© 1997 The Operations Research Society of Japan

Journal of the Operations Research Society of Japan Vol. 40, No. 2, June 1997

STRUCTURES OF SUBLATTICES RELATED TO VEINOTT RELATION

Takeshi Naitoh Shiga University Akira Nakayama Fukushima University

(Received February 19, 1996; Revised September 27, 1996)

Abstract Let E be a nonempty finite set. H. Narayanan showed a theorem describing that the family $\{\Pi' \mid \Pi' \in P_E, \sum_{X \in \Pi'} f(X) = \min_{\Pi \in P_E} \sum_{X \in \Pi} f(X)\}$ forms a lattice, where f is a submodular function on 2^E and P_E is the set of all partitions of E. On the other hand, L. S. Shapley gave a theorem on a necessary and sufficient condition for a convex game to be decomposable. We give a theorem which is a generalization of these two theorems.

1. Introduction

Let E be a nonempty finite set and $f: 2^E \to \mathbb{R}$ submodular. For the purpose of solving problems in electrical network theory, H. Narayanan [3] studied structure of the set of the partitions $P_E^* = \{\Pi' \mid \Pi' \in P_E, \overline{f}(\Pi') = \min_{\Pi \in P_E} \overline{f}(\Pi)\}$, where P_E is the set of all partitions of E and $\overline{f}(\Pi) = \sum_{X \in \Pi} f(X)$. He showed that P_E^* forms a lattice. On the other hand, L. S. Shapley [4] introduced convex games and studied their properties. One of his results is a necessary and sufficient condition for a convex game to be decomposable.

Our purpose is aimed at generalizing these two results. We pay attention to two following concepts: first, Veinott relation ([5]) which is an order on a set of sublattices, and secondly, properties of sum of a submodular function $f: 2^E \to \mathbb{R}$ over the subpartitions of E. In section 2 we introduce a concept of \leq^{V} -chain related to Veinott relation and that of V-function as a generalization of such a function \overline{f} . In section 3 we give our main result with an additional property obtained from it, and show that the result is a generalization of Narayanan's and Shapley's results.

2. Definitions and preliminaries

Suppose a finite lattice $\mathbf{L} = (L, \lor, \land)$ with order \preceq is given. For $X, Y \in 2^L$, if $x \in X$ and $y \in Y$ imply that $x \land y \in X$ and $x \lor y \in Y$, then we denote $X \preceq^V Y$.

Theorem 2.1 (Topkis [5]): The set of all nonempty sublattices of a lattice **L** is a poset with \leq^{V} .

We call the order \leq^{V} Veinott relation, which is named after a person introducing the order. Let $\mathbf{L}_1 = (L_1, \vee, \wedge), \mathbf{L}_2 = (L_2, \vee, \wedge), \cdots, \mathbf{L}_n = (L_n, \vee, \wedge)$ be sublattices of \mathbf{L} . If $\{L_1, L_2, \cdots, L_n\}$ satisfies

(a.1)
$$i, j \in \{1, 2, \dots, n\}, i \neq j \Longrightarrow L_i \cap L_j = \emptyset,$$

(a.2) $i, j \in \{1, 2, \dots, n\} \Longrightarrow L_i \preceq^V L_j \text{ or } L_j \preceq^V L_j$

then we call it a \leq^{V} -chain of L. By the definition, $(\bigcup_{i=1}^{n} L_{i}, \vee, \wedge)$ is a sublattice of L.

Example 1: Let (L, \lor, \land) be a finite lattice with order \preceq and $x, y \in L$. Let $X = \{z \mid z \preceq x\}$ and $Y = \{z \mid y \preceq z\}$. If $y \notin X$ then $\{X, Y\}$ is a \preceq^V -chain of L.

Example 2: Let $\mathbf{A} = (A, \lor_A, \land_A)$ and $\mathbf{C} = (C, \lor_C, \land_C)$ be finite lattices with order \preceq_A and \preceq_C respectively, where C is a chain (i.e., for all distinct $x, y \in C$, either $x \preceq_C y$ or $y \preceq_C x$). We denote the direct product of A and C by $A \times C$. We define \vee and \wedge on $A \times C$ as follows: for any two elements $(a_i, c_i) \in A \times C$ $(i = 1, 2), (a_1, c_1) \vee (a_2, c_2) = (a_1 \vee_A a_2, c_1 \vee_C c_2),$ $(a_1, c_1) \wedge (a_2, c_2) = (a_1 \wedge_A a_2, c_1 \wedge_C c_2)$. Then, for each nonempty subset $\{c_{i_1}, c_{i_2}, \dots, c_{i_k}\}$ of C and sublattice $\mathbf{B} = (B, \forall_A, \wedge_A)$ of $\mathbf{A}, \{B \times \{c_{i_1}\}, B \times \{c_{i_2}\}, \cdots, B \times \{c_{i_k}\}\}$ is a \preceq^V -chain of $A \times C$. Π.

