
Journal of the Operations Research 
Society of Japan 

Vol. 40, No. 3, September 1997 

A POLYNOMIAL ALGORITHM FOR ENUMERATING 
ALL VERTICES OF A BASE POLYHEDRON 

Ping Zhan 
Edogawa University 

(Received January 17, 1996; Final March 18, 1997) 

Abstract In general, it is difficult to enumerate all vertices of a polytope in polynomial time. Here 
we present a polynomial algorithm which enumerates all vertices of a submodular base polyhedron in 
O(n31V)) time and in 0 ( n 2 )  space, where V is the vertex set of a base polyhedron and n the dimension 
of the underlying Euclidean space. Our algorithm is also polynomial delay, and a generalization of several 
enumeration algorithms. 

1. Introduction 
We denote the set of reals by R. Given a finite set N = {1,2,- ,n}, function f :  2" -+R 
is called a submodular function if 

The problem considered here is to enumerate all vertices of the base polyhedron 

where x(X) = x(e). 
e s X  

For enumeration problems, if the complexity of an algorithm can be expressed as 

where p(m) is a polynomial function of input size m and Un} is a linear function of output 
size n, we call the algorithm a polynomial enumerating algorithm. For a polytope defined 
by a system of linear inequalities, it is well known that it is difficult to enumerate all ver- 
tices of the polytope in polynomial complexity [3] [6] [l] [5]. In this paper, we introduce a 
polynomial algorithm which enumerates all vertices of a base polyhedron in 0 (n3 I V I) time 
and 0 (n2 )  space, where V is the vertex set of the base polyhedron and n the dimension of 
the underlying Euclidean space. 

We also introduce another concept about enumerating algorithms. An enumerating algo- 
rithm is called polynomial delay if every additional extreme point is outputted in polynomial 
time and polynomial space of the input size. Compare it with the polynomial algorithm 
defined above, here polynomial algorithm means the total time and space needed in enu- 
merating all objects, not time and space needed between two outputs. Put it in the other 
way, for an enumerating algorithm, if the complexity between outputs is a linear function 
of output size, it may be polynomial, but is not polynomial delay; while a polynomial delay 
enumerating algorithm is always a polynomial enumerating algorithm. We will show that 
our enumerating algorithm is also polynomial delay. 
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330 P. Zhan 

Let E be a finite set and Z be a family of subsets of E) called independent sets. We say 
that M = (E ,Z)  is a matroid if the following axioms are satisfied: 

(MO) 0 E 1; 

(Ml) If If c I then 1-1; 

(Ml) For every X E, every maximal independent subset of X has the same cardinality. 

As analyzing algorithms that work on matroids we assume that each matroid is represented 
by a subroutine that answers questions about independence of sets in the matroids. Here 
we assume that there is an oracle computing the value of a submodular function. 

It should be noted that our algorithm does not need the assumption of non-degeneracy 
(used in the simplex method). While for a general polyhedron, degeneracy is a crucial prob- 
lem even for a non-polynomial enumerating algorithm. 

It should also be noted that the algorithm of this paper is a generalization of several 
enumeration algorithms dealing with the problems such as: 

(1) Spanning tree enumeration problem: For a graph G(V7 E) ,  without the loss of gener- 
ality, we assume G(V, E) is connected. Let X be an edge subset of E. If f (X) + 1 equals to 
the number of vertices connected to at least one edge in X ,  then enumerating all vertices of 
a base polyhedron of f is equivalent to enumerating all spanning trees of the given graph 
GP, E). 

(2) Matroid base enumeration problem: Let M be a matroid (E , I )  on E. For X C E, if 
define f (X) to be the rank of X ,  i.e., the cardinality of a maximum independent set I E T 
contained in X )  then the vertex enumeration problem of B (f)  here is also the rnatroid base 
enumeration problem. 

We point out that the algorithm here can be applied to global minimization problems of 
a concave objective function on a polytope B( f )  defined above. Spanning tree enumerating 
algorithms can be applied to routing algorithms of computer networks [7] 

2. Definitions and Preliminaries 
A sequence of monotone increasing subsets 

is called a chain. If there exists no chain which contains chain C as a proper subsequence, 
C is called a maximal chain. 

