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Abstract In this paper, we deal with a two-stage search consisting of the broad search and the inves- 
tigating search, and derive conditions of an optimal investigating search plan maximizing the detection 
probability of a target. We consider a search for a target in an area under a restriction of search time. In 
this search, contacts of false signal caused by system noise are inevitable, and when a contact is gained, the 
searcher must investigate the contact to ascertain whether it is the true target or not. We derive conditions 
of the optimal investigating time and elucidate properties of the optimal plan. Several numerical examples 
are examined and interpretations of the optimal conditions are given. 

1. Introduction 
In this paper, we consider a search for a target in an area under a restric- 

tion of total search time T. Here, we assume that the detection device being used 
by the searcher is frequently disturbed by false signals that are similar to the 
true target. Hence, the searcher must investigate the obtained signal (called 
a contact) in detail by another sensors whether it comes from the true target 
searching for or not. Therefore, the search process is composed of two stages ; in 
the first stage, a broad search is carried out to gain contacts, and in the second 
stage (called an investigating search), the contact obtained in the first stage 
is examined in detail to confirm whether it is the true target or not. As for the 
broad search, the random search K41 characterized by a Poisson process is assumed 
and the searcher contacts the true target with a Poisson rate A. if there is not 
any false contact. On the other hand, the false contacts consist of two types 
which cannot be distinguished by the detection device used in the broad search. 
One is the contact of a false signal emitted from a real object being similar to 
the true target and the false contact of this type can be distinguished from the 
true target by the investigating search. Another type of the false contact is 
caused by a false signal in background noise or system noise. In this case, since 
there is no object to be investigated, usually no positive information telling it 
to be false is obtained by the investigating search. Hence, if the investigating 
search is continued long without any information, the searcher must stop it at 
some appropriate time, otherwise he cannot avoid the risk of wasting the search 
time by the investigating search for the false contact. In this case, the searcher 
must abandon the unconfirmed contact and restart the broad search to get a new 
contact. Since we assume that the target stays in the search area during the 
search and the random search is carried out in the broad search, the contact rate 
of the true target A. o does not change even if the unconfirmed contact is the true 
target. It should be noted that the search-and-investigation process mentioned 
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above is a sampling test with replacement. 
In this paper, we consider a search involving the false contact of signal from 

the system noise. The searcher begins his search with the broad search and he gets 
a contact sooner or later. The searcher cannot know whether the contact is true or 
not by the detect ion device used in the broad search, but he observes the distinc- 
tive feature of the obtained signal and can know the probability of the contact 
being true. This probability is referred to the reliability of the contact. The 
investigating search for the contact is started immediately if it is worthy of 
investigation. The investigating search is stopped if the true target is con- 
firmed or if it is continued so long without any information. Here, we assume 
that the searcher desires to maximize the detection probability of the target 
(the term "detection" is used only when the investigation of the true target is 
finished successfully). The purpose of this paper is to determine optimally the 
stopping time of the investigating search for the contact obtained at time t 
according to its reliability. 

The optimal search with false contacts have been studied by several authors. 
As for search problems with the false contacts by real objects being similar to 
the true target. Stone and Stanshine [61, Stone et al. [71 and Dobbie [l] dealt 
with the optimal broad search including the investigating search uninterrupted 
until finishing the investigation. These studies are compiled in the text book 
by Stone r51. Preceding studies of our problem, the optimal investigating search 
for the noise type false contacts, were studied by Kisi L31 and Iida [ZI. Assuming 
a large number of targets and false contacts of noise type, Kisi studied the 
optimal investigating plan maximizing the expected number of targets gained during 
a limited search time. He derived a necessary condition of the optimal investi- 
gating time and showed numerical examples of the optimal solution. On the other 
hand, considering a single target and noise type false contacts and assuming the 
search to be continued until detection of the target, Iida studied the optimal 
investigating plan minimizing the expected time to detection of the true target. 
He showed the necessary and sufficient condition for the optimal investigating 
search plan and elucidated the structure of the optimal plan. In contrast with 
these studies, this paper deals with an unsolved investigating search problem 
maximizing the detect ion probability of the target under a limited search time and 
analyze the properties of the optimal investigating search plan. 

In the next section. we describe the assumptions of the model and formulate 
the search process, and in Section 3, theorems elucidating the structure of the 
optimal investigating search plan are presented. Several numerical examples are 
analyzed to show the properties of the optimal plan in Section 4. Finally in 
Section 5, we examine meanings of the conditions for the optimal investigating 
plan and discuss the relations between our model and results studied by the 
previous authors. 

2. Assumptions and Formulation of the Model 
Assumptions of the model dealt with here are as follows. 

(1). A searcher searches a target distributed uniformly in a known region (area A) 
and starts his search with the broad search. In the broad search, the random 
search is assumed ; the searcher searches the area for the target randomly with 
speed v and by a detection device with sweep width W, and the search pattern 
is random in the sense that the path can be thought of as having its different 
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(not too near) port ions placed independently and randomly of one another in A. 
By this assumption, the searcher contacts the true target with a Poisson rate 
A = vV/A [4,81. 

