
Journal of t he  Operations Research 
Society of J a p a n  

Vol. 40, No. 3,  September 1997 

A THREE STEP QUADRATICALLY CONVERGENT VERSION OF 
PRIMAL AFFINE SCALING METHOD 

Romesh Saigal 
The University of Michigan 

(Received February 16, 1995; Final August 19, 1996) 

Abstract In this paper we consider the primal affine scaling method and show that,  asymptotically, a 
step selection strategy exists which can be viewed as a predictor-corrector method. We investigate two step 
selection strategies. In the first, one corrector step is taken between each pair of predictor steps, and we 
call this the 2-step method. In the other two such steps are taken, which we call the 3-step method. We 
show that the 2-step method attains a superlinear rate of 1.5 while the 3-step method attains a quadratic 
convergence rate. This improves upon the work of Tsuchiya and Monteiro, who obtain a 2-step rate of 1.3. 

1. Introduction 
We consider here the linear programming problem: 

minimize cTx 
A x  = b 

x > o  

with its dual 
maximize bTy 

A T y  + S = c 
s > o  

where A is an m X n matrix and b and c are appropriate vectors. We assume that 

Assumption 1. The primal linear program has an interior solution. 

Assumption 2. The objective function is not constant on the primal feasible region. 

Assumption 3. The matrix A has rank m. 

In this paper we consider application of the primal affine scaling method for solving this 
problem. The primal method was proposed by Dikin [3] in 1967, who subsequently proved its 
convergence under the primal non-degeneracy assumption, Dikin [4]. His proof also appears 
in Vanderbei and Lagarias [21]. This method was re-discovered, Barnes [2], who proved its 
convergence under the non-degeneracy assumption on both the primal and the dual linear 
programs. In addition, several of its variants like the dual, Adler, Karmarkar, Resende and 
Veiga [I], and the primal-dual, Monteiro, Adler and Resende [I l l ,  were generated in the 
process of implementing the projective transformation method of Karmarkar [g]. 

The convergence behavior of the affine scaling met hod without the non-degeneracy as- 
sumption is now known. For example, Mascarenhas [l01 has recently produced an example 
on which the method fails when a,  the step size to the boundary in the affine scaling di- 
rection, is 0.999. Starting with the work of Tsuchiya [l71 who introduced a local potential 

© 1997 The Operations Research Society of Japan



Quadratically Convergent Method 31 1 

function to analyze the convergence of this method, significant developments have occurred. 
Dikin [5], using the local potential function, has shown the convergence of the primal se- 
quence to the interior of the optimal primal face and the dual sequence to the analytic 
center of the optimal dual face for a 5 i. Tsuchiya and Muramatsu [l91 subsequently 
proved the same convergence behavior when a < $. Simpler proofs of this result have been 
developed by Monteiro, Tsuchiya and Wang [l21 and Saigal [15]. It is also known that the 
dual sequence may not converge when a > 5. Hall and Vanderbei [8] have produced an 
example where this happens. Saigal [l51 and Gonzaga [7] have shown the convergence to 
optimality of the limit of the primal sequence and a cluster point of the dual sequence for a 
slightly larger step size of a <  ̂ &, where q is the number of zero components in the limit 
of primal sequence. It appears that this may be the largest step size for which convergence 
to optimality can be proved. 

By establishing a connection between the affine scaling step and the Newton step, 
Tsuchiya and Monteiro [20] devise a strategy of adjusting step sizes under which the dual 
sequence converges to the analytic center for the optimal face and the primal sequence to 
the interior of the primal optimal face. Their method, asymptotically, attains a two step 
super-linear convergence rate of 1.3, and can be viewed as a predictor-corrector method. 
This paper builds up on their work and generates a different step selection strategy, which 
also can be viewed as a predictor-corrector method. This step selection strategy, asymp- 
totically, attains a two step superlinear rate of 1.5 and a three step quadratic convergence 
rate. In the 3-step method, we take two corrector steps between each pair of predictor steps. 
Also, the primal converges to the interior of the optimal primal face and the dual to the 
analytic center of the optimal dual face. 

This paper is organized as follows. Besides the introduction it has 3 other sections. In 
Section 2, we introduce the affine scaling method, and state some of its known properties. 
In Section 3 we relate the affine scaling step to Newton step generated when computing the 
analytic center of a certain polyhedron. In Section 4, we introduce the accelerated version 
and establish its convergence and convergence rate. 