First we introduce the following well known theorem. 

Theorem 2.1 (Extreme point theorem [4, 3.221): A vector v is a vertex of a base polyhe- 
dron of B(f} i f  and only if for a maximal chain 

we have 

(2.5) v(j)  = f(S,) - f (S i - l )  (i = l ,2 , . . . ,n ) ,  

where {j} = Si - 

From the extreme point theorem, it is clear that we can enumerate all vertices of a 
base polyhedron by finding all possible chains. Such a naive way can not be a polynomial 
algorithm since the number of vertices varies from one (when all equations (1.1) are satisfied 
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Enumerating Vertices of a Polyhedron 331 

with equality, called modular) to n! (when all equations (1.1) of nontrivial cases are satisfied 
with inequality). To overcome this difficulty, we introduce following structures. 

We introduce briefly certain poset and lattice related to a vertex of B(f). G' iven a vertex 
v of B(/), define 

(2.6) V(v) = { X  \X CN, v(X) = f(X)}. 
By the submodular property of f, we can show that V(v) is closed under intersection and 
union, i.e., V(v) is a distributive lattice. For the distributive lattice, it is well known that 
there exists a poset 'P(V(v)) = (N, 5 )  such that V(v) is isomorphic to P(V(v)). Now we 
describe a way to construct P(V(v)). For a vertex v of a base polyhedron and an element 
i in N,  define a dependence function as 

and define j -^_v i if and only if j ~ d e p ( u ,  i). We say that i covers j if and only if j i 
and there is no k(# i,  j) such that j k -+, i. We use (i, j) to denote that i cov- 
ers j .  From the definition of dependence function, we know that if j -<v i ,  we have 
dep(v, j) U dep(v, i )  =dep(v, i )  . This fact will be frequently used later, especially in the 
case when i covers j. For the above poset, its Hasse diagram is defined as following. For 
the vertex set N, a line running downward from i to j if and only if i covers j. Hasse 
diagram of P(V(v)) = (N,  &) is written by Gu below for simplicity. Conversely, given a Gu 
of f ,  we may also form a chain giving v of B(/) as following. Put So = 0, Si+i = Si U {j} 
(i = 0 , 1 , - , n  - l), where j E N is a minimum element of N \ S,. We use this fact to 
compute adjacent vertices (see Theorem 2.2). 

For convenience and completeness, we give here a procedure [2] [4] to compute dep(v, i )  
(i E N )  and construct Gv for a vertex v â‚¬B(f 

(0) Put G, := (N, 0) and S := 0. Put j := 0, repeat (1) and (2) until j = n. 
(1) Put j := j+1. Finding an element i j  E N - S  with v(S+ij) = f (S+i j ) .  Put S := S+i j .  
(2) Put T := S, W := 0. For each k := j - l ,  j - 2, , l ,  repeat the following (2-1) and 
(2-2). 

(2-1) If ik 6 W and v(T - ik) = f (T  - ik), then put T := T - ii. 
(2-2) If ik 4 W and v(T - ik)  < f (T - ik), then add to Gu a line running downward from 

i j  to ik. 
Put W := W ~ d e p ( v ,  ik). 

Put dep(v, ij) := T. 

The following theorem is not explicitly stated in [4], it is a result of two theorems. 

Theorem 2.2 (f4, 3.46-3.471): For a base polyhedron of B( f ) ,  a vertex U is adjacent to 
vertex v if and only if we may obtain a chain giving U from Hasse diagram Gv with a pair 
(I, j) in Gv reversed. 
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^x(l) Figure 2.1 An example 

Now we outline the basic idea of reverse search algorithm for enumeration [l]. Let 
G(V, A) be a connected graph whose vertices are precisely the objects to be enumerated, 
and suppose that there is a vertex v*, such that we can travel from every vertex v to v* 
via an unique directed path of G(V, A). It is clear that these paths constitute a spanning 
tree. If we reverse the directions of these paths, then we obtain a spanning tree with root 
v*. From root v*, we can reach every vertex of graph G(V, A) by some search algorithms, 
say, the depth first algorithm. 