(2). The search time is assumed to be continuous and be restricted by T. The time 
is counted in the reverse order and we call the time t when the search time t is 
remained until the end of the search, namely, t = T at the beginning of the 
search and t = 0 at the end of the search. 

(3). The searcher gains contacts randomly in the broad search with Poisson rate 
A .  When the searcher gets a contact, he observes its similarity to the signal 
of the true target and classifies it into n classes. The i-class contact is 
specified by its reliability pi, i = l,2,---,n, (the probability of the contact 
being true), and without any loss of general i ty, l>pi>p2>-.->pn>O is assumed. 
The occurrence of i-class contact is assumed to be a Poisson process with rate 
A which does not change in time and is not influenced by the past contacts. 
Let A io be the Poisson rate of the false contact of i-class and poi be the 
probability that the true contact is classified in i-class. Then, we have A 
= A opoitA io, pi = A o~oi/A i and A = S i A i=A ot2 iA io. This assumption of 
Poisson arrival of contacts results from the assumptions of the random system 
noise and the random search in the broad search. 

(4). When a contact is gained, the searcher decides whether or not to investigate 
it. If the contact is worth investigating, the searcher immediately stops the 
broad search and begins the investigation of the contact. It is assumed that 
the searcher does not gain any new contact during the investigating search. 

(5). If the contact is true, the investigating time I until finishing the investi- 
gation of the i-class contact has a c. d. f. Hi (X). (Hi (X) is called the investi- 
gating function.) Hi; (X) is assumed to be continuous, differentiable and the p.d. 
f. of the investigating time X is denoted by Adx); hi(x) = dHi(x)/dx. 

(6). If the contact is false (with probability (1-pi) for the i-class contact), no 
positive information telling it to be false is obtained by the investigating 
search. This comes from our assumption of the false contacts caused by system 
noise. If the investigating search is continued long without detection, the 
contact turns out to be suspicious and the hope for detection of the target 
becomes dimmer. Therefore, the searcher should stop the investigating search 
at some appropriate time and return to the broad search to get a new contact. 
Let ~i(t) be the stopping time of investigation for the i-class contact obtained 
at t (sometimes, ~i(t) is abbreviated as z if any confusion is not expected). 
{ ~ i  0, i=l, 2, ---, n, OSzi (t) <t7 OStST} is called the investigating search plan. 
The optimal value of zi(t) is denoted by zi*(t). When the investigating search 
is stopped unsuccessful ly, the broad search is resumed immediately. 

(7). Let P(t) be the detection probability of the target when the optimal investi- 
gating plan { ~ i *  (t) 1 is used. The measure of effectiveness of the investigating 
search is assumed to be the detection probability of the target until T ; P ( D .  
Under the assumptions mentioned above, the problem is formulated as follows. 

Applying the dynamic programming formulation, we have the next relation by consid- 
ering possible events in [ t, ttAt1. 

p(ttAt) = (l-SiAiAt)P(t) t SiAiAt{ max Gi(zi(t))}, 
O S Z ,  ( O S t  

where Gi(zi(t)) is the conditional detection probability when the i-class contact 
is gained at t and the investigating time zi(t) is adopted. Gi(Zi(t)) is given by 
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Rearranging Eq. (1) and considering the limit when At + 0, we have the next differ- 
ential equation. 

= Â i A  i{Gi(z i*( t ) ) -P( t )} ,  d t  (3) 

We define d P ( t ) / d t  at the boundary points as the right differential at t = 0 and 
the left differential at t = 7'. 

The boundary condition of Eq. (3) is given by 
P(0) = 0. (5) 

The formulation of our problem has been completed by Eqs. (2)- (5). 

3. The Optimal Plan of the Investigating Search 
In this section, the optimal stopping time of the investigating search is 

studied and the properties of the optimal investigating search plan are analyzed. 
First, to clarify the discussion, we consider a fundamental model with a single 
class of contacts, and later, we generalize it to the model with multiple classes. 

3.1. Optimal plan for single contact class 
As shown in Eqs. (2) and (4),  maximizing G i ( ~ i ( t ) )  by ~ i ( t ) ,  0 S ~ i ( t )  i t, the 

optimal investigating time z i * ( t )  is determined in every contact of i-class gained 
at t. Hence, first of all, we must examine properties of G i ( ~ i ( t ) ) .  In this para- 
graph, we deal with the case of single contact class, and therefore, we omit the 
suffix i in p, H, G, etc. since i = 1 always. The derivative df(x)/dx is denoted 
by f '  (X). The fundamental properties of G(z(t)) are given by the next lemma. 
[ Lemma 1 1 G(z) given t has the following properties.  
(1). The boundary values of  G(z) a t  z = 0 and z = t a r e  given by 

G(O) = P( t) ( 2  O ) ,  
G(  t )  = pH( t) (2 0). 

(2). The boundary values of  G '  (z) a t  z = 0 and z = t a r e  given by 

G' (0) = ph(0) (l-P( t) ) - P' ( t) 2 (l-P( t) (ph(0) - A ) , (6) 
G'(t)  = ph(t)  2 0. D 

(Proof) 
(1). Since H(0) = P(0) = 0, we have G(0) = P( t) and G (  t )  = pH( t) from Eq. (2).  
Therefore, obviously G(0) 2 0 and G(t) 2 0. 