We now present the notation. Given a vector v, the largest component of v is denoted 
by +(v), i.e., $(v) = maxivi and llvl] represents its 2-norm. e is a vector of appropriate size 
with each component equal to 1. Given a matrix A and a subset N we represent by 

1. UN the subvector of v composed of components indexed in N. 
2. AN the submatrix of A with columns indexed in N. 
V represents the diagonal matrix generated by the corresponding components of v. k 

is the iteration counter. v^, k = 1,2,  is a sequence of vectors, which is also denoted by 
{vk}. K denotes a subsequence and is a subset of the positive integers. Thus {vk}k^K is the 
subsequence of {vk} generated by K. {Vk} is a sequence of matrices. If v* is the limit of 
{vk}, V* represents the diagonal matrix generated by v*. Thus V& represents the diagonal 
matrix generated by v; raised to the power p. 

2. The Affine Scaling Method 
In this section we present the primal affine scaling method and known results (without 
proof) about the sequences generated by this method. We now present the method we will 
deal with in this paper: 

Step 0 Let xO be an interior point solution, 1 > a > 0 and let k = 0. 
Step 1 Tentative Solution to  the Dual: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Step 2 Tentative Dual Slack: 
k T k 

S = c - A  y 

If sk < 0 then STOP. The solution is unbounded. 

Step 3 Min-Ratio test: 

where 4 ( x )  = maxjxj. 

Step 4 Step Size Selection: Choose, by some rule, the next step size a < o.k  < 1 .  Also, if 
ek = 1 set a/- = 1. 

Step 6 Iterative Step: If X̂ = 0 for some j ,  then STOP. xk+' is an optimal solution to 
the primal, yk the optimum solution to the dual. Otherwise set k = k + 1 and go to 
step 1. 

The method presented above is called the long step affine scaling method. This method 
can stop a t  steps 2  or 6. We now show that in this case, the problem is solved in a finite 
number of iterations. 
Theorem 1. {cTxk}  is strictly decreasing. Also, exactly one of the following holds: 

1. The algorithm stops at Step 2. Then the linear program has an unbounded solution, 
i.e., its dual is infeasible. 

2. The algorithm stops at Step 6. Then xk+l is an optimal solution of the primal and yk 
is an optimal solution of the dual. 

3. The sequence { x k }  is infinite and {cTxk}  is not bounded below. Then the linear pro- 
gram has an unbounded solution. 

4.  The sequence { x k }  is infinite and {cTxk} is bounded below. Then {cTxk}  converges 
to, say c*, 

Proof: To see the first part, from Step 5, we note that 

As can be established from the definitions, x k  > 0 and Ok 2 1. Also, 

where Pk = I - Xk AT ( A X : A T ) l  AXk is the projection matrix into the null space N ( A X k )  
of the matrix AXk.  Now, by a simple calculation, we see that 1 1  PkXkcll = 1 1  Xksk 1 )  and thus 
we have 

CY = cT!k - (2.1) 
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From Assumption (2) the subtracted term in the above formula is non-zero. 
To see part 1, we note that for sk < 0, xk+l remains strictly positive for every a > 0, 

and thus cTxk+l Ã‘> -m as a Ã‘) m. 

To see part 2, let x y l  = 0. Then, from Step 5 we see that 

x k s k  
and thus l = ak+. So ak = l and xfsf = + ( x k s k )  2 0. It then follows 

4 , ( X k ~  

and, from Step 4, that Ã ‡  = 1. Thus xfsf = VX^fl. Hence, for every } # 
that sf 2 0 

l xksk = 0, 
33 

k and so S ,  = 0 and = X ,  > 0. Thus S* 2 0 and X*+' > 0 satisfy the conditions of the 
complementary slackness theorem. 

Part 3 follows from the monotonicity of {cTxk} ,  and part 4 from the fact that every 
bounded monotone sequence converges. 

We will henceforth make the following assumption: 
Assumption 4. The sequence { x k }  is infinite and the sequence { c T x k }  is bounded below. 

We now state two results whose proofs can be found in the cited references: 

Proposition 2. Let Assumption (4) hold. Then 
1. Xksk  0. 

2. { X }  converges, say to X*. 
3. There is a S > 0 such that for each k = 1 , 2 ,  - - a 

Proof: The proof can be found in Tsuchiya [17], Monteiro, Tsuchiya and Wang [l21 
and Saigal [15]. M 

Given that the sequence { x k }  converges, let the limit of this sequence be X * .  Define: 

We now state known properties of the sequences { y k } ,  {ak},  {U*} and {vk} .  Their proof 
can be found in cited references. 

Proposition 3. Consider the sequences {yk} ,  { s k } ,  {U*} and { v k } .  
1. They are bounded. 

2. There is an L > 1, pl > 0 and p2 > 0 such that for all k > L 
(a) eTu& = 1 + bk where $ pl(cT:^ - c ' f .  

(b) 11411 5 p2(cTxk - c*)2. 