In the reverse search algorithm with G(V,A), we emphasis following points: (1) Set 
exactly one root vertex v* of V. (2) Define a local search function g : V\v* -+ V. (3) For 
each vertex v C V, all vertices adjacent to v must be known. 

3. An Enumerating Algorithm 
In our reverse search algorithm, we define vertex v* = (v*, v*, - , v*) of a base ~ o l ~ h e d r o n  
by v," = f ( { n , n -  1 , s - - , i } )  - f ({n ,n  - l , . . - , ; ' + l } )  (i = n -  l , . . - , l )  and v; = f({n}). 
Define local search function g: V\v* Ã‘ V 

where i* = min{i 13j, ( j ,  i)  G Gv and i < j}, j' = max{j h i * )  G Gv}, Xi (i  E N )  is 
a characteristic vector and ?(v, j*, i*) called exchange capacity associated with v, j*, i* is 
defined by 

(3.9) E(v, j*, ?) = min{ f ( X )  - v(X) 1 j* E X N,  i* 6 X}. 

The computation of E(v, j*, i*) is not an easy work, but when v is a vertex, it can be done 
easily. We show the formula of computing E(v,j*, i*) in Section 4. 

If we assign weights wi (i G N )  to  elements i (i G N) with wl >> w2 >> - >> wn, we 
know from submodular property that moving from v in the direction defined by g leads to 
the adjacent vertex which decreases the value V w;vi (v = (vl, v% - - , vn) "'" G B( f )) mostly 

i<-N 
and v* is its minimum optimal solution. 

In Hasse diagram Gv of vertex v, the pair of i and j with j > i is said to be true if 
(i, j) G Gv and there is no k in N with k > j which satisfies 

(1) (k, j )  G Gv with 
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or 
(2) (k, 2 )  G G. with 

An Algorithm: enumerating all vertices of a base polyhedron 

Input: A finite set N = {l, 2, . . , n}, a submodular function f :  2^ +R. 
Output: All vertices of the base polyhedron. 
Step 0: Assume the optimum vertex v* = (v:, v;, . , v*) is determined by v,* = f ({n, n - 
l , . . .  ,if}) - f ({n ,n  - l , . , - , i f  + l}) (if = n - l , . . . ,  l), v; = f({n}). For v*, compute 
dep(v*, if)  for each if (if C N )  and construct its Hasse diagram. Get the output of vertex 
v*. Let v : = v * ;  i := n - 1; j := i + 1. Go to Step 1. 
Step 1: (reverse search) 
1-1: If the pair of i and j is true, let T = dep(v, i)  - i - j, compute c{v,j, i )  = f (T + i )  + 
f(T + j )  - f ( T  + i + j )  - /IT), get the output U := v + c{v,}, i ) (x j  - xi). Put v := U, 

compute dep(v, if)  for each if (if 6 N )  and construct its Hasse diagram. Also compute I 
with l := min{if \ 3j, ( j f ,  i') E Gv and if < jf}. Put i := 1; j := z + 1, go to the beginning 
of Step 1. 
1-2: Else if j < n, put j := j + 1, go to the beginning of Step 1. 
Else if i > 1, put i := i - 1 and j := i + 1, go to the beginning of Step 1. 
Else if v = v*, stop. 
Else go to Step 2. 
Step 2: (forward traverse) 
Let i* = min{if \ Eij, ( j f ,  i ') C Gv and if < jf}, and j* = max{jf 1 (jf, i*) G G^}. 
Let T = dep(v,fl-z*-j*, compute E(v,i*, j*) = f (T+i* )+ / (T+j* ) -  f (T+i*+j*)-  f (T) ,  
put U := v + E(v, i', j*)(xr - X;). Put v := U, compute dep(v, i f )  for each if (if E N )  and 
construct its Hasse diagram. Put i := i* and j := j*.  Go to 1-2 of Step 1. 

