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Abstract Let E be a nonempty finite set. H. Narayanan showed a theorem describing that the family 
{IT 1 IT ? PE, ̂ Gxgn, ^(X) = rninngPE xxen j(X)} forms a lattice, where f is a submodular function on 
2  ̂ and PE is the set of all partitions of E. On the other hand, L. S. Shapley gave a theorem on a necessary 
and sufficient condition for a convex game to be decomposable. We give a theorem which is a generalization 
of these two theorems. 

1. Introduction 
Let E be a nonempty finite set and f : 2E + R submodular. For the purpose of solving 
problems in electrical network theory, H. Narayanan [3] studied structure of the set of the 
partitions Pc = {IT [ IT' 6 PE, /(II') = minnepr /(IT)}, where PE is the set of all partitions 
of E and = f (X) .  He showed that PE forms a lattice. On the other hand, 
L. S. Shapley [4] introduced convex games and studied their properties. One of his results 
is a necessary and sufficient condition for a convex game to be decomposable. 

Our purpose is aimed at generalizing these two results. We pay attention to two following 
concepts: first, Veinott relation ([5]) which is an order on a set of sublattices, and secondly, 
properties of sum of a submodular function f : 2 --+ R over the subpartitions of E. In 
section 2 we introduce a concept of ^-chain related to Veinott relation and that of V- 
function as a generalization of such a function /. In section 3 we give our main result with 
an additional property obtained from it, and show that the result is a generalization of 
Narayanan's and Shapley's results. 

2. Definitions and preliminaries 
Suppose a finite lattice L = (L, V , A )  with order :< is given. For X , Y  6 2', if X E X and 
y EY imply that x A  y E X a n d x v y  E Y, then w e d e n o t e x  dv Y. 

Theorem 2.1 (Topkis [5]): The set of all nonempty sublattices of a lattice L is a poset with 
dV. D 

We call the order dv Veinott relation, which is named after a person introducing the 
order. Let L* = (Li,  V,  A ) ,  L2 = (L2, V ,  A ) ,  - - .  , Ln = (Lw V ,  A )  be sublattices of L. If 
{Li, L2 ,  - - - , Ln} satisfies 

(a.1) i , j  c { l , 2 , - - - , n } ,  i # j  ===+ Li Lj  = 0, 
( 2  i , j  â {l, 2, - - - , n} ==Ã Li dV Lj  or L j  dv L;, 

then we call it a *chain of L. By the definition, (LJg1Li, V ,  A )  is a sublattice of L. 

Example 1: Let (L, V ,  A )  be a finite lattice with order 5 a,nd X ,  y E L. Let X = {z \ z 3 X} 
and Y = z } .  If y X then {X, Y} is a ^-chain of L. 
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Example 2: Let A = (A, VA,  A A )  and C = (C, V C ,  Ac)  be finite lattices with order and 
+c -- respectively, where C is a chain (i.e., for a,ll distinct X ,  y G C, either X -& y or y -& X). 
We denote the direct product of A and C by A X C .  We define V and A on A X C as follows: 

for any two elements (a,, c,) E A X C (i = 1 , 2 ) ,  (al ,  cl) V (a2, 0 2 )  = (al V A  cl VC c2), 
(a1, cl) A (a2, c2) = (al AA 0 2 ,  c1 Ac c2). Then, for each nonempty subset {cil, ci2, - , c;,} of 
C and sublattice B = (B, V A ,  A A )  of A ,  {B X {czl}, B X {cz2}, . - .  , B  X {cÃ£} is a ^'-chain 
of A X C. 

Example 3: A partition IT of a nonempty finite set E is a set of nonempty disjoint subsets 
of E whose union is E .  A subpartition II of a set E is a set of nonempty disjoint subsets of 
E. Thus if El C E and is a partition of El, then 111 is a subpartition of E .  We refer 
to an element Ni of a subpartition II as a block of II. The collection of all subpartitions 
(partitions) of E is denoted by SPE (PE). We define a partial order ssp on SPE by 
defining I I 2  ssp Hi if and only if each block of 112 is contained in some block of IIl. The 
least (greatest) element of SPE above (below) 111 and 112 in the partially ordered set SPE is 
denoted by 111 V 112 (111 A It2). We should notice that 111 A 112 does not always exist for two 
arbitrary subpartitions Hi, I12. However, by defining {g} dsp 11 E SPE and {0} ssp {0}, 
SPE U {{g}} forms a lattice with dsp. 