Example 3: A partition Π' of a nonempty finite set E is a set of nonempty disjoint subsets of E whose union is E. A subpartition Π of a set E is a set of nonempty disjoint subsets of E. Thus if $E_1 \subseteq E$ and Π_1 is a partition of E_1 , then Π_1 is a subpartition of E. We refer to an element N_i of a subpartition Π as a block of Π . The collection of all subpartitions (partitions) of E is denoted by SP_E (P_E). We define a partial order \preceq^{SP} on SP_E by defining $\Pi_2 \preceq^{SP} \Pi_1$ if and only if each block of Π_2 is contained in some block of Π_1 . The least (greatest) element of SP_E above (below) Π_1 and Π_2 in the partially ordered set SP_E is denoted by $\Pi_1 \vee \Pi_2$ ($\Pi_1 \wedge \Pi_2$). We should notice that $\Pi_1 \wedge \Pi_2$ does not always exist for two arbitrary subpartitions Π_1 , Π_2 . However, by defining $\{\emptyset\} \preceq^{SP} \Pi \in SP_E$ and $\{\emptyset\} \preceq^{SP} \{\emptyset\}$, $SP_E \cup \{\{\emptyset\}\}$ forms a lattice with \preceq^{SP} .

Let $\emptyset \neq E_1 \subset E_2 \subset \cdots \subset E_n \subseteq E$. Then $\{P_{E_1}, P_{E_2}, \cdots, P_{E_n}\}$ is a \preceq^V -chain of $SP_E \cup$ $\{\{\emptyset\}\}.$

We denote by AL_C the set of all \preceq^V -chain of L. Let x_* be the minimal element of L and $L_C \in AL_C$. For a given $L_p \in L_C$ and $x \in L_p$, if $x \neq x_*$ and $Z_x = \{z_1, z_2, \cdots, z_k\} \subseteq L - \{x_*\}$ satisfies

 $z_1 \vee z_2 \vee \cdots \vee z_k = x,$ (b.1)

 $i, j \in \{1, 2, \cdots, k\}, i \neq j \Longrightarrow z_i \land z_j = x_*,$ (b.2)

(b.3) For each z_i , there exists sublattice L^j of L such that $z_i \in L^j \preceq^V L_p$

(Note that L^{j} need not be contained in L_{C}),

then we call it a *decomposition* of x. One may notice that $\{x\}$ is a decomposition of x. We define that $\{x_*\}$ is the decomposition of x_* . We denote by D_x the set of all decompositions of x. If $Z_x \in D_x$ and $|Z| \leq |Z_x|$ for all $Z \in D_x$, we call Z_x a finest decomposition of x. We denote by FD_x the set of all finest decompositions of x.

Let $V: L \to \mathbf{R}$ be a function. For any $L_i, L_j \in L_C$, suppose

- x_*^i is the minimal element of L_i (i.e., $x_*^i \preceq x \ (x \in L_i)$), (c.1)
- $\hat{x} \in L_i$ and $V(\hat{x}) = \min_{x \in L_i} V(x)$, (c.2)
- (c.3) $Z_{\hat{x}} \in FD_{\hat{x}}$,
- (c.4) $\hat{y} \in L_j$ and $V(\hat{y}) = \min_{y \in L_j} V(y)$, (c.5) $L_i \preceq^V L_j$.

The following conditions characterize a special class of functions on L.

Condition 1: If $\hat{z}_h \in Z_{\hat{x}}$, then $V(\hat{y}) + V(\hat{z}_h \vee x^i_*) \ge V(\hat{y} \vee (\hat{z}_h \vee x^i_*)) + V(\hat{y} \wedge (\hat{z}_h \vee x^i_*))$. (Note that $\hat{z}_h \vee x^i_* \in L_i$.)