(End) 

Let us illustrate the algorithm by an example shown in Figure 2.1. The graph G of 
Figure 3.1 describes the adjacent relations of vertices, and the heavy-lines are the spanning 
tree of search paths. Table 3.1 shows how vertices are searched by the algorithm. Note 
when we reach the vertex U ,  we do not need to traverse to the vertex v by judging whether 
the edge (U ,  v) is the edge of the spanning tree. 

Gu Gv 

Figure 3.1 The example of Figure 2. 
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Table 3.1. T h e  enumerating process o f  the example 

number 

1 
2 
3 
4 
5 
6 
7 
8 

Step 

- 0 
1 
2 
1 
1 
2 
2 
1 

output vertex v 

X 

U 

X 

W 

v 
W 

X 

X 

4. The Validity of the Algorithm 

Gv 

G. 
GU 
Gx 
G,. 
Gv 
G,. 
G. 
Gx 

Lemma 4.1: Assume that v is a vertex of B ( f )  obtained from adjacent vertex U by v=u+ 
E ( u ,  j ,  i ) (%-  x i ) -  Let S;  and Sk  be the sets which are satisfied with 

(4.10) 

and 
(4.11) sk = n { ~  
Then we have S'i, = Sk  and also 

Denote dep(v, i )  - i - j by T.  
f ( T + i + j )  > O .  

Sk = dep(v, i )  U dep(v, k )  - i - j - k .  
Then E(u, j , i )  = -E(v , i , j )  = f ( T + j ) + f ( T + i ) - f ( T ) -  

proof. Since v ( S ;  + i + j  + k )  = u(S'i, + i + j + k )  = f(S',. + i + j  + k ) ,  we have 5;. 3 S t .  
Conversely, u ( S k  + j  + i +  k )  = v(Sk + j + i  + k )  = f (Sk  + i  + j  + k ) ,  we have Sk 2 S [ -  i.e., 
s'k = S k .  

Since v ( S k  + j + i + k )  = f ( S k  + j + i + k )  , from the definition o f  the dependence function, 
we have Sk + j + i + k 2 dep(v, i )  U dep(v, k ) ,  i.e., Sk 2 dep(v, i )  U dep(v, k )  - j - i - k .  
Conversely, note dep(v ,  t )  E ^{v} ( t  E N )  and ^ ( v )  is closed under union operation, we 
know 
(4.12) v (dep(v,  i )  U dep(v, k ) )  = f (dep(v,  i )  U dep(v, k ) )  . 
From the minimum property o f  S k i  we have dep(v, i )  U dep(v, k )  2 Sk  + j + i + k ,  i.e., 
dep(v, i )  U dep(v, k )  - j - i - k 2 Sk .  Thus,  we showed dep(v, i )  U dep(v,  k )  - j - i- k = Sk .  

T h e  result c{u, j ,  i )  > 0 comes from the fact that j covers i in  Gu. T h e  equation E(u, j ,  i )  = 
f ( T  + j )  + f ( T  + i )  - f ( T )  - f ( T  + i + j )  comes from following equations 

and 

and the relation v = U + E(u,j, i ) ( ~ ,  - X ; ) ,  while the other entries o f  vectors v and u remain 
unchanged. D 
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It should be noted that in the above lemma if i and j are the maximum elements in the 
set Sk + i + j, i.e., there is no element t in dep(v, k)  which satisfies t >-y i and t >-y j, then 
Sk can be replaced by T. We replace Sk by S below for simplicity 

Now we give the necessary and sufficient conditions which are related to the definition of 
g. First we have: 

Lemma 4.2: Let U be a vertex obtained from Gv with a pair (4 j) in Gv reversed. Then 
j=max{ jt 1 (jt ,  i )  E Gu and i < j ' }  if and only if the pair of i and j is true) i.e.) ( i , j )  E Gv 
and there is no k in N with k > j which satisfies 

(1) (k ,  j) G Gv with 

or 
( 2 )  ( k ,  i )  G Gv with 

where S = dep(v, i )  (J dep(v, k) - i - j - k- 

Note: Conditions (1) and (2) of the lemma are shown as Gv(l)  and GÃˆ(2 in Figure 4.1. 

<^(l) 

Figure 4.1. 

