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Abstract Convergence properties of the block Gauss-Seidel algorithm applied to ergodic Markov chains 
are discussed in this paper. This algorithm is one of the most prevalent methods for computing ergodic 
probability vectors of large-scale Markov chains. We will provide necessary and sufficient conditions for 
global geometric convergence of this algorithm. To apply this algorithm, the state space of a Markov 
process is decomposed into mutually exclusive and exhaustive lumps. The convergence properties depend 
on this lumping. It is also shown that there exists a t  least one set of lumps, for any ergodic stochastic 
matrix, which assures geometric convergence of the algorithm. 

1. Introduction 
Markov chain modeling plays an important role in the performance analysis of computer / 

communication and manufacturing systems. Accordingly, the development of efficient algo- 
rithms for computing the ergodic probability vector for large-scale Markov chains constitutes 
an essential core of computational probability. An important class of computational methods 
for large-scale Markov chains consist S of iterative algorithms. Instead of computing the exact 
ergodic probability vector directly, these algorithms generate a sequence of vectors, which 
upon convergence produces the desired result. The prevalent algorithmic methods in this 
class include the block Gauss-Seidel iteration algorithm, see e.g.,[l], the iterative aggregation- 
disaggregation algorithm developed by Takahashi [g] and Takahashi and Takarni [10], and the 
replacement process approach developed by Sumita and Rieders [7, 81. 

One difficulty arising from these iterative algorithms is the problem of convergence. To 
the authors' best knowledge, little is known about global convergence theorem and speed of 
convergence for such iterative algorithms except the direct successive substitution method. 
Rare exceptions are a local convergence theorem due to Cao and Stewart [2] for Takahashi's 
aggregat ion-disaggregat ion algorithm and the modified aggregat ion-disaggregation algorit hrn 
by Schweitzer [6] where the geometric convergence is enforced by utilizing the direct succes- 
sive substitution method whenever appropriate. More recently, Mitra and Tsoucas [5] have 
examined convergence properties of point Gauss-Seidel relaxations. 

The purpose of this paper is to provide necessary and sufficient conditions for global geo- 
metric convergence of the block Gauss-Seidel algorithm applied to ergodic stochastic matrices. 
We show that, under certain conditions, this algorithm converges geometrically starting with 
an arbitrary initial positive vector. The geometric factor governing the speed of convergence is 
given by the magnitude of the second maximum eigenvalue of a stochastic matrix constructed 
from the original stochastic matrix. As to show the other side of the coin, we also provide a 
necessary and sufficient condition under which the iterative algorithm does not converge for 
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any initial probability vector. 
In the block Gauss-Seidel algorithm, the state space of Markov process is decomposed 

into mutually exclusive and exhaustive lumps. The convergence properties depend on this 
decomposition. We also show that there exists at least one decomposition for which the 
block Gauss-Seidel algorithm always converges geometrically with appropriate rearrangement 
of states. These results naturally extend the results of Mitra and Tsoucas [5] to the block 
form. Since many other iterative algorithms are related to the block Gauss-Seidel algorithm 
directly or indirectly, the ma.in result of this paper may provide an important stepping stone 
for understanding the convergence property of other iterative algorithms. 

2. The Block Gauss-Seidel Algorithm for Large-scale Markov C hains 
Let { J ( k }  : k > O} be a discrete time Markov chain on V = {l, 2,.  . . , N} governed by a 

stochastic matrix A.  Throughout the paper we assume that the Markov chain is ergodic with 
the ergodic probability vector TI^ so that 

Let L be a decomposition of the state space V into mutually exclusive and exhaustive lumps 
defined by 

M 

(2 -2)L= {L( l ) ,L(2) , - . - ,Â£(M)  , V = 1) L(n) , and ~ ( m ) [ " l ~ ( n )  = 0 for m # n . 
n=1 

Throughout the paper, we assume that, whenever a decomposition L is given, the states 
are rearranged in nondecreasing order of lumps, i.e., 

where a (m)  denotes the number of states in L(m), m = 1 ,2 , -  . - , M ,  and denote the 
j-th state in the lump L(m), j = 1, ,o:(m). Inside each lump, one can choose any order of 
states. 