Let 0 # E1 C E2 C - . -  C EÃ 2 E .  Then {PE1 ,PE, , . - - ,PEn}  is a ^-chain of SPEU 
{ W } .  

We denote by ALc the set of all ^-chain of L. Let X* be the minimal element of L and 
LC E ALc. For a given LP 6 Lc and X G LP, if X # X, and Zx = {zl, z2, - - , zk} L - {X*} 

satisfies 

(b.1) 2 ; 1 V z 2 V - - - V ^ = X ,  
(b.2) i , j ~ { l , 2 , - - . , k } ,  i # j * z ; A z j = x * ,  

(b.3) For each zj, there exists sublattice L, of L such that 2, G LJ 5' LP 
(Note that L, need not be contained in L d ,  

then we call it a decomposition of X. One may notice that {X} is a decomposition of X. We 
define that {X*} is the decomposition of X*. We denote by Dx the set of all decompositions 
of X. If Zx G DX and IZj 5 jZzj for all Z E Dx, we call Zx a finest decomposition of X. We 
denote by FDx the set of all finest decompositions of X. 

Let V : L -+ R be a function. For any L;, L, E Lc, suppose 

(c.1) X \  is the minimal element of L; (i.e., X \  5 X ( X  G L2)),  

(c.2) !i E L, and V(?) = minxGLz V(x), 
(c.3) 2 2  E FD?, 
c .4 )  6 6 L, and V(6) = mingei., V(y), 
c .5 )  L,^"L,. 

The following conditions characterize a special class of functions on L. 

Condition 1: If G E Zk ,  then V(c) + V(ih  V x'J 2 V($ V (ZA V X'.)) + V ( i  A (it  V X:)). 

(Note that V xi â L;.) 

Condition 2: For a given ih E 22, if X E Li and X 5 & V xi ,  then V(2h V X'} < V(x) 

Condition 3: V(6 A i )  - V(x}  = Eiiez2{V(ij A (ih V xi))  - V(zh V xi)}. 

If a function V : L -+ R satisfies above three conditions for every Zk E FD?, then we call 
V a V-function with respect to Le. 
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Let E be a nonempty finite set. A function f : 2E + R is called a submodular function 
on 2E if 

f ( X ) + f ( Y )  2 f ( X u  Y) + f ( X n Y )  2 - 1 1  

for all X, Y E. (If - f is a submodular function, we call f a supermodularfunction.) For 
a subpartition II of E, we define /(H) Sxcn f ( X ) .  

An example of V-function: Let us reconsider Example 3. A subpartition whose blocks 
are all singletons of N C E is denoted by IIo(N), i.e., WN) = {{e} 1 e G N}. We show 
that / : SPE U {{0}} -+ R is a V-function with respect to {PEl, PE,, '- ,PE}  satisfying 
0 # El C E2 C - - C EÃ 2 E when f is a submodular function on 2E. 

Let 1 5 p, q 5 n. Note that {g} is the minimal element of SPE U {{g}} and {{e} 1 e ? E,} 
is the minimal element of PEP. Let II, = {NI, NZ, - - - , NT} and IIq be partitions in PEP, PEq 
such that /(IIp) = minnepEp /(H) and f(IIq)  = minnepEq /(I"!). We may assume that 
0 # E, C Eq without loss of generality. Note here that L;, L., in the definition of V-function 
correspond to PEP, PE, in this ^-chain {P&, PE,, - S - ,  PE,} and XI,, I& correspond to 2, 
6. Then {{Nl},{N2},---,{NT}} is the finest decomposition of It,. For i = 1 , 2 , - a -  , r ,  
define h, = {Ni} V {{e} 1 e E E,} = {Ni, IIo(Ep - N.}}. (More precisely, if r = 1, then 
define nNl = {NI}.) Since f is submodular, an elementa,ry calculation yields the following 
inequality (cf. Corollary 3.3 of [3]). 

Hence, f satisfies condition 1. 
Secondly, we show that / satisfies Condition 2. Let II' E PE. For Ni II,, >: IT 

implies that II' can be described as {M1, M2, - - - , M,, &(E, - Ni)} where {Ml, M;, - - , M,} 
is a   art it ion of Ni. Let fl = {Ml, K ,  - - , MS}. Since m,) = minnepEp J(II), from Lemma 
3.1 of [3] we have - 

f (IT) - /(nN.) = Y, f (Mj) - f (N) 2 0. (2.3) 
M, â‚ 

Finally, we show that / satisfies Condition 3. From the definition of IIN we derive 

3. Structure of 5 '-chain related to V-function minimization 
In this section L = (L, V ,  A )  is a finite lattice. A function V : L + R is a V-function with 
respect to Lc, where Lc is a ?-chain of L. The main purpose of this section is to give the 
following theorem. 