Proof. First we show necessity. The fact that i covers j in Gv is clear. 
We show condition (1) by contradiction. If there is a k which is satisfied with (l), it must 

satisfy k i. Otherwise, by Lemma 4.1, we have 

If k does not satisfy k i ,  from the definition of S, we know that j and i are the maximum 
elements in the set S + k + i + j of Gu. Hence we have 

Note that k is the maximum element in the set S + k of Gu, hence u(S) = f (S). It is clear 
that because v(k) = u(k), and j, k and i are the maximum elements in the set S + i + j + k 
of GÃˆ we obtain v ( S )  = f (S). Substituting these equations into (4.21), we obtain 

(4.22) v(S + k) = f (S+ k), 
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which contradicts to j -+, k.  Thus we proved k i. 
Now there are two possibilities. One is that k covers i in Gu, this is impossible since j is 

the maximum index element among the elements covering i by the assumption of necessity. 
The other case is that there-is a t with-k t and t->n i. -It-is clear t h a t - o ~ r l ~ j  eaa-be such 
a t ,  but it is impossible since k satisfies modular equation (4.17). So k covers i .  This is the 
same as the first case. Hence there is no k satisfying condition (1). 

For condition (2) (note the equation v(S) = f [S) of condition (2) means that there is 
no t other than k and i in depfv, k)  which satisfies t +v j), if we suppose that there is a k 
which is satisfied with condition (2), by the same argument as (l), we have 

which is contradiction to j -<v i k and therefore also contradiction to the necessity 
assumption. 

For sufficiency, it is trivial if there is no k other than j covering i in Gu. If there is such 
a k covering i in Gu (then f (S + i + j) + f (S + i + k) = f (S + i ) +  f ( S + i + J + k )  and 
v(S) = f(S) are satisfied), we show that it must cover j or i in Gv. 

Replace i by j and U by v,  as almost the same argument in the proof of necessity, we can 
prove j k. Therefore, we know that there are two possibilities: k covers j, or k covers i 
(and i covers j) in Gv. The former is possible when the equation 

holds with equality. The latter possibility occurs when k holds with inequality. This is a 
contradiction to sufficient conditions of (1) and (2). Hence j is the maximum index element 
among elements which covers i in Gu. 

The validity of the expression of S is immediately followed from Lemma 4.1 

It should be noted (it has been used in the proof of the necessity) that v(S) = f (S) is 
implied by condition (1). 

Lemma 4.3: Let U be a vertex obtained from Gv with a pair (i, j) (i < j) in Gv reversed. 
Then there is no pair (m,1) 6 Gu with m > I and I < i if and only if there is no pair 
(k,  l) E Gv with k > I (here k may be m). 

Proof. First we show sufficiency by contradiction. The outline of proof is: Assume that 
there exists a pair (m, 1) in Gu with m > I, then in Gv at least one of the following three 
cases occurs, m covers I, j covers I or i covers I in Gv Since all of m, i and j are greater 
than I, which contradicts to the assumption of sufficiency. 

Note the relation m > I < i < j, there are several cases. 

Case 1: j = m. In this case, j covers i and also j covers l in Gu, see Figure 4.2. 

y i  

Figure 4.2. 
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First we show i >-y 1. Otherwise, let S = { t 1 t j } - i, S' = { t \ t -<v i } - j, as shown in 
Lemma 4.1, we can prove S = S', which contradicts to I E S and l 4. S'. Thus we proved 
i >Ã I. Here it is clear that I is covered else by i or by j in Gv, a contradiction. 

In Cases 2 6: Suppose S = { t \ t m}. 

Case 2: Both i and j are not in S (i # m). It is clear that (m, l) E Gu also means (m, 1) E Gv. 

Case 3: Both i and j are in S. It is clear that the pair (m, 1) in Gu does not satisfy m -<U l. 
We also know that there is no t which satisfies m >y t and t > v  l. From m covering 1 in Gu, 
we have strict inequality f (S + m - l) + f (S) > f (S - 1) + f[S + m). Hence m covers l in 
GU . 
Case 4: i E S and j S ( j  # m). The argument is similar to that of Case 3. 