For m ,n  E {l, 2, - ,M},  submatrices of A are written as AL(rn)L(n) - [aij]ieUrn),jEL(n) , 
and subvectors of f l  are written as ?T:(~) = [ T ~ ] ~ ~ ~ ( ~ )  , etc. For convenience, we also define 

(2.4) H = {1,2,-- - ,M}; G(m-) = { l , 2 , . . .  , m  - l}; and G(m+) = {m + 1, ,M} 

where G(1-) = G(M+) = 0. From (2.1), one easily sees the block-wise balance equations 
given by 

(2.5) 

W here 
It is 

tution 

(2.6) 

the summation is ignored whenever the corresponding index set is empty. 
well known that for any ergodic stochastic matrix A , in the direct successive substi- 
method 

p T ( k )  = pT(k - l ) A  , k = l, 2, - ., 
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starting with any probability vector pT(0) > oT) pT(k) always converges geometrically to wT 
as k -+ m. In this context, corresponding to (2.5)) (2.6) is rewritten as 

where pLm)(k) = [ ~ j ( k ) ] j ~ ~ ( ~ )  is a subvector of the k-th iteration's vector pT(k). The block 
Gauss-Seidel iteration algorithm applied to Equation (2.1) exploits block-based computations 
by utilizing updated information to the point of lump m computation as much as possible. 
In place of (2.7)) one considers 

where this equation is solved for wT (k). For computing wT (k) in the k-th itera- 
~ ( m )  ~ ( m l  

tion, wT (k) for r E (?(m-), already computed in the k-th iteration, are used, while 
~ ( r }  

\ / 

Tr7 (k - 1) for r E G(m+) are employed from the previous iteration. From the uniqueness 
~ f r t  , , 

of the solution f l  satisfying (2.1), it can be readily seen that the iterative algorithm based on 
(2.8) produces wT if it converges. Hence, the following iterative algorithm for computing the 
ergodic probability vector of A can be constructed. A column vector having all components 
equal to 1 is denoted by 1. 

Algorithm 1 (The Block Gauss-Seidel Algorithm ) 

an ergodic stochastic matrix A,  an N - dimensional positive vector 

wT(0) > 0 ,  a lumping L as given in (2.2) and an accuracy level 

& > 0. 

the ergodic probability vector wT of A ,  if it converges. 

S e t m = l a n d k = l .  

Loop : Solve the linear equation (2.8) for < ( ) ( k ) .  

If m < M, set m = m +  1 and go to Loop. 

If llwT(k) - wT(k - 1)ll > E ,  set k = k +  1, m = 1, and go to Loop. 

Set wT = wT(k)/{wT(k)l} and stop. 

It should be noted that the block Gauss-Seidel algorithm is scale free in that V:,) (k) can 

be scaled up or down by an arbitrary factor at an arbitrary stage of the algorithm, provided 
that the same factor is employed for all wT (k), m E H . Furthermore, the algorithm 

~ ( m )  
manipulates only nonnegative numbers if the successive substitution is used for solving (2.8). 
There are no divisions involved in the algorithm except the final normalization. 
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3. A Necessary and Sufficient Condition for Global Geometric Convergence of 
the Block Gauss-Seidel Algorithm 
In this section, we show a necessary and sufficient condition under which Algorithm 1 

converges geometrically starting with an arbitrary N-dimensional vector S ( 0 )  > oT . For 
convenience, the block lower diagonal matrix AL , the block diagonal matrix AD and the 
block upper diagonal matrix Au are defined as 

where = 1 if the statement P holds and &{p1 = 0 otherwise. We note that 

Theorem 3.1 Let { q k )  : k = 1 , 2 , .  . .} be a sequence of vectors generated b y  Algorithm 1 
starting with S ( 0 )  > oT . Then one has 

where B is given b y  
(3.4) . B = ALII - (AD + AU)]-' . 

Proof : We first note that Equation (2.8) for m E H can be rewritten as 

Since A is ergodic, AL and Au are nonzero matrices. Consequently, AD + Ay is strictly 
substochastic and [ I  - (AD + Au)] is nonsingular. The theorem now follows from (3.5) by 
solving for S ( k ) .  W 

We note that B is a nonnegative square matrix. From (2.1) and (3.2) , it can be readily 
seen that 

(3.6) = zT[1 - (AD + Ay)] ; ALl = [I - (AD + Au)]! . 

We are now in a position to prove the following theorem. The spectral radius of a square 
matrix Y is denoted by p ( Y )  . 