(2). Since H(z) is continuous and differentiable, G(z) given by Eq. (2) is also 
differentiable. Differentiating Eq. (2) and substituting Eq. (3),  we have 

G'  (z) = ph(z) (l-P( t-2)) - (l-pH<iz)) P' ( t-Z) ( 7 )  
= ph(z) (l-P( t-z)) - (l-pH(z) ) A { G(z* ( t-z) ) -P( t-z) 1 
2 (l-P( t-2)) {ph(z)-A (l-pH(z)) 1. 

Since H(0) = 0, P(0) = 0 and P' (0) = 0 by Eqs. (2), (3) and (5), G '  (0) and G'  ( t) 
are obtained as Ea. (6). (a. e. d.) 
The curve of G(z( t ) )  is complicated according to the function NZ) and has 

several extreme points in general. Here, we define z o ( t )  as the point z that 
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gives the largest local maximum of G(z) in 0 < z  < t  if it exists, and z o ( t )  = 0 
if G(z) has not any local maximum. The optimal investigating plan is given by 
the next theorem. 

[ Theorem 1 l 
(1). If z o ( t )  exists ,  i t  i s  a solution of  the equation: 

(21. z * ( t )  t 0 ,  that i s ,  z * ( t )  i s  e i t h e r z o ( t )  or t ,  and wehave 
G(z* ( t ) )  = max { G ( z o ( t ) ) ,  p H ( t ) }  > P O ) .  D 

(P roof) 
(1). Setting G ' ( z )  = 0 in Eq.(7), we obtain Eq.(8)  easily and the solutions of 

Eq. ( 8 )  give extreme points of G(z). Hence, if there exists local maximums, zo ( t )  
is one of the solutions of Eq. ( 8 ) .  

(2). z* ( t )  + 0 is proved by the reductive absurdity. Suppose z * ( t )  = 0.  Then 
P ( t )  = 0 for any t  is deduced from Eqs. (2) and (3), and it contradicts the defi- 
nition of the optimal z * ( t ) .  Therefore, z * ( t )  is either z o ( t )  or t and G ( z * ( t ) )  
> G(0) = P ( 0 .  This implies that the contact should be investigated in any case 
and it is natural intuitively since we have only one class of contact. (q.e.d.) 
In general, Eq. ( 8 )  may have plural solutions. In this case, since Eq. (8) 

means G ' ( z )  = 0 and it is only a necessary condition for z o ( t ) ,  we must check 
the signs of GJ(ziAz)  and examine which solutions give the local maximum. Then, 
evaluating G(z) of the local maximums, we determine zo which gives the largest 
local maximum. Here, we define two time points too and to as follows. 

too = min t t 1 3 z 0 ( t ) } ,  ( 9 )  
to = min { t13z" ( t )  and G ( z O ( t ) )  2 G O ) } .  (10) 

t o o  is the minimum time point t  such that G ( z ( t ) )  has a local maximum and to is 
the minimum time point that the largest local maximum G ( z o ( t ) )  becomes larger 
than the value of the upper boundary t ; G( t ) .  Since the condition of to given 
by Eq. (10) is more restrictive than that of t o o  given by Eq. ( 9 ) .  t o o  5 to is 
concluded, and the next lemma is described. 
[ Lemma 2 1 Suppose there ex i s t  the positive t o o  and to  defined by  Eqs. ( 9 )  and 

(10) respectively, then too 5 to. U 

Using too and to defined above, the optimal investigating search plan is given by 
the next corol lary. 
[ Corollary 1-1 l 

IfQ < t itÂ¡ z * ( t )  = t ,  and i f  to  < t ,  z * ( t )  = z O ( t ) ,  (11) 
where zo ( t) i s  a solution o f  Eq. (8). U 

We omit the proof of this corollary since i t  is obvious by Theorem 1-42] and the 
definition of to given by Eq. (10). 

In many cases of real world applications, usually, the marginal investigation 
rate; ph(z) /(l-pH(z)) is a decreasing function of z  and the contact rate A in the 
broad search is smaller than the investigation rate. Hence, usually the maximum 
value of the marginal investigation rate ; ph(O)/(l-pH(O)) = ph(0) > A is valid. 
Hereafter, we examine this case in detail. To illustrate the feature of G ( z ( t ) ) ,  
we calculate G(z( t ) )  by Eqs. (2)- ( 5 )  assuming H( t)  = l-exp(- t ) ,  A = 0.2 and p = 0.5 
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( in  t h i s  case, G '  (0) > 0 by Eq. (6) s ince ph(0) > A )  varying t = 1,2 ,  --, 10. Fig. l 
shows the curves of G(z) given t. As shown in Fig.1-A, i f  the remained search time 
t i s  s h o r t ,  G(z) is  a s t r i c t l y  i n c r e a s i n g  func t i on  of z in  0 5 z 5 t (see  the  
curves of t = 1 .2  and 3). In t h i s  case,  z* which maximizes G(z) in  0 i z i. t i s  
obviously a t  the upper boundary; z* = t. I f  t inc reases  more, G(z) has a local  
maximum a t  z which s a t i s f i e s  G'(z) = 0 ;  Eq. (8). This time t is t o o  = 3.75 f o r  
the case  of Fig. 1. Fig. 1 -B  shows the magnified G(z) a t  the  neighborhood of t o o .  
As shown in  Fig.1-B, G(zO) i s  not maximum globa l ly  in  3.75< t < 3.85; the global 
maximum i s  s t  i l l given a t  the upper boundary; z* = t. The search time increases  
more, the ( la rges t )  local maximum G(zO) grows up rapidly and z* is sh i f t ed  t o  the 
( l a rges t )  loca l  maximum po in t  zO  from the  upper boundary a s  seen in  the  case of 
t 2 3.85 in  Fig. l - B .  We have to = 3.85 f o r  the case of Fig. l. 