Case 5: i S and j E S ( j  # m). The fact (j, I) E Gu implies that this case does not occur. 
. . 

Case 6: m = 2,  i.e., we have j covering i(= m) and i covering 1 in Gu. With the same 
argument as that in Case 1, we can show i >-y 1. When S' = { t  It j} - m = S, then 
either i or j covers I in Gv, as shown in Figure 4.3. Otherwise, there is a t ( t  4. {i, j}) with 
j covering t in Gu. If t < I, it is the same as in Case 1. If t > I, two possibilities occur. One 
with t covering I is the same as in Case 2. The other is that t does not cover I in Gu, then 
1 is covered by i or j ,  also as shown in Figure 4.3. 

Gvd)  

Figure 4.3. 

For necessity, we show if there is a pair (m, 1) with l < i and m > l in Gv, then (k, l) E Gu 
with k > I (note that k may be m here). It should be noted that the proof is symmetric to 
that of sufficiency if we exchange j with i. 

Case 1: m = i in Gv. Then i(= m) covers l and also i covers j in G v  As in Case 1 of 
sufficiency, there are two possibilities: j covers l or i covers I in Gu. 

Case 2: Neither m = i nor m = j .  By the same argument in the proof of sufficiency, l must 
be covered by m in Gu. 

Case 3: m = j. Then i covers j(= m) and j covers I in Gv. Again, as in Case 6 of sufficiency, 
we can prove ( k ,  1) E G. with k > I. D 

When we consider a pair (i, j) in Lemma 4.3, we have to check every edge in Gv to 
make sure whether the condition of Lemma 4.3 is satisfied. But it can be done without any 
local information around i and j .  This observation is important to the complexity of the 
algorithm. In the algorithm, computing I := min{ i', 1 3j1, (i',j') G Gv with i' < j'} and 
searching only i with i < I is based on Lemma 4.3. Taking this fact and true judgment into 
account considerably saves the time complexity of the algorithm. 
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Lemma 4.4: In Step 1 of the algorithm, g(v + E(v, j, i)(xj  - xi)) = v. 

Proof. The condition of Lemma 4.3 is satisfied since we only consider i < l ,  where (I = 
.l .l -1 .l 

mm{ z 1 3; , (1 , z ) G, _ and-i! < j'} ) . Weexchange 2 a n d j d  the_pair_ (i, .;' ) with j > i 
only when the condition of Lemma 4.2 is satisfied. 

It should be noted that the only edges which are omitted in reverse search algorithm are 
those which do not satisfy the condition of Lemma 4.3. Therefore those edges can not be 
the edges of the spanning tree defined by g. This fact together with Lemma 4.4 and the 
validity of reverse search show that the outputs of the above algorithm are all vertices of a 
base polyhedron. 

Theorem 4.5: There is an implementation of reverse search for enumerating vertices of a 
base polyhedron with time complexity O(n3\V\} and space complexity 0 (n2) .  

Proof. First we consider the time complexity. Suppose that we are given submodular 
function. Then the time for computing f (X) for any X IV is constant since our oracle 
assumption. 

In Step 0, the time for computing v* is 0 (n ) ,  and the time for computing dep(v*, i) for 
each i = (l, 2, - - , n) and its Hasse diagram is known to be bounded by 0 (n2)  (see the 
algorithm given in Section 2). 

In the reverse search of the algorithm, the time to check whether the pair of i and j is 
true is bounded by O(n). Note that there can be at most n2 - 1 such pairs (the number of 
edges) in a Hasse diagram and these are done for each vertex of the base polyhedron. Hence 
the total time for this implementation is bounded by O(n31Vi). Now consider the time for 
computing dep(v, i) (i = 1,2 ,  , n), a Hasse diagram and the index I defined in Step 1- 1. 
As described in Step 0, the time is bounded by 0 (n2) .  Since these are also done for each 
vertex, the total time bound is O(n21Vl). It is clear that the time complexity in Step 1-2 is 

O(n2IVl) 
In the forward search, the time for computing i* is bounded by 0 (n2 )  and the time for 

j* is O(n), the time for computing dependence functions and a Hasse diagram is bounded 
by O(n2). Hence the total time for the forward search is bounded by O(n2 IV)). 