Theorem 3.2 Let A be any ergodic stochastic matrix having the ergodic probability vector 
7rT . Let B be as defined in (3.4) . One then has : 

(3.7) p ( B )  = l with vT = v T ~  and Bu = U where U = ~ ~ l / { v ~ ~ ~ l }  ; 

(3.8) B = U Z + A ~  , 
(3.9) 

T ~ ^ A ~ = o ~  ; ABu=0 ; v u = 1  , and 

(3.10) ~ ( A B )  < 1 . 

Proof : We first note from (3.2) , (3.4) and (3.6) that 

and 
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Hence 'K1 and U are the left- and the right-eigenvectors of B associated with eigenvalue one, 
satisfying it^u = 1. 

Since B is a nonnegative square matrix, one sees from the generalized Perron-Frobenius 
theorem ( see Theorem I* of Debreu and Herstein [3] ) that B has the maximum eigenvalue 
A > 0 associated with the left eigenvector xT > oT and the right eigenvector y >. 0 satisfying 
x T y  = 1. F r o m G  = G B  and Bu = U ,  one has A > 1. Suppose A > 1 . From (3 .4))  one 
sees that 
(3.11) 

Since \xT = x T B  , Equation (3.11) then leads to AxT[l - (AD + Ay)] = x 1 ' ~ ~ ,  or equiva- 
lently, 
(3.12) AxT[l  - Ap)]  = oT , 
W here 

(3.13) 

Since AL is a nonzero matrix, A(A) is strictly substochastic for A > 1. Hence [I  - A(A)] is 
nonsingular and Equation (3.12) has a unique solution xT = 0 .  This contradicts the fact 
that xT is the left eigenvector associated with A and xTy  = 1 . Hence A = p ( B )  = 1. From 
the generalized Perron-Frobenius theorem, B has a spectral decomposition as given in (3.8) 
satisfying (3.9) and (3.10). This completes the proof. W 

Theorem 3.1 implies that 

Hence, the next theorem immediately follows from (3.14) and Theorem 3.2. 

Theorem 3.3 Let A be any ergodic stochastic matrix having the ergodic probability vector 
v and define a matrix B as in (3.4)-  Also let AB be as in Theorem 3.2 . Then Algorithm 
1 applied to A converges geometrically starting with any positive vector G ( 0 )  if and only if 
p( AB) < 1. Furthermore, the geometric factor governing the speed of convergence is given b y  

P ( ~ B ) .  

Proof : From (3.7) and (3 .8) ,  one sees that a dyadic matrix uvT is idempotent and the 
two matrices U& and AB are matrix orthogonal to each other. It follows from (3.8) that 

Substituting (3.15) into (3.14)) one finds that x T ( k )  = { v T ( 0 ) u } 7 r T  + S ( 0 ) A B k .  Since 
p ( A B )  < 1 ,  the second term converges geometrically to  oT as k goes' t o  infinity, where the 
geometric factor ^(AB) is the second maximum of the absolute eigenvalues of B. The positive 
constant v T ( 0 ) u  is eliminated in [5] of Algorithm 1. 

4. Existence of Lumping for Assuring Geometric Convergence of the Block 
Gauss-Seidel Algorithm 

We have seen that the block Gauss-Seidel algorithm converges geometrically if and only if 
p ( A B )  < 1 . However, B is clearly decomposable from (3.4) and the problem of seeing when 
^(AB) < 1 holds is nontrivial. This difficulty can be conquered by introducing a stochastic 
matrix S which inherits the convergence structure of B. 
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Theorem 4.1 Let A be any erqodic stochastic matrix having the ergodic probability vector 
3~ and define a matrix S b y  

Then the following statements hold. 

(4.2) S is a stochastic matrix with //r = $5 where //r = wTAL/{wTALl} ; 

(4.3) s=luT+Lls , 
(4.4) 

T i t T ~ s = O T  ; A s l = O  ; p 1 = l  , and 

(4.5) P(^s) = PPB) 
Proof : From the definition in (4.1) , the matrix S is clearly nonnegative. We see from 
(4.1) and (3.6) that  

Hence S is stochastic. Furthermore, 

proving the first statement. From the generalized Perron-Frobenius theorem, S has a spectral 
decomposition as given in (4.3) satisfying (4.4). As in (3.15), one sees that 

From (3.4) and (4.1), one obtain 

so that converges if and only if sk converges. 
Substituting (3.15) and (4.7) into (4.8), 

Using ll Norm, it follows from (4.9) that 

for arbitrary k ; k = 1,2,  -. One then has 

On the other hand, starting with equation 

(4.12) sk = [I - (AD + AV)]-'Bk-'A L 7 

similar to (4.8), we have 

(4.13) 
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Statement (4.5) then follows from (4.1 1) and (4.13), completing the proof. 