Fig. 1. G(z) given t 

Proper t ies  of G(z) i l l u s t r a t e d  in  Fig. l a r e  summarized a s  follows. 
[ Corol lary 1-2 l Suppose ph(0) > A , then G(z) has the nex t  proper t ies .  

(1). G(z) is increasing in the neighborhood o f  z = 0, i. e. G' (0) > 0 f o r  any t, 
(2). Suppose tha t  there e x i s t  a p o s i t i v e  too and t o  defined by Eqs. (9) and (10). 

Then, if 0 S t < too,  G(z) is  strictly increasing i n  z c [O, tl, and if too  S t 
< to,  G(z) h a s  a t  l e a s t  a l o c a l  maximum a t  z given by Eq. (8) (hence, t he r e  
e x i s t s  zO). If to S t, the global  maximum of  G(z) is obtained a t  zO. 

(3). If G(z) has a loca l  siaxiam, G(z) a l s o  has  a local  minimum. D 

(Proof) 
(1). G' (0) > 0 i s  derived from Eq. ( 6 )  by the assumption of Corollary; ph(0) > A .  
(2). From the  assurnpt ion;  3 to O > 0 and the  d e f i n i t i o n  of too  given by Eq. (g), we 

can conclude G '  (z) > 0 and G(z) i s  s t r i c t l y  increasing in  z [O, t] ; 0 i. t < too. 
I f  too 5 t < to ,  there  e x i s t s  a t  l e a s t  a local  maximum G(z) by the de f in i t i on  of 
t o o  a t  z ( t )  given by Eq.(8). However, G(zO) is not the  global maximum from the 
d e f i n i t i o n  of to given by Eq (10). I f  t > t o  G b O )  2 G(t) is obvious from the 
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definition of t o .  
(3). If t  > t o o 7  G(z) has a local maximum and < 0 in zO < z  < zO+Az. However, 
since G 1 ( t )  = ph(t) 2 0 for the boundary t  from Lemma 1-(21, G'(z)  changes its 
sign from - to t in ( z O ,  tl at least once, and hence, G(z) has a local minimum 
in this interval, (q.e.d.) 
The optimal investigating time z * ( t )  varying t  = 1,2,  ---, 20 is shown in Fig.2 

for the case of Fig. l :  H(z) = l-exp(-z) ,  A = 0 .2  and D = 0.5. As stated before, 
t o  = 3.85 in this case, and as shown in Fig. 2, z* ( t )  = t if t 5 3.85 and z* ( t )  = 

Table 1. z* and P( t) 

Fig. 2. The optimal investigating time z* 

In Fig.2, it should be noted that z * ( t )  is constant for large t. This property is 
presented by the next theorem. 
[ Theorem 2 1 The optimal inves t i g a  ting time z* converges to a constant value 

when the search time i s  su f f i c i en t l y  long: t Ã to .  U 

(Proof) We assume t  > tÂ¡ Substituting Eqs. (2) and ( 3 )  into the r. h. S. of Eq. ( 8 ) ,  
we have the next equation for sufficiently large t and zO Ã t. 

The last equation is derived by substituting the next approximation for t  Ã to and 
zO ((t  into the numerator of the r. h. S of the first equation. 

P(t-2z0) = P( t-zO) - P' ( t - zO)  z0 

Therefore, Eq. ( 8 )  becomes P ~ W  / ( l - p H ( z O ) )  = A p { H W  - z O h ( z O )  1 for large t. 
Since this equation does not depend on t, the solution zO of this equation also 
does not depend on t and becomes constant approximately if t is sufficiently 
large. (q. e. d. ) 
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From the proof of Theorem 2 ,  the next corollary is presented. 
Corollary2-11 I f H ( z )  i s a  s t r i c t l y c o n c a v e f u n c t i o n o f z w i t h h ( 0 )  > 0  and 
the marginal investigation rate phCz) / ( l -pH(z))  i s  a s t r i c t l y  decreasing func- 
tion of  z ,  an approximation o f  zo ( t )  for t > t o  i s  given by  the unique solution 
zo of  the next equation: 