(c) $ ( U k )  = ̂ ) 2 &. 
W 1 1 " k l 1 2  > 

Proof: The proof can be found in [15]. 
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3. Affine Scaling and Newton's Method 
In this section we will establish a relationship between Newton step for computing the 
analytic center of a certain polyhedron and affine scaling step. We will use this to show 
that step size a can be chosen so that, asymptotically, the affine scaling step gets arbitrarily 
close to the Newton step to analytic center. This then allows development of a step selection 
strategy in which this analogy generates a "corrector step" towards the analytic center of 
this polyhedron. Higher order convergence is obtained by taking large values (close to 
1) for a when sufficiently close to the analytic center of this polyhedron; otherwise value 
determined by the analogy to Newton's method, to get close to the analytic center again. 
In this section, we first introduce this polyhedron, then investigate Newton's method for 
computing the analytic center of the polyhedron. We then establish the required connection. 
3.1. Two Polyhedrons 
Consider B and N defined by (2.2). Define the affine set 

which represents all possible dual solutions (not necessarily feasible) which are comple- 
mentary to x*. First observe that since it contains all cluster points of bounded sequence 

{(IJk? sk)}, FT) # 0- 
Let (y,  2)  G FT) be arbitrary, but fixed. Then for any pair of primal feasible solutions X 

and 2, 

Consider {vk} defined by (2.2). From Proposition 3, part 1, sequence {vk} is bounded. Also, 
from above identity, it belongs to the polyhedron V = {v : AV = 0, sZvN = I ,  VN 2 O}. 

Let V N  = {vN : v G V}. Starting at a given v;, asymptotically, Newton's step for 
k + l -  k computing the analytic center of this polyhedron is related to the affine scaling step vN V^. 

The latter is determined by q. We explore this relationship in subsections that follow. 
There is also a close relationship between the analytic centers of the two polyhedrons F-[)n{s : 
SN 2 O} and VAT, which we now explore. 

The analytic center of FD n {S : SN O} is defined by the following optimization problem: 

maximize EjeN log(sj) 

Afcy+sN = cyi 

AÂ£ - C B  

SN > 0 

with its K.K.T. conditions: 
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while the analytic center of V N  is defined by: 

maximize EjeN log(^) 
ANvN +ABvB = 0 

s5vN = 1 
VN > 0 

with its K.K.T. conditions: 

The following relates the two analytic centers defined by systems (3.5)-(3.8) and (3.1)- 
(3.4).  
Proposition 4. Analytic center ( y * ,  S * )  of Fv^\\s : S N  > O} exists if and only if analytic 
center v& of V N  exists. Also, for some p* > 0 

Proof: If v& is the analytic center of VN,  then for some 6 = Q* > 0, VB = V;  and 
y = U * ,  equations (3.5)-(3.8) are satisfied. Thus 

satisfy the equations (3.1)-(3.4). Also, if ( y* ,  S * )  is the analytic center of Fy n { S  : S N  >_ O}, 
then for some v* equations (3.1)-(3.4) are satisfied. Thus 

solve equations (3.5)-(3.8). The result follows from equation (3.1).  H 
3.2. The Affine Scaling Step 
We will study the affine scaling step with a view to relating it to a Newton step for computing 
an analytic center of VN. As is now well known (see for example, Barnes [2]) the affine scaling 
direction used in Step 5 of the method, is generated by solving the following Ellipsoidal 
Approximating Problem: 

minimize cTx 
Ax = b 

Substituting p = xk  - X we obtain the equivalent problem: 

maximize cTp 
Ap = 0 

lIxr1Pll 5 1. 
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T 
Now c p = ?p = 3 5 ~ ~  for (y,S) G h. Thus, for fixed (g, 3, the above problem is 
equivalent to 

maximize %pN 
ANPN + ABPB = 0 

pGX$pN + pgX$pB 2 1 

By noting that the solution of this problem is on the boundary of the ellipsoid (i.e., the 
second constraint is at equality), the K.K.T. conditions for this problem (with 9 > 0) are 

k - xisk -k = (~x;~T)-l~x;3 The solution to the system (3.9)-(3.12) is the following: p - - 
~ ~ x k ~ k ~ ~  ' ' 

= yk - y and 20k = \\Xksk\\. p is obtained by multiplying (3.9) by ANXk,N, (3.10) by 
ABXkTB, adding and substituting (3.11). pk and ok are then obtained by substituting y k  
into (3.9)) (3.10) and (3.13). 

Now, let the sequences {U*} and {vk} be as defined in (2.2). Letting, for some given k ,  
U and v represent uk and vk respectively, we define AN = ANVN and iN = V N ~ N ,  where V' 
is the diagonal matrix whose j t h  diagonal entry is v, for each j E N. Consider the system: 

The following proposition establishes a connection between the conditions represented 
by the above systems (3.9)-(3.12) and (3.13)-(3.16). 

Proposition 5. Consider the systems represented by the equations (3.9)-(3.12) and 
(3.13)-(3.16). 

