
is bounded by O(n3 !V!).

Now we consider the space complexity. In Step 0, we need 0 (n) space for vertex v*, and
0 (n2) for dependence functions and the Hasse diagram of vertex v*, and also some constant
space for I, i and j . In Steps 1 and 2, the space 0 (n 2) remains unchanged. Hence the total
space complexity is O(n + n2) or 0(n2) .

Note vertex number \V\ is not contained in the space complexity above. So, it does
not mean the space needed to save all outputs V, which in general is not bounded by
0 (n2) . 0 (n2) is just the space needed in executing our enumerating algorithm. It should
be noted that although we need 0 (n) space to save a vertex, the total space needed to save
all vertices of a base polyhedron is O(lV1 + n) not O(n[VI) because exchanging property,
U = V + E(v,i,j)(xi -xj).

We point out again that the complexity given in Theorem 4.5 is based on the assumption
that a submodular function f : 2-^ -+ R is defined, or there is an oracle that computes the
value f (X) for each X C N.

Note the complexity above does not contain the number of linear inequality, which gen-
erally is much greater than the dimension n (here we have 2" inequalities).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Enumerating Vertices o f a Polyhedron

Lemma 4.6: The depth of the search path of g is less than n2 .

Proof. Let v be a vertex of a base polyhedron and Gv its Hasse digram. Exchanging i with
j of a pair (i, j) (i < j) E Gy creates a new adjacent vertex, say U . Considering sets S and
S' defined as S = { t 1 t -< ̂ i} and S' = { t 1 t i}, for each k with k f S, we also have
k f S'. Exchange i with j of the pair (i, j) decreases the number IS1 at least one element j.
Since there are only n elements, we have the conclusion.

It is easy to see that the above proof can be stated in a symmetric way, i.e., we can also
consider sets S = { t 1 t >-v j} and S' = { t 1 t j}.

Now we can have a conclusion about polynomial delay. The crucial points that our
enumerating algorithm is also a polynomial delay algorithm are listed below: (1) the lattice
structure of an extreme point which gives in polynomial time and space the exact information
about all adjacent points, (2) for each point, the number of adjacent points is bounded by
n2, (3) the depth of the search path of g is less than n2 (Lemma 4.6), and (4) we never
traverse each edge of the search spanning tree more than two times. These arguments imply
the following theorem.

Theorem 4.7: The enumerating algorithm in Section 3 is also polynomial delay.

In above arguments, we do not consider connected components (separators) [4]. Although
we can considerably reduce the complexity, the upper bound complexity of the algorithm
retains unchanged.

Except for the current vertex, no information about the searched vertices is needed in the
reverse search algorithm. This property makes parallelization of the reverse search possible.
One trivial implementation is to assign some free processor a child of the root whose branch
is not yet traversed. This can be done recursively [l] . Lemma 4.6 tells us that the parallel
implementation is powerful.

5. An Unbounded Base Polyhedron
Here, we make a brief outline about how the reverse search algorithm can be generalized to
a more general set family than 2^.

As has been mentioned in Section 2, given a set N, a collection of subsets of N forms
a distributive lattice D if it is closed under set union and intersection. If a submodular
function is defined on D # 2^, it is known that the base polyhedron related to D is
unbounded (Theorem 3.12 of [4]). For such a distributive lattice, there exists a poset
P(D) = (N, 5) (obtained by the decomposition method [4]) isomorphic to V. If the base
polyhedron is pointed (there exists at least one extreme point), the edges (or lines) of its
Hasse diagram ?(V) are corresponding to the extreme rays of the base polyhedron (Theorem
3.26 of [4]). These edges will appear in every 'P(D(v)) (v E V) and can not be changed
during enumerating vertices.

Acknowledgements The author would like to thank the referees sincerely for their many
valuable suggestions and comments, which greatly improve the structure and contents of
the manuscript. And also Prof. K. Fukuda and Doctors Z. Yang, X. Zhang and Y. Dai for
their carefully reading the manuscript and useful comment S.

References
[l] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics,

65 (1996) 21-46.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

340 P. Zhan

[2] R. E. Bixby, W. H. Cunningham and D. M. Topkis, Partial order of a polymatroid
extreme point, Mathematics of Operations Research 10 (1985) 365-378.

[3] V. Chvatal, Linear Programming, Freeman, New York, 1983.
141 S. TujisTiige/Submodular Tunct~EandOpt imiza t io5~ Inn: D<scTet eMatTi<VoI. 47,

North-Holland, Amsterdam, 1991.
[5] P. Gritzmann, V. Klee, On the complexity of some basic problems in computational

Convexity: I. Containment problems, Discrete Mathematics 136 (1994) 129- 174.
[6] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, New York,

1986.
[7] A. S. Tanenbaum, Computer Networks 3rd, Prentice Hall, Amsterdam, The Nether-

lands, 1996.

Ping Zhan
Department of Environment a1 Information
Edogawa University
474, Komaki, Nagareyama-shi, C hiba-Ken,
270-01, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