(Proof) The l. h. S. of Eq. (12)  is a strictly decreasing function of z from the 
assumption of the corollary and the r. h. S. is strictly increasing by the concavity 
of H(z) ; h' ( z )  < 0 .  The value of the l. h. S. at z = 0 is larger than the r. h. S. 
since h(0) > 0. Therefore, Eq. (12) has always a unique solution zO at which G' ( 0 )  

changes its sign + to -, and zo gives an approximation of the optimal. (q.e.d.) 
As mentioned later in Section 4, the solution given by E q . ( 1 2 )  is a fairly 
good approximation of 2%) for t > t o .  As for z o ( t ) ,  the next corollary is 
obtained. 
[ Corollary 2-2 l The approximate value z0 ( t )  for t )) to given by  Eq. (12) i s  a 

decreasing function of  A .  D 

(Proof) Eq. (12) is rearranged as A = { . h W  / ( l - p H ( z O ) )  l [ l / ( H ( z O )  - z O h ( z O )  ) l .  
In the r.h.s. of this equation, the term in the first bracket is a decreasing 
function of zO from the assumption of Corollary 2-1 and the term in the second 
bracket is proved to be also a decreasing function by using the concavity of H(zo). 
Hence, A is a decreasing function of zO.  Therefore, if A increases, zo given by 
this equation is decreases. (q. e. d. ) 
The main properties of z * ( t )  have been elucidated by the theorems mentioned above. 
Here, we proceed to study the optimal investigating time Z i *  ( t )  in environment 
of multiple contacts classes. 

3.2. Optimal plan for multiple contacts classes 
In this paragraph, the case of multiple contact classes is considered. The 

contacts are classified into n classes and the reliability of the i-class contact 
is denoted by P i ,  l > p i > p 2 > * - . > ~ n > 0 .  Here, we define Z i O  ( t )  and t i O  as follows. 

z i O ( t )  : the value of z which gives the largest local maximum of Gi(z) in  0 < z 
< t for the i-class contact. 

t i O  = min { t l  
We have the next 
Theorem 3 l 
(1). z iO ( t )  i s  a solution o f  the equation: 

(2). We have 

that i s ,  ~ i * ( t )  i s  one o f  {O,  t, Z i 0 ( t ) } .  

(3). I f  the search time t i s  shorter than t i  O ;  t < ti \ then zi * ( t )  = t. 
(4). A suff icient  condition for zi* (t) > 0 i s  
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(Proof) 
(1). Eq.(13) is derived from Gi'(~i(t)) = 0. Since ziO(t) gives the largest local 
maximum by the definition, it satisfies this equation. 

(2). The optimal zi*(t) is one of the boundary points (zj*(t) = 0 or t) or the 
largest local maximum point zi0(t), and therefore, Eq. (14) is obvious. 

(3). Since Gi(ziO(t)) < ~ i J f i ( t )  for t < t i O  by the definition of t i o  ~i*(t) is 
either Zi*(t) = 0 or ~i * (t) = t by Eq. (14). Here, we assume Zi* (t) = 0 for some 
t i O ,  then there exists a time to = mimi t i O  for which ~i*(t) = 0 for all i in 
t < to. Hence, we have P(t) = 0 for all t < to since Gi(zi*(t)) = P(t) and 
P'(t) = 0 by Eqs.(2) and (3). This contradicts the definition of the optimal 
Zi*(t). Hence, ~ i * ( t )  = t in t <  t i O  is concluded. 

(4). Differentiating Eq. (2) with respect to ~i(t), we have 
ihi (2) Gi' (zi (t)) )(S) 0 2 l!piHi (z) )(S) l-~(t-~,) P' ( t-~i) 

(The signs > and S are appl ied in same order. ) 
Here, we assume Ineq. (15). We have Gi ' (0) > 0 from Eq. (161, and to neglect the 
i-class contact is not optimal since the investigation is effective to increase 
the detection probability. Hence, Zi*(t) > 0 if Ineq.(15) holds. (q.e.d.) 

In the case of mu1 tiple contact classes, some ineffective contacts are neglected 
in the investigation in t > to. In Section 4, we shall show a numerical example 
in which the contact with low reliability is neglected. The next corollary is 
directly derived from Theorems 3421, (3) and the definition of tiO. 
[Corollary3-11 Suppose thereexists t i O .  I f 0 <  t i  tiO, Zi*(t) = t. If 

t ) tiO and Gi(zi0(t)) > PO), then Zi*(t) = ziO and if t > tiO and Gi(ZiO(t)) 
5 PO), then ~i*(t) = 0. D 

The meaning of this corollary will be discussed in Section 5. 
The relations between the optimal investigating time of the i-class contact 

and the (it1)-class contact are presented by the next theorem. 
[ Theorem 4 l 
(l). If pihi(Z) 2 pi+ihi+i(z) in 0 5 z 5 t, we have the relation; tiO 2 ti+iO. 
(2). If pihi(Z) 2 pi+ihi+i(z) in 0 2 z 5 t, the optimal investigating times for 

the contacts i and it1 classes have the relation; ~i*(t) 2 ~i+i*(t). D 

(Proof) 
(1). We define A G M  = Gi (2)-Gi+i (z), then we can easily confirm that AG(z) is 
an increasing function of z if pihi(z) 2 pi+ihi+i(z) in z â ‚¬[  tl. Since 
zi* (t) 2 t for all t and any i, we have AG( t) 2 AG(zi*( t)), and therefore, 

Gi(t) - Gi(zi*(t)) 2 Gi+i(t) - Gi+i(Zi*(t)). 
From the above, we have the next inequality since Gi+i(~i+i*(t)) 2 Gi+i(zi*(t)). 