1. (3.9)-(3.12) have a unique solution which generates a solution to (3.13)-(3.16). 
2. The solution to (3.13)-(3.16) is unique up to a choice of pc; and, there is a value for 

pc for which the resulting solution also solves (3.9)-(3.12). 
3. When AB has full column rank, the two systems are equivalent. 

Proof: Since the Equations (3.9) - (3.12) represent the solution to a strictly convex 
problem, they have a unique solution. Using this solution, define the vectors 

- y ( c T ~ k  - c*) y = 
20IluIl 
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It is confirmed, by simple algebra, that U, ij p and p'g solve the System (3.13)-(3.16). Thus 
we have proved Part 1. 

From part 1, it follows that (3.13)-(3.16) have a solution. Considering q~ = Hull2 ) 
fi = rr^p-, ij and p'g as variables, this system is linear in these variables. If AB has full 
column rank, the solution to (3.13)-(3.16) is unique, and part 3 follows. Otherwise, since 
(3.13)-(3.16) can have a solution only if S; lies in the row space R(A?) of AB, the third 
condition must have redundant constraints which are identified by choosing any full column 
rank submatrix of AB. 

To see part 2, let AB = (Ac, AD) where AC has full column rank and spans the range 
(or column space) q A B )  of AB. Thus, for some unique matrix A, An = AcA. Replacing 
equations (3.14) and (3.15) by 

and 

respectively, we obtain a new system that has a unique solution. By setting pb = ( p k p b ) ,  
and letting p& = 0, the solution to Equation (3.18) generates a solution to (3.15). Now, 
let (qN, ij, fi, pb) be any solution to (3.13)-(3.16). This then generates the unique solution 
(qN, ij, ,6, p; - Apb) to (3.13) and (3.16)-(3.18). Since only the vector pb is modified in any 

B solution to (3.13)-(3.16), part 2 is established with the required p'g = i c T t k ~ ~ ) l l Ã § l 1 2  Â 
A consequence of Proposition 5 is that though p~ is determine unique y by affine 

scaling method, when a full column rank submatrix Ac of AB is substituted in its place, 
the resulting solution only changes the value of pb. It turns out that pa plays no role in the 
asymptotic analysis of the affine scaling method. 
3.3. Analytic Center and Newton's Method 
In this section we consider the application of Newton's method for finding the analytic 
center of VN. 

Solution to the K.K.T. conditions (3.5)-(3.8) is unique, if it exists. Analytic center 
problem has a feasible solution, but the set may not be bounded, and thus the center may 
not exist. Indeed, it can be shown that,  for a given N, the center exists if and only if X* 
is an optimal solution of the primal linear program. Since we have not shown this fact, we 
cannot claim the K.K.T. conditions have a solution. None the less Newton's method can be 
applied to these conditions, and its convergence properties investigated. In case the analytic 
center of VN does not exist, Newton's method will not converge. In each of the results we 
derive, whenever needed, we will make the explicit assumption about the existence of the 
analytic center in the hypothesis of the result. However, such results can only be used after 
this existence has been established. 

We now apply Newton's method to the system of equations (3.5)-(3.8) to determine its 
zero. The Newton direction (AV, Ay, A$) at  (v, y, 6) is obtained by solving the following 
system: 
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Defining = y + A y ,  6 = 9 + A 9  and substituting W N  = V a v N ,  AN = ANVN and 
S N  = VNSN we can rewrite the system (3.19)-(3.22) as: 

w ~ + % y + h f f  = e (3.23) 
@ = - 0  (3.24) 

& N + A ~ A V ~  = 0 (3.25) 
AT 
S N W ~  = 0 (3.26) 

We substitute Ac, a full column rank submatrix of AB, in the system (3.23)-(3.26) and 
note that it is linear in the variables w ~ ,  AV,-, ij and 0, with the underlying matrix: 

This matrix is non-singular for every V N  > 0. As seen in the proof of Proposition 5, solution 
to the system (3.23) - (3.26) is unique up to a choice of A u g .  The result below, derived from 
this analysis, relates to  the sequence {v&}  in V N ,  and is thus applicable to the sequence 
generated by the affine scaling met hod. 