Condition 2: For a given $\hat{z}_h \in Z_{\hat{x}}$, if $x \in L_i$ and $x \preceq \hat{z}_h \lor x_*^i$, then $V(\hat{z}_h \lor x_*^i) \leq V(x)$.

Condition 3: $V(\hat{y} \wedge \hat{x}) - V(\hat{x}) = \sum_{\hat{z}_h \in \mathbb{Z}_*} \{ V(\hat{y} \wedge (\hat{z}_h \vee x_*^i)) - V(\hat{z}_h \vee x_*^i) \}.$

If a function $V: L \to \mathbf{R}$ satisfies above three conditions for every $Z_{\hat{x}} \in FD_{\hat{x}}$, then we call V a V-function with respect to L_C .

Let E be a nonempty finite set. A function $f: 2^E \to \mathbf{R}$ is called a *submodular function* on 2^E if

$$f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y) \tag{2.1}$$

for all $X, Y \subseteq E$. (If -f is a submodular function, we call f a supermodular function.) For a subpartition Π of E, we define $\overline{f}(\Pi) \equiv \sum_{X \in \Pi} f(X)$.

An example of V-function: Let us reconsider Example 3. A subpartition whose blocks are all singletons of $N \subseteq E$ is denoted by $\Pi_0(N)$, i.e., $\Pi_0(N) = \{\{e\} \mid e \in N\}$. We show that $\overline{f} : SP_E \cup \{\{\emptyset\}\} \to \mathbf{R}$ is a V-function with respect to $\{P_{E_1}, P_{E_2}, \dots, P_{E_n}\}$ satisfying $\emptyset \neq E_1 \subset E_2 \subset \cdots \subset E_n \subseteq E$ when f is a submodular function on 2^E .

Let $1 \leq p, q \leq n$. Note that $\{\emptyset\}$ is the minimal element of $SP_E \cup \{\{\emptyset\}\}$ and $\{\{e\} \mid e \in E_p\}$ is the minimal element of P_{E_p} . Let $\Pi_p = \{N_1, N_2, \dots, N_r\}$ and Π_q be partitions in P_{E_p}, P_{E_q} such that $\overline{f}(\Pi_p) = \min_{\Pi \in P_{E_p}} \overline{f}(\Pi)$ and $\overline{f}(\Pi_q) = \min_{\Pi \in P_{E_q}} \overline{f}(\Pi)$. We may assume that $\emptyset \neq E_p \subseteq E_q$ without loss of generality. Note here that L_i, L_j in the definition of V-function correspond to P_{E_p}, P_{E_q} in this \preceq^V -chain $\{P_{E_1}, P_{E_2}, \dots, P_{E_n}\}$ and Π_p, Π_q correspond to \hat{x} , \hat{y} . Then $\{\{N_1\}, \{N_2\}, \dots, \{N_r\}\}$ is the finest decomposition of Π_p . For $i = 1, 2, \dots, r$, define $\Pi_{N_i} = \{N_i\} \vee \{\{e\} \mid e \in E_p\} = \{N_i, \Pi_0(E_p - N_i)\}$. (More precisely, if r = 1, then define $\Pi_{N_1} = \{N_1\}$.) Since f is submodular, an elementary calculation yields the following inequality (cf. Corollary 3.3 of [3]).

$$\overline{f}(\Pi_q) + \overline{f}(\Pi_{N_i}) \ge \overline{f}(\Pi_q \vee \Pi_{N_i}) + \overline{f}(\Pi_q \wedge \Pi_{N_i}).$$
(2.2)

Hence, \overline{f} satisfies Condition 1.

Secondly, we show that \overline{f} satisfies Condition 2. Let $\Pi' \in P_{E_p}$. For $N_i \in \Pi_p$, $\Pi_{N_i} \succeq \Pi'$ implies that Π' can be described as $\{M_1, M_2, \dots, M_s, \Pi_0(E_p - N_i)\}$ where $\{M_1, M_2, \dots, M_s\}$ is a partition of N_i . Let $\widehat{\Pi} = \{M_1, M_2, \dots, M_s\}$. Since $\overline{f}(\Pi_p) = \min_{\Pi \in P_{E_p}} \overline{f}(\Pi)$, from Lemma 3.1 of [3] we have

$$\overline{f}(\Pi') - \overline{f}(\Pi_{N_i}) = \sum_{M_j \in \widehat{\Pi}} f(M_j) - f(N) \ge 0.$$
(2.3)