Here, to prove Theorem by the reductive absurdity, we suppose t i O  < t i + i O  and 
consider t such as t i O  < t < ti+l '. Then, the r. h. S. of the above inequal i ty is 
zero since ~i*(t) < t and Zi+i*(t) = t from Corollary 3-1, and therefore, we 
have Gi(t) > Gi (Zi* (0). This contradicts the definition of the optimal zi*(t). 
Therefore, tiO 2 ti+iO is concluded. 

(2). By the definition of Zi*(t), the next relations are obvious. 
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From the above, we have 

On the other hand, AG(z) = Gi(~)-Gi+i(~) is a strictly increasing function 
of z if pihi(z) 2 pi+ihi+i(z) as mentioned above. Here, we assume ~i*(t) < 
Zi+i*(t), then since AG(z) is the increasing function of z, AG(zi*(t)) < 
AG(zi+i* (t)), we have the relation ; 

This inequality contradicts Ineq. (17), and therefore, Zi*(t) 2 Zi+i*(t) is 
concluded. (a. e. d. ) 

FCorollary4-1 1 If thefunctionHi(z) is common toall contacts;Hi(z) = H(z) 
for all i, wehave relations; tiO 2 t i + i o  andzi*(t) 2 Zi+i*(t). D 

(Proof) If Hi(Z) is common to all contact, pihi(Z) 2 pi+lhi+i(Z) in all z, 0 5 z 
5 t, is obvious from the definition of pi, and therefore, Corollary is established 
by Theorem 4. (a. e. d.) 
[ Theorem 5 l Suppose the marginal investigation rate ; pihi (z) /(l-piHi (2)) is 
a decreasing function of z. If A (= increases, z-:*(t) for t > t i O  
decreases. D 

(Proof) Let fi = A i/A, where A (= E iA i) is the rate of any contact and fi 
is the conditional probability of the i-class contact when a contact is gained. 
Rewriting EQ. (3) by using A and fi, we have P'U) = A S ifi{Gi(zi*(t))-P(t)}, 
hence, P' (t) (obviously P' ( t) 2 0 and Gi (Zi * ( t)) 2 P( t)) increases as A increases. 
Since the r. h. S. of Eq. (13) increases as A increases, and the solution zi * (t) of 
Eq. (13) decreases because the l. h. S. of Eq. (13) is strictly decreasing function of 
~ i *  (t) by the assumption of Theorem. (q. e. d. ) 

4. Numerical Examples 
In this section, assuming the exponential investigating function ; &(z) = 

l-exp(- a iz), we analyze several numerical examples to see the sensitivity of 
the system parameters to the optimal investigating plan. Here, taking the mean 
investigating time of Contact 1 as the unit time, we set a l = 1. For the sake 
of convenience for the numerical analysis of this section, we define the contact 
rate A = S  i A i and the conditional probability of the i-class contact fi = A  -:/A, 
then obviously A i = f i A . Hereafter, we set the primary case, Case 1, and then 
varying system parameters in Cases 2, 3 and 4, we evaluate the optimal investigat- 
ing plan to see the sensitivities of each parameter. Here, we set the parameters 
of Case 1 as 

Case 1 : n =  3, {pi} = {0.9, 0.5, 0.11, 
a i  = l  for all i, A = Â£iA = 0.2, 
{fi} = {A i/A = {1/3,1/3,1/3}. 

The optimal investigating plan of Case 1 is calculated discretely by every At = 

0.01 using Eqs. (2), (3), (4) and (5). The solutions, zi * ( t) and P( t) are presented 
in Table 2 and ~ i *  (0, i=l, 2,3, are visualized in Fig. 3. As seen in Fig. 3, the 
properties described in Corollary 3-1 ; if t S t i O ,  ~i*(t) =t, and if t > tiO, 
zi*(t) = ziO, Corollary 4-1 ; tiO 2 ti+iÂ¡ and Zi*(t) 2 ~i+i*(t), are shown clearly. 

Next, to examine the sensitivity of the rate of contacts A = S iA i ,  A is 
varied from A = 0.2 in Case 1 to A = 0.1 in Case 2, whereas the other parameters 
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Fig. 3. The optimal plan of Case 1 

are kept the same as Case 1 : 
Case 2 : /I = 0.1. 