We state, without proof, the following standard result on the convergence and conver- 
gence rate of Newton's method. 
Lemma 6. Let { v & }  be a sequence in V N  that converges to V;, the analytic center of 
V N .  Then there is an L > 1 and pl > 0 ,  p2 > 0 such that for all k > L 

1. = 1 + 5,: where l & [  5 p l ~ ~ v &  - vkl l .  I Iuk -G I I 
2. \\V& +AV& - vu\\ < p211v& - v#. 
Now consider the affine scaling step as determined by the system (3.13)-(3.16). We note 

that if we consider fi, p'g, ij and -Â£ as variables, this system is also linear with the HI2 
underlying matrix M ( v N ) .  Thus we can prove the following proposition: 
Proposition 7. There exist L > 1 and p > 0 such that for every choice of C and all 
k > L, 

with llAklI 5 p l l c T 2  - c*l12. 
Proof: Consider the systems (3.1 3)-(3.16) and (3.23)-(3.26). In the latter system, 

make the change of variable W ^  = e-WN. Then ijGwh = 1. Now, by defining v'^ = VC - A v c  
and 

a4 = p; + v; 

generate the system M ( v N ) a  = ( 0 ,  -!Â£ 0, o ) ~ .  This system is seen, with C l  = v i 1 u 1  and llul12 
s'Q = fi, as the K. K. T. conditions of the following optimization problem: 

minimize +iifV;'iil + (s'p)^ 
AN& + Aca4 = 0 
%a1 = 0 .  
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Here, a2 and a3 are the respective Lagrange multipliers of two constraints. Consider the 
first constraint. Since AC has full column rank, by using the formula (generated by the first 
constraint) 

a4 = - ( A ~ A ~ ) - ~ A ~ A ~ G ~  

we can eliminate a4 to generate the following equivalent problem: 

1-T -2-  minimize ^al  VN al  + ~ $ 6 ~  
A&al = 0 
S^G1 = 0 

where S& = -A5Ac(~$Ac}-ls& and A& = AN - A ~ ( A Z A ~ ) - ~ A ^ A ~ ~ .  The K.K.T. condi- 
tions of this problem are: 

V ~ ~ i i ~  + S; - ( ~ g a i  - sAva', = 0 

A& = 0 
-T - 
S N O l  = 0 

and we obtain the solution (aLa;IT = ( A ~ V $ A ~ ) ~ A N V $ S &  where G = 

From Theorem 4, Saigal [15], 1 1  (a,, a',) 1 1  is bounded above by q(A&, SN) lls&l] where q(A&, SN) 

is a positive constant independent of the diagonal matrix VN. Thus, for some q(A, SN, C )  > 
0. 

T -  Thus, for f3' = 1 1  (AN, S^) llij(AN, SN) + I I A ~ A ~ ( A ~ A ~ ) - ~  1 1 ,  from the first relation of the 

K.K.T. conditions, we see that llal l ]  = l[VNGl 1 1  5 {Vi((A&)Tak + SNa'y - S&) 1 1  5 /3'lls~llll~~lI~ 
Hull2 ' 

Since llsc 1 1  <. IsB 1 1  for every choice of C, our result follows from Proposition 3 parts 1, 2(b) 
and 2(d) by choosing C that gives f3' its largest value. Â 

3.4. Affine Scaling and Newton Directions in VN 
In this section, we show the connection between the Newton direction AV& = vkNw; at 
v& studied in Proposition 7, and the affine scaling direction as interpreted in VN. Consider 
the sequence {v;} in VN generated by the affine scaling algorithm. Then we can show the 
following result: 
Proposition 8. The affine scaling direction at v& in VN is 

where J(uk) = S. Also> thre Newton direction AV; at v& in V N  is: 

where A is as in Proposition 7. 
Proof: Since W& = v$Av& the formula for the Newton direction follows from 

Proposition 7. To see the affine direction note that using step 5 and definitions we obtain: 
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and we are done. Â 
If one is able to choose a k  = - 

2+9  7 
the scalar term in the formula for the affine scaling 

direction becomes equal to 1, and t us the direction taken by Newton's method for comput- 
ing the analytic center of V N  becomes, asymptotically, close to the affine scaling direction. 
Using Proposition 8, we will show that a sensible choice for exists so that  the scalar term 
in formula (3.27) becomes close to 1. It is this observation that allows the interpretation of 
this step as a corrector step. 

4. Accelerated Primal Affine Scaling Method 
Sequence {v;}, generated by affine scaling method, lies in the polyhedron V N .  We see from 
Proposition 8 that, by a choice of an appropriate value of a.k (which is a good estimate of 

1  can be made close to one. Then, the affine scaling step, asymptot- 2j~~j)' constant 1-CYk6(Ua 

ically, gets close to the ewton step for computing the analytic center v& of V N .  The basic 
idea now is to take aggressive, or large, values of when v h  is determined to be close to v&. 
We call this the predictor step. And, when v& is 'far' from v^, take smaller values (which 
approach 0.50) that make the constant in affine scaling step approach one. We call this the 
corrector step. Another variation we treat here is in the number of corrector steps taken 
between each pair of predictor steps. We investigate situations when either one (which we 
call the two step method) or two such steps (which we call the three step method) are taken, 
and show that the asymptotic rates of convergence attained are respectively, superlinear at 
1.5 and quadratic. We now introduce the accelerated method. 
4.1. The Method 
The accelerated primal affine scaling method is generated by replacing steps 3 and 4 of the 
method described in Section 2 by the following steps: let 0 < a < 1, typically close to 0.95, 