Let {N(k) : k > O} be the discrete time Markov chain on V governed by S .  From the 
definition of S in (4.1), this Markov chain can be constructed from the original Markov chain 
{J (k )  : k > O} governed by A in the following manner. Let N(0) = J(0)  . Following a sample 
path of {J(k)  : k > O} , find k*(k), k = 1,2,  - - , satisfying k*(O) = 0 and 

(4.14) k*(k) = k*(k - l )  

+ min{t : J(k*(k - 1) + t - l )  E L(n), J(k*(k - l) + t )  E L(m), for some n > m}. 

Then set N(k)  = J(k*(k)),  k = 1,2, -. In words, {N(k) : k > O} can be constructed by 
masking out all transitions of { J ( k )  : k > O} between two consecutive "downward" transitions 
among lumps. From this observation, or algebraically from (4.1) , one sees that  S has zero 
columns under the subset Z of V defined by 

We note that Z 3 L(M).  Let W = V \ 2. Then there exists a permutation matrix X such 
that 

(4.16) 

The next theorem provides an alternative form of the necessary and sufficient condition given 
in Theorem 3.3. 

Theorem 4.2 Let A be any ergodic stochastic matrix having the ergodic probability vector 
nT . Then Algorithm 1 converges geometrically for an arbitrary initial positive vector G ( 0 )  
if and only if Sww given i n  (4.16) is aperiodic. 

Proof : Since the eigenvalue structure is invariant under similarity transformation, the 
theorem holds from Theorem 3.3, (4.5) of Theorem 4.1, and (4.16) . 

It should be noted that Theorem 4.2 does not require the matrix S to  be ergodic. For 
Algorithm 1 to converge geometrically, the Markov chain {N(k) : k > O }  cannot have any 
closed set of states with any periodicity but still may have transient states for which stationary 
probabilities would be zero. The next theorem is immediate from Theorem 4.2. 

Theorem 4.3 Let A be any ergodic stochastic matrix having the ergodic probability vector 
nT . Then Algorithm 1 does not converge for any initial positive vector ~ ( 0 )  except for xT 
if and only if {N(k) : k > 01 has a closed set of states with common periodicity. 

Theorems 4.2 and 4.3 suggest that, given an ergodic stochastic matrix A, Algorithm 1 may 
converge for a certain set of lumps but may not converge for another set of lumps. This point 
is illustrated through the following example. 

Example 1 We consider a Markov chain {J(k)  : k > O} on V = {l, 2,3,4} governed by 
an ergodic stochastic matrix A given by 

0 0  0 1 

0 1  0 
0 0 112 112 
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It can be readily seen that the Markov chain has the ergodic vector 

(4.18) wT = [1/5, 115, 115, 2/51 . 

Case A : L(l)={ 1 } , L(2)={ 2 } , L(3)={ 3 } , L(4)={ 4 } 
W={ 1 , 2 , 3  } , and Z={ 4 } 

In this case, S and Sww computed from (4.1) and (4.16) respectively become 

Hence {N(k);  > O} has a closed set of states W with periodicity one, and the point Gauss- 
Seidel iteration algorithm does not converge for any positive initial vector, except G.  

Case B : L(l)={ 1 , 2} , L(2)={ 3 } , L(3)={ 4 } 
W={ 2 , 3  } , and Z={ 1 , 4  } 

Here S and Sww are computed from (4.1) and (4.16) respectively as 

Again {N(k) : k > O} has a closed set of states W with periodicity one, and the block Gauss- 
Seidel iteration algorithm does not converge for any positive initial vector, except wT, for this 
lumping. 

Case C : L(l)={ 3, 4 } , L(2)={ 2 } , L(3)={ 1 } 
We rearrange the states {l, 2,3,4} -+ {4,3,2, l}, so that the states are decomposed in non- 
decreasing order of lump numbers. Then, with W={ 4 } , and Z={ 3, 2, 1 } , S and Sww 
are computed from (4.1) and (4.16) respectively as 

1 0 0 0  
, and Sww = [l] . 