Furthermore, to see the sensitivity of A i keeping constant /I = 0.2, we evaluate 
Case 3 varying fi from { f i l = {1/3,1/3,1/3l in Case 1 to 

Case 3 : { fi 1 = {O. 8, 0.1, 0. l}. 
The optimal investigating plans of Cases 2 and 3 are evaluated and shown in Table 
3 and are visualized in Figs. 4 and 5, respectively. BY comparing Fig. 4 (Case 2) 
with Fig. 3 (Case l), we can see that the optimal investigating time increases 
when /I decreases as stated in Theorem 5. In Fig. 5 (Case 3), it should be noted 
that Contact 3 is neglected in the optimal investigating plan for t > tsO. This 
corresponds to the case: t > tiO and Gi (ziO (t)) 5 P(t) l in Corollary 3-1, and 
then Zi*(t) = 0. 

Table 3 2,-*(t) and P(t) of Cases 2 and 3 

Case 2. Case 3 
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Fig. 4. The optimal plan of Case 2 Fig. 5. The optimal plan of Case 3 

To examine the extreme value of Gi(~i(t)) in detail for Case 3, we evaluate 
the marginal investigation rate ; k A i  ( ~ i  (t))/{l-piffi (zi ( t ) )  1 (referred to Ai-curve) 
and the marginal detect ion rate ; P' ( t-zi ( t) /{!-P( t-Z, ( t) ) 1 (referred to P'-curve) 
at t = 2,5.10 and show them in Fig. 6. From Eq. (16), we can see that Gi ' (z) > ( S )  0 
2 A,-curve > ( S )  P'-curve. As shown in Fig. 6-A. if t = 10. hi-curves, i = 1,2, 
have two intersections with P'-curve. We can easily confirm by Ea. (16) that the 
smaller Zi of the intersection corresponds to the local maximum (the optimal zi*) 
and the larger one does the local minimum. On the other hand, the h-curve has 

J 
0 5 10 0 5 10 0 5 10 

J 
10 5 0 10 5 0 10 5 0 

-Ã z t-z + -*Â z t-z + -+z t-z + 

Fig. 6. The marginal investigating rate and the marginal detection rate 
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only one intersection with P'-curve at z = 10 and it gives the local minimum. 
Hence if G3 (0) > G3 (t), the global maximum is given by Gi (0). In this case, we 
have G3(0) = P(t) = 0.710 and G3(t) = ~3̂ 3(t) = 0.1 at t = 10 and ~3*(t)= 0 is 
confirmed. Next let' s consider the case of t = 5 in Fig. 6-B. In this case, hi- 
curve is always larger than P'-curve in z e 10, t] and G A z )  > 0 in this interval, 
hence, maxoazs Gi (z*) = G&), namely, zi* (5) = 5. As for hi-curve, i = 2,3, 
the intersections of hi-curve with P'-curve are same as the case of t = 10 and 
m a x o ~ ~ ~ ~  G2(z) is the local maximum and maxoszsit GAz) = G3(0) as stated above. 
Next, we examine the case of t = 2 (Fig. 6-0. In this case, hi-curves, i = 1,2, 
are always larger than P'-curve in z c [O, tl and then maxoazst Gib) = Gi(t), i = 

1,2, and h3-curve is the same as Fig. 6-A. 
Next, we examine Case 4 in which the investigating rates a i are changed from 

a i = 1, i = 1,2,3, in Case 1 to 
Case 4 : a i  = 1 and a2 = a3 = 0.5. 

In this case, the Contacts 2 and 3 are time-consuming to investigate compared with 
Contact 1 (it takes twice longer investigating time of Contacts 2, 3 than that of 
Contact 1 on the average). The optimal investigating plan is shown in Table 4 and 
Fig. 7. By Comparing Fig. 7 (Case 4) with Fig. 3 (Case l), we can see that Contact 3 
is neglected in t > ts0 in Case 4, and Contacts 1 and 2 are investigated thorough- 
ly, namely, the investigating time for these contacts are prolonged in Case 4. 

The results of Cases 3 and 4 seem to be instructive. The assertions of these 
Cases are stated as follows. The contacts with poor reliability or low efficiency 
should be neglected and the investigating effort should be concentrated to the 
contact with high reliability and efficiency if there is plenty of search time 
remained, and if the remained time is short, all contacts should be investigated 
until the end of the search. This assertion may be reasonable intuitively and 
Theorems are very useful to give a explicit quantitative bases for the decision 
of the optimal investigating search plan. 

Final ly, assuming single contact class and the exponential investigating func- 
tion H(z) = l-exp(- a z), we examine the accuracy of the approximation zO given 

. . . ,  

i=O. 2, /=1/3 Table 4. 2,-*(t)  and P(t) of Case 4 
- 

- pi=O. 9, a 1=1 

Fig.7. The optimal plan of Case 4 
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by Eq. (12) for t > t io.  Substituting H(z) into Eq. (12), we have the next equa- 
t ion of zO. 

Applying the Newton method to the above equation, we obtain the solution zO = 2.55 
for the example given in Section 3.1 ; A = 0.2, ec = 1, p = 0.5. In this case, 
the optimal investigating time z* (20) = 2.57 is given as shown in Table 1. The 
absolute error of zO is 0.02 and the relative error is only 0.8 %. This accuracy 
of the approximation may be sat isfactory for the use of practical applications. 
However, as mentioned before, the approximation zO given by Eq. (12) is derived 
by assuming the single contact class. If we apply Eq. (12) to the case of the 
mu1 tiple contacts classes, the approximation is not sufficient; we must consider 
other approximations than this for the mu1 t iple contacts classes. 