1 and CT = ?, 

Step 3' Min-Ratio Test: 

If 6k = 1 set ak = 1, and go to Step 5. 
Step 4' Step Size Selection: If eTXksk  > 1, set m = a and go to Step 5. Otherwise, define 
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1. Predictor Step: If p k  2 1.5 then define 

P -  for 2 step method 
T k = {  

for 3 step method 

and 
1 1 

ak = max{-, 1 - e?} = max{-, 1 - 7Ppk} .  
3 3 

2. Corrector Step: Otherwise, 

Some comments are in order here. Note that from Theorem 1, c T X p  = JIXkskf12. The 
step size implemented during the acceleration phase of the method is never less than $, 
and thus the propositions of section 2 apply to the generated sequences. Also, we see from 
Proposition 3 part 2(a) that eTu^, = 1 + Sk and thus 

As we shall subsequently see (Lemma 10 part 4) 71 is of the order O(cTxk - c*). Using 
Proposition 8 ,  it can be seen that (see proof of part 1 Lemma 10) h^ computed in step 
4', is a very good estimate of the Newton step AV&, and its magnitude e k  can be used to 
estimate the distance from v& to the analytic center v& of V ^ .  Asymptotically, we apply a 
predictor step when the size, Q of the Newton step is of the order O(cTxk - c*)2; and the 
corrector step otherwise. Since 7 k  is of the order O(cTxk - c*), p k  is an estimate of p where 
O(cTxk - c*)P is a measure of this distance. is computed in such a way that  after the 
appropriate number of corrector steps, subsequent pk becomes close to 2. As is well known 
about the Newton step, ~ ~ A v & ~ ~  is a very good estimate of l [ v ~  - v&[[ . During the corrector 
step, ak is chosen s'o that 

and thus the affine scaling step behaves, asymptotically, like a Newton step. Because v y  - 
v* and AV* can only be estimated to within O(cTxk - c*)2, pk  cannot be guaranteed to 
be greater than 2, and thus higher rates of convergence cannot be guaranteed. We now 
state the main theorem we will prove about the convergence properties of this accelerated 
method: 
Main Theorem Let the sequences { x k } ,  { y k }  and {ak}  be generated by the accelerated 
method, and let assumptions (l)-(^.) hold. Then, there exist vectors X * ,  y* and S* such that 

1. xk Ã‘Ã X* 

S. yk --+ y* 
3. sk -+ S* 

where X* lies in the relative interior of the optimal face of the primal, and (y*,  S * )  is the 
analytic center of the optimal face of the dual. In addition, asymptotically, the sequence 
{cTxk - cTx*} converges to zero as follows: 
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1. The rate of convergence of the two step method is superlinear with a rate of 1.5 
2. The rate of convergence of the three step method is quadratic. 
We now prove a sequence of lemmas that will be used in the proof of this theorem. 

Lemma 9. There exists an L > 1 such that for every k > L ,  Nk = 
Proof: From Proposition 3, there is an L > 1 such that for all k > L, from part 

k T k  < 2(b )  l ( xB)  sB\  _ p2~~xkB\\(cTxk - c*)2, and from part 2(a) ( x ^ f s k  = (cTxk  - c*)( l  + J k )  

where IJkI 5 p1(cTxk - c*)2. Thus there is an L > L such that for all k > L, = 
k T k  k T k  x B )  sg + ( x N )  sN > 0.50(cTxk - c*). Also from Proposition 2 part 3, fof < (cTxk  - c*) 

for each j E N. Since X $  > 0 and x k s k  Ã‘ 0 ,  there is an L > L such that for all k > L, 
and 1 ;  G B 

and, for each j G N, 
x̂ Ts'1 > v/050(cTxk-c*)0-50 

^ KcTxk  - c*) 
k 

X j  

and we are done. Â 

Lemma 10. Let L be as in Lemma 9. There exists an L > L, 6, > 0 and O2 > 0 such 
that for all k > L 

1. llhk - Auk11 ^ c T x k  - c*)2. 
c T ^ t  1 -c* 

2 cTmk-c* 
k 1 1 ~ ~ 1 1 ~  = 1 - a k S ( u k )  where S ( u N )  - (f>(uk) 

3. l - ~ ~ w & ~ ~  - lAkl 5 S(u&) 5 l .  
k T k  4 .  0.50(cTxk - c*) 5 ( x Ã £  % 5 l.5(cTxk - c*). 

Proof: The following identity is derived from Proposition 8 and definitions: 

and part 1 follows from Proposition 3 parts 1 and 2(a), where Sk is as in Proposition 3 part 

2(a). 
From steps 3 and 5 and definitions, we obtain 

and part 2 follows from Proposition 3 part 2(c) .  
Since part 2 holds for every a k  1, choosing a k  = 1 gives the upper bound of part 3. 