Since state 1 in W is positive recurrent and states 2, 3 and 4 in Z are transient, the block 
Gauss-Seidel iteration algorithm converges geometrically for any positive initial vector. In- 
deed, since S itself is idempotent in this case, the algorithm converges in one step. 

If each lump contains only one state, then the block Gauss-Seidel Algorithm reduces to  point 
Gauss-Seidel Algorithm. It is known that point Gauss-Seidel Algorithm always converges if 
the states are rearranged properly for any ergodic Markov chain (See [4] pp228-232). The next 
theorem shows that one can always construct a set of lumps, where at  least one lump contains 
more than two states, so that the block Gauss- Seidel algorithm converges geometrically for 
any positive initial vector. 
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Theorem 4.4 For any ergodic stochastic matrix A, there exists at least one set of lumps for 
which Algorithm 1 converges geometrically starting with an arbitrary positive vector. 

Proof : Choose an arbitrary state i G V . Since the original Markov chain {J (k )  : k 2 O} 
is ergodic, there exists at least one path 

(4.22) i = i(1) -+ i(2) -+ - .  4 i ( T  + l )  = i , i(k) # i(l} for k, j E { l ,  2 , .  T}, 

such that the probability of returning to state i along this path starting from state i is positive. 
Then construct a set of lumps in such a way that i(t)  E L(t),  t = 1, - . - , T. Other lumps can 
be constructed arbitrarily and with this lumping, it is clear that the constructed Markov 
chain {N(k) : k > O} has a positive probability for self-transition at state i. Hence at least 
one of the diagonal elements of Sww is positive and therefore is aperiodic. The theorem now 
follows from Theorem 4.2. E 

Note that one can make the number of lumps strictly less than N. Actually some of adjacent 
states on the path i = i(1) --+ i(2) --+ - --+ i(T) can belong to one lump, unless all states in 
this path belong to one lump. This provides that the lumps are constructed in nondecreasing 
order toward state i(T). 

The following example illustrates Theorem 4.4. 

Example 2 We consider the same Markov chain given in Example 1, and focus on a 
returning path 3 -+ 2 -+ 1 --+ 4 --+ 3. Along this path, various lumpings can be constructed 
for which geometric convergence of the algorithm is assured by Theorem 4.4. For example, 

and 
(4.26) L(1) = {3,2, l}, L(2) = {4}, etc. 

Here we pick up the lumping (4.25) . With rearrangement of the states given as { 1, 2, 3, 4 

} { 3, 1, 2, 4 }, the resulting stochastic matrix A is given by 

From this matrix, S and Sww are computed from (4.1) and (4.16) respectively as 

In Case B of Example 1, one has L(1) = { l ,  2}, L(2) = {3}, L(3) = {4} and Algorithm 1 
does not converge. However, in this example, by merely changing the lump numbers via 
rearrangement, Algorithm 1 converges for any positive initial vector. 
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The block Cause-Seidel algorithm is often applied to compute ergodic probability solutions 
of queueing systems. The next is an example of applying Theorem 4.4 to a queueing system 

M/G/KN).  

Example 3 We consider an M/G/ l  queueing system with finite waiting room, arrival 
rate A and service time distribution function F ( x ) .  Let X(k) be the number of customers 
upon departure of the k-th customer. Then {X(k) : k > O} is a discrete Markov chain on the 
state space V = {O, 1,2, N}, where N is the capacity of customers in system, governed by 
a stochastic matrix 

If we choose numbers ^(I),  /5(2), , /5(rn) such that 0 5 ^(I)  < P(2) < . + .  < P(m) = N ,  
and construct lumping {L(k)}El as 

H.29) { L( l )  = { i 1 0 5 i 5 ̂ (I) }, 
Â£(k = { i 1 ,8(k - 1) + 1 5 i g ( k )  }, for k = 2,3, , m, 

then Algorithm 1 converges for this lumping. To show this, we take an arbitrary number 
J ; 1 < j <: m - 1, and consider a returning path ^(j) -+ /5(j) + 1 --+ @(j). From (4.29)) 
G) E G),/S(j) + 1 E Â£(  + 1). Hence, Algorithm 1 converges by Theorem 4.4. 
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