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Abstract In this paper, we consider a constrained optimization problem whose objective function is a 
composition of two functions g : R" -+ RP and f : RP -+ R1. We show that a variant of the outer 
approximation method generates a globally e-minimum point of f o g = f ( g ( - ) )  over a convex set after 
finitely many iterations, if g is convex and f is continuous and coordinatewise increasing. Preliminary 
experiments indicate that the proposed algorithm is reasonably practical for two types of multiplicative 
programs if p is less than four. 

1. Introduction 
In a series of articles [5 - 111, Konno et al. studied multiplicative programming problems, 
whose objective functions can be expressed by the product of some convex functions. Al- 
though the class is a typical nonconvex program and hence has multiple local minima [IO], 
one can generate a global minimum rather efficiently if the number of convex functions 
involved in the product term is much less than that of variables. Tuy [24] and Sniedovich 
et al. [l91 independently showed that this nice characteristic is mainly due to a low-rank 
property possessed by multiplicative functions. In other words, minimizing a composition 
f o g = f ( g ( -  )) of two functions g : IRn -+ W and f : RP -+ R' over a convex set A' C R" 
is possibly as efficient as minimizing the product of p convex functions, if all components of 
g are convex on R" and f is coordinatewise increasing and quasiconcave on {g(x) \ X E X}. 

As stated in [11], one of the most important application of multiplicative programs is 
multiple objective decision making. When several objectives without a common scale need 
optimizing simultaneously, a handy approach is to optimize the product of these objectives 
(see e.g. [8]). This approach, however, assumes implicitly that the utility of the decision 
maker is quasiconcave on his criterion space, though the shape of the utility function is in 
general difficult to specify except that it is coordinatewise increasing [20]. 

In this paper, we will develop a method for minimizing f o g over a convex set X 
without assuming that f is quasiconcave. More precisely, f is continuous and coordinatewise 
increasing but needs to  be neither quasiconcave nor quasiconvex on some open set including 
{g(x) 1 X E A'}. This class of functions j o g is a generalization of multiplicative functions 
and also contains rank-p quasiconcave functions studied by Tuy [24]. We will show that 
a variant of the outer approximation method can generate a global e-minimum of this 
nonconvex function after finitely many iterations. Preliminary experiments indicate that 
the proposed algorithm is reasonably practical for some subclasses when p is less than four, 
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even though n exceeds one hundred. This fact has an important implication in multiple 
objective decision making, because the number of objectives is usually less than five, and 
less than three in most practical applications (see e.g. [7]) .  

The organization of the paper is as follows: In Section 2, we will transform the problem 
into a p-dimensional minimization problem whose objective function is f. I n  Section 3, to 
solve the resultant problem, we will propose a variant of the outer approximation method. 
Unlike the usual ones, our algorithm approximates the feasible region by using the union of 
finitely many rectangles in RP. We will discuss possible improvements on the algorithm in 
Section 4, and report the results of computational experiments in Section 5. 

2. Master Problem in the p-Dimensional Space 
Suppose a continuous function f : By -+ ]R1 satisfies 

for any y G S, where S is an open subset of W and + stands for the nonnegative orthant. 
The problem we consider in this paper is to minimize a composition of f and a convex 
function g : ]Rn -+ IR̂  over a convex set X C R", i.e. 

minimize f og(x)=f(g(x)) 
subject to X 6 X. 

We assume for simplicity that X is compact. Therefore the j t h  component g, of g achieves 
a minimum over X at  some X-> for j = 1, . . . , p. Also the objective function of (P) has 
a globally optimal solution in X, since the composition of two continuous functions is 
continuous. We further assume that 

Hence it holds for any two feasible solutions X', X" of (P) that 

under condition (2. l ) . 
We first define a univariate function: 

for j = 1, ...,p. Let 

Lemma 2.1. Let x1 E X. If f o g(xl) < v, then 

Proof: Since gj(x3} < gj(xl) for every j, we have 

by assumption. Each fj is continuous and from (2.1) strictly nondecreasing. Hence the 
second inequality of (2.5) holds. The first one is obvious. 0 
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Let us introduce a vector y E W of additional p variables y-'S, and consider the following 
problem: 

minimize f (y  ) 
subject to X E X, 

9(x) - Y 5 07 f- 5 Y 5 U, 

T where t = ( t i ,  . . . , l,)"', U = (ui, . . . ,,up) and 

Lemma 2.2. Let (X*, y*) be an optimal solution of (2.6). Then X* solves (P) .  