Finally, we show that \overline{f} satisfies Condition 3. From the definition of \prod_{N_i} we derive

$$\sum_{N_i \in \Pi_p} \left\{ \overline{f}(\Pi_q \wedge \Pi_{N_i}) - \overline{f}(\Pi_{N_i}) \right\} = \sum_{N_i \in \Pi_p} \left\{ \overline{f}(\Pi_q \wedge \{N_i\}) - f(N_i) \right\}$$
$$= \overline{f}(\Pi_q \wedge \Pi_p) - \overline{f}(\Pi_p).$$
(2.4)

3. Structure of \leq^{V} -chain related to V-function minimization

In this section $\mathbf{L} = (L, \vee, \wedge)$ is a finite lattice. A function $V : L \to \mathbf{R}$ is a V-function with respect to L_C , where L_C is a \preceq^{V} -chain of L. The main purpose of this section is to give the following theorem.

Theorem 3.1: Let $L_i^* = \{\hat{x} \mid \hat{x} \in L_i, V(\hat{x}) = \min_{x \in L_i} V(x)\}$ for $L_i \in L_C$. Then $L_C^* = \{L_i^* \mid L_i \in L_C\}$ is also a \preceq^V -chain of L.

Proof: It is simple to show that L_C^* satisfies condition (a.1). We establish that L_C^* satisfies condition (a.2) by using the similar argument what Narayanan proved Theorem 3.5 of [3]. (The fact that L_i^* is a sublattice of **L** is obtained simultaneously.) Let x_*^i be the minimal element of L_i and $L_i, L_j \in L_C$. We assume $L_i \preceq^V L_j$ without loss of generality. First, we state the following claim for emphasis.

Claim: Suppose $\hat{x} \in L_i^*$ and $\hat{y} \in L_j^*$. For $\hat{z}_h \in Z_{\hat{x}} \in FD_{\hat{x}}$, we have

$$V(\hat{y} \lor (\hat{z}_h \lor x^i_*)) = \min_{y \in L_j} V(y), \qquad (3.1)$$

$$V(\hat{y} \wedge (\hat{z}_h \vee x^i_*)) = V(\hat{z}_h \vee x^i_*).$$
(3.2)

(Proof of Claim) From $L_i \preceq^V L_j$ and $V(\hat{y}) = \min_{y \in L_i} V(y)$, we have

$$V(\hat{y}) \le V(\hat{y} \lor (\hat{z}_h \lor x^i_*)). \tag{3.3}$$

Moreover, from $L_i \preceq^V L_j$ and Condition 2, we obtain

$$V(\hat{z}_h \vee x^i_*) \le V(\hat{y} \wedge (\hat{z}_h \vee x^i_*)).$$
(3.4)

Therefore, from Condition 1, (3.3) and (3.4) we have (3.1) and (3.2). (The end of the proof of Claim)

Let $Z_{\hat{x}} = \{\hat{z}_1, \hat{z}_2, \dots, \hat{z}_k\}$. Repeating the application of (3.1) with $(\hat{y} \lor (\hat{z}_1 \lor x_*^i) \lor \dots \lor (\hat{z}_h \lor x_*^i))$ and $\hat{z}_{h+1} \lor x_*^i$ for h = 1 to k - 1, we have

$$V(\hat{y} \lor \hat{x}) = V(\hat{y} \lor (\hat{z}_1 \lor x_*^i) \lor \cdots \lor (\hat{z}_k \lor x_*^i)) = \min_{y \in L_j} V(y).$$
(3.5)

Moreover, from (3.2) for $\hat{z}_h \in Z_{\hat{x}}$ and Condition 3, we have $V(\hat{y} \wedge \hat{x}) = V(\hat{x})$. These imply that $\hat{y} \vee \hat{x} \in L_i^*$ and $\hat{y} \wedge \hat{x} \in L_i^*$.

Let E be a nonempty finite set and $f: 2^E \to \mathbf{R}$ submodular. From Theorem 3.1 and the example of V-function in the previous section we have the following theorem.