5. Discussions 
In this section, we elucidate the meaning of the conditions of the optimal 

investigating plan and discuss the differences between the optimal plan obtained 
above and that of the previous studies. 

5.1. Interpretation of the conditions for the optimal plan 
(l). The assertions of Corollary 1-1 or 3-1 is stated as follows ; if the remained 
search time is short, it should be used exhaustively to investigate the contact 
on his hand, and if plenty of search time is remained, the investigation should 
be stopped at some appropriate time. This assertion seems to be reasonable 
since the searcher cannot expect to gain a new contact in the broad search if 
the remained time is short, and then he should not stop the investigation to 
the contact on his hand. On the contrary, if the remained time is long enough to 
detect a new contact, he should stop the investigation of the suspicious contact 
and return to the broad search for new contacts. When the optimal investigating 
search is stopped at ziO (t), the optimal condition of z* given by Eq. (13) is 
elucidated as follows. The l. h. S. of Eq. (13) is the conditional investigating 
probability of the contact being examined in unit time at z* given that it has 
been investigated until z* unsuccessfully (called the marginal investigation 
rate). On the other hand, the r.h.s. of Eq.(13) is the conditional detection 
probability in unit time when the searcher stops the investigation at z* and 
return to the broad search (called the marginal detection rate of the broad 
search). The optimal stopping time z* is the balance point of the both marginal 
values mentioned above. Such property is reasonable for the optimal conditions 
of the investigating search. 
(2). As stated in Corollary 2-2 and Theorem 5, if A increases, z* (t) for t > to 
decreases. This property seems to be natural since we can expect to contact 
frequently when A is large, and then the searcher does not necessary to stick 
to a contact, and therefore, he should stop the investigation early. 
(3). In the case of multiple contacts classes, if the search time t < t i O ,  zi*( t )  
= t for any i as stated in Theorem 3-(3), and if P i  is small enough, zi*(t) = 0 for 
t > t i O  as shown in the examples; Cases 3 and 4 in Section 4. This property is 
deduced from the similar reason discussed above in (l), namely, if the remained 
time is short, since the searcher cannot expect to gain a new contact in the broad 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



308 K. Iida & R. Hohzaki & T. Kaiho 

search, he should continue his investigation for any contact even if its relia- 
bility is low, on the contrary, if the remained time is long enough to detect a 
new contact, he should neglect the contact with low reliability and return to 
the broad search for new contacts. 

From the view point of real world applications, we may be able to approx- 
imate the optimal plan by such a plan controlled by two values t i o  and Zi that 
zi*(t) = tfor t <  t,Â¡andzi*(t =ziforany t 2  t i V f  it isinvestigated. The 
validity of this approximation is expected from the numerical examples shown in 
Sect ion 3. 
(4). As for the time t i o  if pihi(t) > pj+ihi+i(t), we have the relation; tiO 
2 ti+iÂ as stated in Theorem 4 4 ,  and the optimal investigating time has the 
relation ; ~i*(t) 2 Zi+i*(t) by Theorem 442). These properties are the same as 
mentioned above in (1) and (3);  the contact with high reliability should be investi- 
gat ed thorough l y. 

5.2. Relations to the optimal plans studied previously 
As stated in Section 1, Kisi [31 presented a model of the similar investi- 

gating search to our model. Assuming single contact class, a large number of 
targets and Poisson arrival of the contact in the broad search, he formulated 
the model with the criterion of the expected number of the target detected in 
time T. He gave the equation of the optimal investigating time and showed 
several numerical examples. Let E(t) be the maximum expected number of detected 
target when time t remains. The necessary condition of the optimal investigating 
t ime is given by 

Assuming H(z) = l-exp (- o! z) in Eq. (191, Kisi derived the next equation of z* ( t) 
for a sufficiently large t. 

Eqs. (19) and (20) correspond to Eqs. (8) and (18) in our model. Comparing the r. h. S. 
of Eq. (18) with Eq. (20), we can see that the optimal investigating time zO of our 
model given by Eq. (18) is larger than that of Kisi' S model given by Eq. (20). 

Iida 121 studied the optimal investigating search under assumptions of mu1 ti- 
pie contact classes and unrestricted search time with the criterion of expected 
time to detection. Let ET be the expected time to detection by the optimal plan. 
The equation of the optimal investigating time ~ i *  is given by 

In this case, the optimal investigating plan such as zi*(t) = t stated in Corol- 
laries 1-1 and 3-1 does not exist since the search time is not restricted. 

6. Conc lud ing Remarks 
In this paper, we consider a two-stage search consisting of the broad search 

and the investigating search for false contacts caused by system noise. We 
study the optimal stopping time of the investigating search maximizing the 
detection probability of the target until the end of the search. We derive the 
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conditions of the optimal investigating search plan and give clear interpreta- 
tions for the conditions. Furthermore, by using the conditions, we elucidate the 

structure of the optimal plan and explain its behavior when the system parameters 

are varied. 
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