Proof: Let X' E X and assume that f og(xl)  < f o g(x*). Let xq = argmin{f og (x )  1 X = 
xl, . . . , xp}. Then, by the previous lemma, (xq, g(xq))  is feasible to (2.6) and satisfies 

We again apply Lemma 2.1 and have t <_ g(xl) <  ̂ U. This is a contradiction, because 
(X', g(xf) )  is feasible to (2.6) and f (g(xf))  < f (y*) holds. D 

Remark. For each j = 1, . . . , p, one can compute another upper bound to yj, which may 
be somewhat better than uj  when p > 2, by solving 

maximize{gj(x) 1 X E X}. (2.8) 

However, (2.8) is a convex maximization problem and hence is hard to solve in general. 
In contrast to this, u j  can be yielded by an ordinary line search algorithm. Since f j  is 
continuous and strictly nondecreasing, computing u, = max{t/ 1 fj(y) <_ v }  amounts to 
minimizing a certain unimodal function of a single variable. 

Let us denote by Z the feasible region of (2.6), i.e. 

and let 

Y = {y E IRP 13x E R", (X, y )  E Z}. 

Then we have a problem in the p-dimensional space: 

minimize f (y) 
subject to y E V, 

which is equivalent to (P) in the following sense: 

Theorem 2.3. Let y* be an optimal solution of (MP). Then any X* such that (X*, y*) E Z 
solves (P). 

Proof: It is obvious that any (X*, y*) E Z is an optimal solution of problem (2.6) if y* is 
optimal to (MP). Hence X* solves (P), 0 
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By convexity of g ,  we see that Z is a convex set in B" X By. The feasible region V of (MP) 
is the orthogonal projection of Z onto the y-space and hence a convex set in IV [18]. We 
can also see that Y is compact as well as 2. 

The above transformation from (P)  into (MP) is based on a decon~position principle in 
global optimization [6, 171. We refer to (MP) as the master problem of-(-P). If f is either 
convex or (quasi)concave, there are several solution methods for (MP) (e.g. [l, 22, 231). 
These decomposition algorithms are known to be more promising than solving the original 
problem directly, when p is much smaller than n. However, in some applications such as 
multiple objective decision making, the shape of f is often difficult to specify except that it 
satisfies condition (2.1). In the rest of the paper, we will develop an algorithm for solving 
(MP), in which f is assumed to be neither convex nor (quasi)concave. 

3. Outer Approximation Algorithm for the Master Problem 
It is straightforward to see from (2.1) that there is a globally optimal solution y* of the 
master problem (MP) among boundary points of the compact convex set Y. Hence outer 
approximation can still work for (MP) even though f is not (quasi)concave. 

Let us denote 

Starting from Yo as the initial relaxation of Y, the class of outer approximation algorithms 
generates a sequence of relaxed problems (Pk),  k = 0, 1, . . . , of the form: 

where 

Y 

minimize f ( y) 
subject to y E Yk, 

Let yk  be an optimal solution of (Pk). It follows from (2.1) and (3.2) that yk  if int Y for 
every k, where int represents the set of interior points. If yk  happens to be a point of V, 
then it is a globally optimal solution of (MP) and any X such that (X,  yk) E Z solves the 
original problem (P) (Theorem 2.3). Otherwise, we need to exclude some portion containing 
yk from Yk to obtain the next relaxation &+l of Y. The usual procedures construct Yk+l by 
adding some cutting-plane constraints to the system defining Yk and generate a sequence of 
polytopes Yk's. When f is (quasi)concave, we need only to search vertices of the polytope 
for an optimal solution yk of (Pk). In our problem, however, such vertices might not provide 
an optimal solution. We will therefore propose an alternative procedure for excluding yk 
from Yk in this section. The resultant Yk turns out to be the union of finitely many rectangles 
in RP. 