The lower bound follows from Proposition 7, 

T k and the fact that Ã > 1 - X .  Part 4 follows from the fact that ( x & f s ^  = (cTxk - c*)e U N ,  

and Proposition 3, part 2(a). Â 

The next proposition shows that the step chosen during the corrector step is converging 
to 4, when the sequence {v$} is converging to the analytic center v; of V ^ .  
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Proposition 11. Let U& -+ 0 on some subsequence K .  Then, on K 

Proof: From Proposition 3 part 2(a) and upper bound of part 3 of Lemma 10, 2ak > 
eTuk > 1 - l i S k l .  From equation (4.2) 

and we get the result as dk and [Ak  1 )  go to zero. H 
4.2. The Predictor and Corrector Steps 
We now investigate the predictor step under the assumption that the analytic center v& 
exists and the iterate v& is close to it. 
Lemma 12. Let the analytic center v& > 0 of V N  exist and L be as in Lemma 9. There 
exist L > L and TT > 0 such that for all k 2 L for which llv$ - v&]l 5 /5(cTxk - c*)" with 
p > 0.25 

1.5/5 l l - ^ l l  5 -(cTxk - c*)'. 
7r 

mmJE7^* 
Proof Let TT = > 0 and define L 2 L such that for all k 2 L,  TT 2 ,8(cTxk - 

c*)025  and 
k 0 . 5 0 1 ~ ~ ~  - v&ll 5 ~ ~ A v $ I I  5 1 . 5 K  - V & ] ! .  (4.3) 

The inequality (4.3) follows from part 1 of Lemma 6. Now, for each j G N, 

v: > v* - \V', - v;1 ^ 2TT - ft(cTxk - c*)' TT. 
3 -  3 

Thus \W^\\ = ~ ~ V ~ ~ A v ~ ~ ~  5 Fllv& - v&ll and we are done. H 
The next proposition investigates the predictor step (Step 4,  part 1 )  of the accelerated 

method. This result also assumes that the analytic center v& exists, and some iterates get 
close to it. This is implicit in the hypothesis of the proposition. 
Proposition 13. Let L > 1 be as in Lemma 12. Assume that for some k > L and 
P > 0, \\v& - v&ll $ 13(cTxk - c*)' for some 1 < p $ 2,  and a k  > $. Then 

1. There are constants O1 > 0 and 192 > 0 such that 

T k _ C*)l+~k~k < cTxk+l - 5 , q c T x *  - c*) l+minfr~k~k>.  O1(c X - 

2. There is a O3 > 0 such that 

Proof To see the first part, note that from step 4'  part 1 and Lemmas 10 and 12 we 

get 
k T k  T k P k  ~ . ~ o ~ ~ ~ ~ ( c ~ x ~  - c*lTkpk 5 ( ( x ~ )  s N )  

5 1-a-k 
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and the first part follows. To see the second part, from Proposition 8, definitions and some 
straightforward manipulation, we see that 

and 
v';'' - v; = AV; + tk 

where 

pk 5 where Sk is as in Proposition 3. From Lemma 10 part 3, J(u fc )  5 1, llhkll = = f k  
(1.5)pk(cTxk - c*)pk and l - a k  = ? F p k .  Thus, for lSkl 5 0.50, and some 0 > 0 

Thus v';+' - V$ = vk  + A V ~  - v& + t k .  For some p1 > 0 and 2p > ( 1  - T ~ ) ~  from part 2 
of Lemma 6 we have 

(1-7 ) P  < d3(cTxk+l - c*) Â¥+W 
the last inequality of which follows from Proposition 13 part 1, and we are done. Â 

We now investigate the corrector step, again with the assumption that the analytic center 
exists. 

Proposition 14. Let L be as in Lemma 10, and assume that for some k 2 L and f t  > 0 ,  
l v h  - v'N\\ > ,8(cTxk - c*)P with p < 1 and a k  > !j. In case 

1. 0.50 p < 1, then a corrector step will be taken, after which, for some 4 > 0 

2. 0.25 < p < 0.5, then at least one corrector step will be taken, and after at most two 
steps, for some 6$ > 0 

Proof: From parts 1 of Lemmas 6 and 10, we note that for some 0-1 > 0 ,  ck 2 
f l x k  - c*)'. Also, from part 4 of Lemma 10, % S l .50(cTxk - c*). Thus pk is close to p, 
and so a corrector step will be taken. Let 