Theorem 3.2 (cf. [2]): Let $\phi \neq E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq E$. Let Π_i be a partition of E_i and Π_j a partition of E_j for $1 \leq i \leq j \leq n$. If $\overline{f}(\Pi_i) = \min_{\Pi \in P_{E_i}} \overline{f}(\Pi)$ and $\overline{f}(\Pi_j) = \min_{\Pi \in P_{E_j}} \overline{f}(\Pi)$, then $\overline{f}(\Pi_i \vee \Pi_j) = \min_{\Pi \in P_{E_j}} \overline{f}(\Pi)$ and $\overline{f}(\Pi_i \wedge \Pi_j) = \min_{\Pi \in P_{E_i}} \overline{f}(\Pi)$. \square By setting $E_i = E_j = E$ in Theorem 3.2 we obtain the following theorem.

Theorem 3.3 (Narayanan [3]): Let Π_1 and Π_2 be two partitions of E. If $\overline{f}(\Pi_1) = \overline{f}(\Pi_2) = \min_{\Pi \in P_E} \overline{f}(\Pi)$, then $\overline{f}(\Pi_1 \vee \Pi_2) = \overline{f}(\Pi_1 \wedge \Pi_2) = \min_{\Pi \in P_E} \overline{f}(\Pi)$.

We consider the case of $f(\emptyset) = 0$. In the remaining part of this section, we define $P_{\emptyset} = \{\{\emptyset\}\}$ and $\overline{f}(\{\emptyset\}) = f(\emptyset)$. Since f is submodular, for each $S \subseteq E$, we have $\overline{f}(\{S\}) = \min_{\Pi \in P_S} \overline{f}(\Pi)$. Hence, from Theorem 3.2, we have the following corollary.

Corollary 3.4: If $\Pi \in P_{E_2}$ satisfies $\overline{f}(\Pi) = f(E_2)$ then $\overline{f}(\Pi \wedge \{E_1\}) = \overline{f}(\{E_1\})$ for each $E_1 \subseteq E_2$.

The following property immediately follows from the above corollary.

Property 3.5 (Girlich, Schneidereit and Zaporozhets [1]): Let Y be a nonempty subset of E such that $f(Y) = f(Y_1) + f(Y_2)$, where Y_1 and Y_2 are nonempty disjoint sets, $Y = Y_1 \cup Y_2$. Then $f(X) = f(X \cap Y_1) + f(X \cap Y_2)$ for each $X \subseteq Y$.

Finally, we refer to a decomposable convex game. Let $E = \{1, 2, \dots, n\}$ be a set of players and (E, v) be an *n*-person game in characteristic function form where v is a real-valued function on 2^E and $v(\emptyset) = 0$. A game (E, v) is convex if v is a supermodular function. Let $\Pi = \{X_1, X_2, \dots, X_p\} \in P_E$ and $p \ge 2$. (E, v) is said to be *decomposable* (with respect to Π) if for each $S \subseteq E$, $v(S) = \sum_{X_i \in \Pi} v(X_i \cap S)$. Let f = -v. From Corollary 3.4 we derive the following Shapley's Theorem.

Theorem 3.6 (Shapley [4]): A convex game (E, v) is decomposable if and only if $f(E) = f(X_1) + \cdots + f(X_p)$ holds for some partition $\{X_1, X_2, \cdots, X_p\}$ of E into $p \ge 2$ nonempty subsets, where f = -v.

Acknowledgments

The authors are grateful to the referees for giving useful comments on the original version of the present article.

References

- [1] E. Girlich, G. Schneidereit and A. Zaporozhets: Non-simple polymatroids and corresponding submodular functions. Preprint Math 20/93, Fakultät für Mathematik, Ottovon-Guericke-Universität, Magdeburg, (1993).
- [2] T. Naitoh: Studies in Combinatorial Optimization Related to Submodular and Bisubmodular Functions. Dissertation. Doctoral Program in Socio-Economic Planning, University of Tsukuba (December, 1993).
- [3] H. Narayanan: The principal lattice of partitions of a submodular function. *Linear Algebra and Its Applications* **144** (1991) 179-216.
- [4] L. S. Shapley: Cores of convex games. International Journal of Game Theory 1 (1971) 11-26.
- [5] D. M. Topkis: Minimizing a submodular function on a lattice. Operations Research 26 (1978) 305-321.

Takeshi Naitoh: Faculty of Economics, Shiga University Hikone, Shiga 522, Japan E-mail: naitoh@biwako.shiga-u.ac.jp

Akira Nakayama:

Faculty of Administration and Social Sciences, Fukushima University Matsukawa, Fukushima 960-12, Japan E-mail: nakayama@g1.ads.fukushima-u.ac.jp

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.