3.1. APPROXIMATION O F  THE FEASIBLE REGION 

Suppose an optimal solution yk  of the kth relaxed problem (Pk)  is given. Regarding yk as 
an ideal value of g, let us consider the following minimax problem: 

~ Q I Ã ˆ ~ )  1 minimize G(x; yk )  = m a x { ~ ~ ( ~ ~ ( x )  - 6 )  1 j = 1, . . . , p }  
subject to X E X, g (x)  <  ̂ U, 
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where U E W is defined in (2.7), and c = ( c i ,  . . . , c ~ ) ~  is a weighting vector satisfying 
CJ > O, j  = 1, . . . , p ,  and E7=icj = 1. 

The objective function G(- ; y  ") is convex and its mininlum point X *  ( yk ) can be obtained 
if we apply any one of standard algorithms to an equivalent problem: 

minimize z  
subject to X G X, g ( x )  <  ̂ U ,  

g j ( x ) - i / C J ^ y ^ ,  j = l ,  . . . ,  p, 

where .; is a scalar variable. It is easy to check that x * ( y k )  is feasible to (P) and that 
A! <_ g ( x * ( y k ) )  < U holds. Hence, by letting y* (yk )  = g(x*  ( y k )  ), we have a feasible solution 
y*(y1'} of (UP), which satisfies 

Let z ( y )  = G ( x * ( y ) ;  y )  and let 
- 
Y ^  = { y  6 RP 1 c/% - 6) < 2 (yk ) ,  j  = l ,  - .  . , p}. (3.5) 

Lemma 3.1. Fun,ctzon z  : W + R is convex (and hence con~tinuous), an,d satisfies 

Proof: Let y' be an arbitrary point of Y .  Then by definition g ( x l )  - y' <, 0 holds for some 
X' 6 -Y, and hence we have ;(g') 5 m a ~ f i c ~ ~ ~ ( x ' )  - y')l <: 0  by noting c > 0. If yk # Y, 
then no y  6 Y satisfies y  yk under condition (2.1) because yk is an optimal solution of 
a relaxed problem of (P). This implies that there is some index q such that gq(x) > y; for 
any feasible solution X of ( Q ( y k ) ) .  Hence the optimal value -s(yk) of ( Q ( y k ) )  is positive if 

Y k  # y. 
Convexity of z is shown as follows: Let y' and y" be any points in W. Then for any 

A G [O,  l ]  we have 

(1  - A)z (y f )  + Az(y f f )  
= (1 - A )  max, {cj  ( g j  ( x * ( y f  )) - yi)} + A maxj {cj  (g j (x*  ( y f ' ) )  - y"}} 

2 maxj { ( l  - A)cj ( g j  ( X *  ( Y ' ) )  - ̂) + \cj (g j  (X* (y ' ' ))  - yy)} 
2 m a ~ j { ~ j ( g ~ ( ( l  - A ) x * ( y f )  + Ax*(yf ' ))  - (1 - Q', - Ay"} 

2 max, {c j  (gj(x* ( ( l  - A )  y' + Ay")) - (1 - A )  yi - Ay;')} 
= ;((l - A)yf + Ayf f ) ,  

since cj7s are positive and g-S are convex. 

Lemma 3.2. I f  y" Y ,  then 

Proof: The first part of (3.7) follows from (3.6). To show the second, choose an arbitrary 
( X ' ,  y') 6 2. Then we have z ( y k )  5 max j {c /g j ( x l )  - t~:)} 5 maxj{cj(yi  - $)}, which 
implies y  vk for any y  6 V. D 

The set 7;. contains all points y  E RP which are closer to yk than y * f y k )  with respect to 
the weighted rectilinear distance defined by c. These points cannot be feasible, since y * ( y k )  
is the closest to yk in the feasible region Y (see Figure 4.2 in Section 4.3). Therefore, if we 
define the k + 1st relaxation of Y as follows: 
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a useless portion involving yk are gouged out from Yk and no points of Y are lost. 
If we use the above procedure to generate every relaxed problem, the feasible region h 

of ( P k )  will not be any convex- set but the union of a number of distinct rectangles in RP, 

where Ik is some index set and 

However, only among the vertices t i7s  of Ri's exists an optimal solution yk because the ob- 
jective function f has the monotonic property (2.1). Hence we can solve (Pk) by performing 
at  most IIJ comparisons: 