From part 2 of Proposition 3 and Equation 4.2, a k  5 * ( l  + l ~ w { v ~ ~  + HAk]]). Thus from 
Lemma 12. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Quadratically Convergent Method 325 

where, for some 0-2 > 0 and 0-3 > 0 , \S'^ <  ̂ 02(cTxk - c*)2 and lpi; 1 adcTxk - c*)p. Thus, 
1 for all large k ,  5 < ak < $, and so % = a^. Now, from part 2(a) of Proposition 3, 

Using Proposition 8, 

where 

From 
Thus 

From 

Proposition 3 parts 1, 2(a), 2(c) and 2(d) and for some 0-4 > 0, lltkll <  ̂ ^(cTxk - c*)2. 
after one step with this a/;, we see from part 2 of Lemma 6 

parts 2 and 3 of Lemma 10 we see that 

and, for all sufficiently large k such that l &  1 < 0.50, we obtain 

Part 1 follows with 9, = (0.25)2P@*. Part 2 follows by taking one more corrector step, and 
using the same analysis as for part 1. M 

4.3. Proof of Main Theorem 
We now give the proof of Main Theorem. 

Proof: We first show that an infinite number of predictor steps are taken. Assume that 
only a finite number are taken. Then, there is an L > 1 such that for all k > L, a corrector 
step is taken. But by the definition of this step, the value assigned to a is less or equal 
to 3 and greater than or equal to $. Thus the global convergence follows from the theorem 
of Tsuchiya and Muramatsu [19]. And the primal sequence converges to the interior of the 
optimal primal face and the dual sequence to the analytic center of the optimal dual face, 

n { S  : S N  > O}. Thus, from Proposition 4, U& the analytic center of V N  exists, and 
U$ Ã‘ V;. Also, from Lemma 6, {v:} converges quadratically to U;, and from Equation 
4.4, {cTxk} converges no faster than linearly to c*. Thus, for every 2 > p > 0, there exists 
an L 2 1 such that for every k >_ L, \\V'M - U& \ \ (cTxk - c*)P. Now, from part 1 of Lemma 
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6 and parts 1 and 4 of Lemma 10, pk will approach 2. This contradicts our assumption, 
since a predictor step will be taken. 

For each k E K '  let a predictor step be taken, and let k ? K". rom Step 4' we see that 
ck  5 7;.5 and, from Proposition 3 part 2(-a), since.'yk = (1 + Sk)(cTxk - C*), we see that 
Q Ã‘ 0 for k E I<'. Thus 

vk h;=---- -+ 0 for k E A". 
1 + ̂ k 

V ~ , N  - 
llukl12 

Thus, from Proposition 8, Ak Ã‘ 0 for k E K' and thus the sequence { ~ k } ~ ~ ~ l  converges 
to the analytic center v;, and thus it exists. 

Let k be sufficiently large at which a predictor step is performed. Since a k  2 for 
every iteration, Propositions 2 and 3 hold. Thus, during the predictor steps a/; Ã‘ 1 and 
a predictor step with a k  > $ will be taken. From Proposition 13, we see that,  for some 

03 > 0, 
( l - ~ k ) ~ k  

v&+' - "wll ^ $3(cTxk+1 - c*)Â¥+'Ãˆ'Â 

By substituting = e, we obtain 

and after one corrector step will attain conditions of the predictor step. Also, by substituting 
2 -1 

r k  = *, weobtain 
T k+l - * 0.50 Iv&+l - v;vll g 3 ( c  X C )  . 

So, after at most two corrector steps, the conditions for the predictor step are satisfied. 
Now, the convergence rate of {cTxk - c*} is given by Proposition 13 as 1 + ~kpk-  Thus, 

and asymptotically, the convergence rates for the two and three step methods are 7 
2 1+pk From Lemma 6, the rates of convergence of {v:} and {cT^}, Equation (4.4), part 
1 of Lemma 10 and the definition of pk, we note that pk will become greater than or equal 
to 2, and our theorem follows. Â 
4.4. Asymptotic efficiency of Acceleration 
We now investigate the asymptotic efficiency of this acceleration scheme and show that the 
three step method maximizes a measure introduced by Ostrowski [l41 section 6-11. This 
measure balances the greater work done to achieve the higher asymptotic rate of convergence. 
The simplest way to  get order four convergence from a sequence generated by quadratically 
convergent Newton's method is to drop each odd element of the sequence. The convergence 
rate has increased but so has the work per iteration. Ostrowski's measure is invariant under 
such manipulations. For a method which requires W units of work per iteration and achieves 
a convergence rate of p, the measure of efficiency is defined as 

By choosing = for a = $, we obtain a convergence rate of &$ for a (r +2)-step 
(l+a)  ~k 

method, i.e., where ( r  + 1) corrector steps are taken between each pair of predictor steps. 
The table below gives the calculation of this efficiency: 
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We note that, under this measure, the three step method is most efficient. 

Algorithm 
2 Step 
3 Step 
4 Step 

Two step Quadratic 
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