Theorem 3.1: Let L', = {2 \i G Li, V(2) = minzEL,V(x)} for Li â Lc. Then L; = 

{L', 1 Li 6 Lc} is also a dv-chain of L .  

Proof: It is simple to show that L; satisfies condition (a.1). We establish that L; satisfies 
condition (a.2) by using the similar argument what Narayanan proved Theorem 3.5 of [3]. 
(The fact that L', is a sublattice of L is obtained simultaneously.) Let x i  be the minimal 
element of L; and L,, L, Lc. We assume L; dv L, without loss of generality. First, we 
state the following claim for emphasis. 
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Claim: Suppose X E LT and ij E L;. For ih G Z2 E F D y ,  we have 

V($ V (ih V X:)) = min V(y), 
^ â ‚ ¬  

V($ A (it V X:)) = V(zh V X'). 

(Proof of Claim) From Li Lj  and V($) = min^ V(y), we have 

Moreover, from L; - <  L, and Condition 2, we obtain 

Therefore, from Condition 1, (3.3) and (3.4) we have (3.1) and (3.2). 
(The end of the proof of Claim) 

Let 2, = {il, i2, - - , ik}. Repeating the application of (3.1) with ( Q v ( ~ ~ v x ~ ) v -  . V ( ~ ~ V X ~ ) )  
and ih+l V X \  for h = 1 to k - 1, we have 

V($ V X )  = V(Q V (Sl V X^ V - - - V (il, V X;)) = min V(y). (3.5) 
Yâ‚¬ 

Moreover, from (3.2) for ih E Zx and Condition 3, we have V(c A 2) = V(?). These imply 
that $ V ?  G L' and t j  A 2 E L',. CI 

Let E be a nonempty finite set and f : 2^ -+ R submodular. From Theorem 3.1 and 
the example of V-function in the previous section we have the following theorem. 

Theorem 3.2 (cf. [2]): Let 4 + El C E2 C - . -  C En C E .  Let Hz be a partition of E, 
and II, a partition of E, for I < i 5 j < n .  If /(H,) = minnepet /(H) and /(H,) = 

- 
h p E ,  fW, then /(H, V H,) = minnepEJ /(H) and /(H, A II,) = minnepE /(FI). D 

By setting Ez = E, = E in Theorem 3.2 we obtain the following theorem. 

Theorem 3.3 (Narayanan [3]): Let 111 and 112 be two partitions of E .  ~f /(111) = /(U;) = 
minnepE fW,  then /(H1 V Ha) = /(Ill A II;) = minnepr /(II). U 

We consider the case of f (0) = 0. In the remaining part of this section, we define 
PO = {{g}} and f({0]) = f ( 0 ) .  Since f is submodular, for each S C E, we have f { { ~ } )  = 
minnePs f (H). Hence, from Theorem 3.2, we have the following corollary. 

Corollary 3.4: If H E PE, satisfies f(II)  = /(E2) then /(H A {E1}) = /({El}) for each 
El C E2. 
The following property immediately follows from the above corollary. 

Property 3.5 (Girlich, Schneidereit and Zaporozhets [l]): Let Y be a nonernpty subset of 
E such that f (Y) = f (Y1) + f (Y2), where Yl and Y2 are nonempty disjoint sets, Y = Y1 U Y2. 
Then f ( X }  = f (X  H K )  + f (X  H G )  for each X U. D 

Finally, we refer to a decomposable convex game. Let E = {l, 2, - - - , n} be a set of 
players and (E, v) be an n-person game in characteristic function form where v is a real- 
valued function on and v(@) = 0. A game ( E ,  v ) is convex if v is a supermodular function. 
Let I1 = {Xl, X2, - . , X p }  E PE and p 2 2. (E, v) is said to be decomposable (with respect 
to 11) if for each S Q E, v(S) = Exten v(Xi fl S). Let f = -v. From Corollary 3.4 we 
derive the following Shapley's Theorem. 

Theorem 3.6 (Shapley [4]): A convex game ( E ,  v) is decomposable if and only if f ( E )  = 
f (Xl) + . - - + f (Xp) holds for some partition {X1, X9, - .  . ,&} of E into p 2 2 nonempty 
subsets, where f = -v. 
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