Let Ik denote the subset of indices i A such that l' F k .  If yk is not a point of Y ,  for 
each i E Is, we have to discard the portion of R; included in Y k .  This can easily be done in 
the following way: 

Let Jk be an index set such that 

Note that Jk is nonempty. Since a gives an upper bound to each feasible solution, Jk = 0 
implies that Y C Y ' k ,  which is a contradiction. For each j E Jk let 

and define 

If we replace Ri with U j e A  Rij for every i E J t ,  all the portion of included in Y\ is 
discarded, and the next relaxation &.+l is generated as follows: 

Thus our algorithm requires no expensive procedures to update the relaxation of Y, which 
contrasts remarkably with the usual cutting-plane algorithms (see e.g. [ G ]  ) . 

Some of Rij7s might be redundant in the definition (3.15) of Yt+l. We can remove any 
Rij from (3.15) if f >: ts for some s E 4 \ . f t .  We refer to the rest of f s ,  together with 

f", i 4 \ fki as ver t ices of Yk+l by the analogy with convex sets. 

3.2. DESCRIPTION O F  THE ALGORITHM 

We are now ready to present an outer approximation algorithm for solving the master 
problem (MP). Here e 2 0 stands for a given tolerance. 
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Algorithm 1. 

Step 0. Compute bot,h the bounds 42 and U to g according to (2.3), (2.4) and (2.7), and 
define the feasible region Yo = { y  6 W 1 42 5 y 5 U }  of the initial relaxed problem 
( P o ) .  Let k = 0 and go to Step 1. 

Step 1. Compute an optimal solution yk of ( P f c ) .  Solve a nlinimax problem (QA y k ) )  and 
let x*(yk} and z ( y k )  be an optimal solution and the optimal value respectively. 

Step 2. Let y * ( y k )  = g ( x * ( y k ) ) .  If 

then stop. 

Step 3. Let YI: = { y E RP 1 c, ( yj - y^) < z ( y k ) ,  j = 1, . . . , p} and update the relaxation 
of Y as YNI = Yk \ Fi. Return to Step 1 with k = k + 1. 

If this algorithm terminates, the stopping criterion (3.16) guarantees the e-optimality of 
y * ( y k )  to (MP).  By the definition of y * ( y k )  we have ( x * ( y k ) ,  y * ( y k ) )  E 2. Hence x * ( y k )  
is a globally e-optimal solution of ( P )  in this case. Moreover, we should note that every 
x * ( y k )  generated in the course of computation has a certain desirable property in multiple 
objective programming. Since X *  ( y k )  minimizes maxj {cj (g j  ( X )  - $)} on for c > 0, there 
are no X E X such that g ( x )  < g ( x * ( y k ) ) .  This implies that x*(y1'} is a weakly efficient 
solution of a multiple objective program (see e.g. [20]): 

'minimize' g (X ) 
subject to X E X. 

Theorem 3.3. Suppose the convex program ( Q ( y ) )  is solved infinite time for any y Yo. 
Then Algorithm 1 terminates after finitely many iterations i f  e > 0. If e = 0,  Algorithm 1 
generates a sequence of points yfc's, every accumulation point of which is a globally optimal 
solution of (MP). 

Proof: Let us suppose the algorithm does not terminate. Then an infinite sequence { g i }  
is generated in the compact set Yo if each ( Q ( y k ) )  is solved in finite time. We can take a 
subsequence {ykq \ q = 0, 1, . . . } which converges to some point y E h. Let us assume the 
contrary to the assertion, i.e. there exists some constant 0 > e such that 

f ( y * ( y k q ) )  - f ( Y k q )  2 0, %l- (3.17) 

Let h ( y ;  y k )  = maxj{cj(i(j - ~ 1 )  - z ( y k ) } .  We see from (3.5) that y 6 Yis if and only if 
h ( y ;  y k )  < 0. Then by Lemma 3.2 we have h(ykq+l ; ykq) 2 0 for every q and hence 

lim h(yfcq+l; yfcq) = lim h(ylq; yfcq) = -z( j j )  2 0 
9-a' g - ~  

by continuity of z. On the other hand, it follows from (3.6) that z(ykq) > 0 for every q,  
which also implies z ( y )  >_ 0. Consequently, we have 

which contradicts assumption (3.17) under condition (2.1). If c > 0, then (3.16) holds after 
finitely many iterations and Algorithm 1 terminates. If 6 = 0, by continuity of f we have 

It follows from (3.6) and (3.18) that y 6 V ,  and hence y is a globally optimal solution of 
the master problem (MP) .  D 
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4. Some Improvements on the Algorithm 
In this section we present two procedures for improving the efficiency of the algorithm 
developed in Section 3. 