Summarizing above arguments, the time for enumerating all vertices of a base polyhedron 
is bounded by O(n3 !V!). 

Now we consider the space complexity. In Step 0, we need 0 ( n )  space for vertex v*, and 
0 (n2 )  for dependence functions and the Hasse diagram of vertex v*, and also some constant 
space for I, i and j .  In Steps 1 and 2, the space 0 ( n 2 )  remains unchanged. Hence the total 
space complexity is O(n + n2) or 0(n2) .  

Note vertex number \V\ is not contained in the space complexity above. So, it does 
not mean the space needed to save all outputs V, which in general is not bounded by 
0 (n2) .  0 (n2 )  is just the space needed in executing our enumerating algorithm. It should 
be noted that although we need 0 ( n )  space to save a vertex, the total space needed to save 
all vertices of a base polyhedron is O(lV1 + n) not O(n[VI) because exchanging property, 
U = V  + E(v,i,j)(xi -xj).  

We point out again that the complexity given in Theorem 4.5 is based on the assumption 
that a submodular function f : 2-^ -+ R is defined, or there is an oracle that computes the 
value f (X) for each X C N. 

Note the complexity above does not contain the number of linear inequality, which gen- 
erally is much greater than the dimension n (here we have 2" inequalities). 
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Lemma 4.6: The depth of the search path of g is less than n2 .  

Proof. Let v be a vertex of a base polyhedron and Gv its Hasse digram. Exchanging i with 
j of a pair (i, j) (i < j) E Gy creates a new adjacent vertex, say U .  Considering sets S and 
S' defined as S = { t  1 t -<  ̂ i} and S' = { t  1 t i}, for each k with k f S, we also have 
k f S'. Exchange i with j of the pair (i, j) decreases the number IS1 at  least one element j. 
Since there are only n elements, we have the conclusion. 

It is easy to see that the above proof can be stated in a symmetric way, i.e., we can also 
consider sets S = { t 1 t >-v j} and S' = { t 1 t j}. 

Now we can have a conclusion about polynomial delay. The crucial points that our 
enumerating algorithm is also a polynomial delay algorithm are listed below: (1) the lattice 
structure of an extreme point which gives in polynomial time and space the exact information 
about all adjacent points, (2) for each point, the number of adjacent points is bounded by 
n2,  (3) the depth of the search path of g is less than n2 (Lemma 4.6), and (4) we never 
traverse each edge of the search spanning tree more than two times. These arguments imply 
the following theorem. 

Theorem 4.7: The enumerating algorithm in Section 3 is also polynomial delay. 

In above arguments, we do not consider connected components (separators) [4]. Although 
we can considerably reduce the complexity, the upper bound complexity of the algorithm 
retains unchanged. 

Except for the current vertex, no information about the searched vertices is needed in the 
reverse search algorithm. This property makes parallelization of the reverse search possible. 
One trivial implementation is to assign some free processor a child of the root whose branch 
is not yet traversed. This can be done recursively [l] .  Lemma 4.6 tells us that the parallel 
implementation is powerful. 

5. An Unbounded Base Polyhedron 
Here, we make a brief outline about how the reverse search algorithm can be generalized to 
a more general set family than 2^. 

As has been mentioned in Section 2, given a set N, a collection of subsets of N forms 
a distributive lattice D if it is closed under set union and intersection. If a submodular 
function is defined on D # 2^, it is known that the base polyhedron related to  D is 
unbounded (Theorem 3.12 of [4]). For such a distributive lattice, there exists a poset 
P(D) = (N, 5) (obtained by the decomposition method [4]) isomorphic to V. If the base 
polyhedron is pointed (there exists at least one extreme point), the edges (or lines) of its 
Hasse diagram ?(V) are corresponding to the extreme rays of the base polyhedron (Theorem 
3.26 of [4]). These edges will appear in every 'P(D(v)) (v E V) and can not be changed 
during enumerating vertices. 
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