4.1. DETERMINATION OF THE WEIGHTING VECTOR 

We have not yet discussed how to determine the weighting vector c of the objective function 
of (Q(yk)). As shown in Theorem 3.3: Algorithm 1 converges with any fixed c > 0 and 
yields an e-optimal solution of (MP) when e > 0. However, the choice of c will affect the 
speed of convergence considerably. 

From the stopping criterion (3.16), it is desirable to find a feasible solution y of (MP) 
giving the value f (y )  as close to flyk) as possible. If f is differentiable at  y ,  we have a 
first-order approximation of f around yk:  

Also we have 

Hence we can make the difference f ly )  - f (yk) rather small by minimizing the right-hand- 
side of (4.20), i.e. 

9f (Yk) minimize max{- (g , [x )  - y,') 1 j = 1,  . . . , p }  
QYi 1 subject to x X ,  g ( x )  < U. 

If / is continuously differentiable on Yo and V/(y) > 0 for all y E Yo, we can use c(yk)  
defined below as the weighting vector of ( ~ ( y ) )  in every iteration of the algorithm: 

where e G B̂  is the vector of all ones. In this case, both c and z are continuous on Yo, 
though z might be no longer convex. Moreover, Lemmas in Section 3 still hold except 
for the convexity of z .  We can therefore prove in just the same way as in the proof of 
Theorem 3.3 that a subsequence of yk's generated by the algorithm converges to a globally 
optimal solution of (MP). 

If f has no positive gradients a t  some points of Yo, we may instead employ 

by letting 

where 6 is a sufficiently small positive constant and eJ ?E IV is the j t h  unit vector. Note that 
c defined by (4.23) is also continuous and positive valued a t  any yk ,  since f is a continuous 
function satisfying (2.1). 
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4 .2 .  MODIFIED ALGORITHM USING BRANCH-AND-BOUND PROCEDURE 

The efficiency of the algorithm will also depend on the number \Ik\  of vertices Ii's of f i ,  
but in particular on the number 17\.j of those contained in Y k .  If Fk contains only one 
vertex, say I s ,  at  most p vertices Is-"s of Yk+i are newly generated. Then we can obtain 
an optimal solution yk+' of ( P , L + ~ )  only by performing a t  most p comparisons if f (f?)'s are 
sorted beforehand. However, such a favorable situation will not be expected in general so 
long as we discard Y k  from the whole of h. 

Suppose Yf, consists of distinct rectangles Ri,  i E Ik ,  and a vertex Is of Rs = { y  E W I 
P 5 y  5 U} (S E Ik)  provides an optimal solution of ( P k ) .  We define the following set: 

Yk = Yi. \ (U R.) .  
i#s 

Lemma 4.4. If yk g Y ,  t h e n  

Proof: Since we are assuming that yk = I s ,  we have yk 6 Ri for each i # s and yk E rk. 
Hence (4.26) follows from Lemma 3.2 and the relation Yi; C yk- CI 

If we discard the portion of l$ only included in p',, then we have an alternative k + 1st 
relaxation of Y: 

where Jk and RG7s are defined by (3.12) - (3.14). As before, we can remove redundant 
rectangles from (4.27) if necessary. This relaxation of Y is not so tight as the one based on 
(3.8). However, there is still a merit in using it. If we update the relaxation of Y according 
to (4.27)) only one of the vertices is removed and at  most p vertices are newly generated. 
This leads us to a branching p-tree underlying a branch-and-bound method. 

We incorporate the above two procedures into the algorithm. Here e 2 0 is a given 
tolerance; yO and vO are the incumbent and its objective function value of (MP) respectively. 

Algorithm 2. 

Step  0. Compute the bounds I  and U to g  according to (2.3) ,  (2.4) and (2.7) ,  and define 
the feasible region Yo = { y  E W 1 l 5 y  5 U }  of the initial relaxed problem (Po) .  
Let y = {f.} and initialize the incumbent: yO = U ,  t1Â = W).  Let k = 0 and go to 
Step 1. 

Step  1. Select yk 6 with the least / ( y k )  and let y = \ If f is continuously 
differentiable on Y9 and V f ( y )  > 0 for all y  E Yo, then define c ( y k )  according to 
( 4 . 2 2 ) .  Otherwise, define c ( y k )  according to (4.23) and (4.24). Solve ( ~ ( y " ) )  with 
the weighting vector c ( y k )  and let x*fyk)  and 2 ( y k )  be an optimal solution and the 
optimal value respectively. 

Step  2. Let y * ( y k )  = g ( x * ( y k ) ) .  If f ( y * ( y k ) )  < vO,  then update the incumbent: yO = 
y * ( y k ) ,  t 1 Â  = f ( y * (  y k ) ) .  If v0 - f ( y k )  < E ,  then stop. 

Step  3. For each j = 1 ,  . . . , p, do the following: If c,(% - t~̂ ) > :W), then 
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k k 
(i) let yl" = (yl, . . . . $_,, y}' + :(yk) /cj ,  . . . . and 

(ii) let = y U {y^} unless yk-' > y for some y 6 y. 

Return to Step 1 with k = k + 1. 

The following is analogous to Theorem 3.3: 

Theorem 4.5. Suppose (Q(y )) i s  solved in finite t ime for any y G Yo. Then  Algorithm 2 
terminates after finitely m a n y  iterations i f  e > 0. If e = 0, Algorithm 2 generates a sequence 
{ yk}, every accumulation point of which is  a globally optimal solution of (MP). D 

To save the memory required by Algorithm 2, we can employ the depth first rule in 
selecting yk from instead of the best bound rule. Since f (yk) gives a lower hound of / 
on the rectangle R, = {y E RP 1 yk  < - y < U } ,  the sign of r0 - / ( y k )  indicates if the 
subproblem with R, is fathomed or should be branched. When e > 0, this alteration causes 
no trouble though the convergence might be somewhat slower. The procedure presented 
in Section 4.1 will help to accelerate the convergence. However, we should note that the 
sequence {yk} might converge to some locally but not globally optimal solution of (MP) 
when e = 0. 

Before concluding this section, let us illustrate Algorithm 2 using a three-dimensional prob- 
lem (see Figure 4.1): 

minimize (5 - 1 . 2 5 ~ ~ )  (5 - 0 . 7 5 . ~ ~ )  
subject to -3x1 + 3x2 + 6x3 < 8, 

17x1 - 3x2 + 14x3 < 48, 
27x1 + 15x2 - 24x3 < 96, 
X 1  > 0, X2 > 0, X 3  > 0. 

Let us define 

If we let S = {y E K2 1 y > O}, then / satisfies condition (2.1) on S. Moreover, assumption 
(2.2) is fulfilled, since 

where X' = (3.000, 1.000, 0.000) and x2 = (1.333, 4.000, 0.000) are minimizers of g1 and 92 
respectively. Upper bounds of gl and g2 are given as follows: 

where v = min{f o g (x)  1 X = x l ,  x2} = f o g (x l )  = 5.313. Thus we have 

where X is the feasible region of (4.28). Figure 4.2 depicts the feasible region Y = {y 6 
K I 3% E K ,  (X, y) 6 Z} of the master problem (MP). 

To solve the master problem, we generate a sequence of its relaxed problems. The feasible 
region of the initial relaxed problem (Po) is Yo = {y E K2 1 1.250 < yi < 2.656, 2.000 <. 
y2 < 4.250}, and hence 
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Figure 4.1. Three-dimensional example (4.28) of (P). 

is optimal to ( P o ) .  Regarding yO as an ideal value of g ,  we solve a minimax problem: 

(Q(vO)l 1 minimize z = max{cl(3.750 - 1.250x1), ~2(3 .000  - 0 . 7 5 0 ~ 2 ) }  
subject to X E X, xi  2 1.875, x2 2 1.000. 

If we choose cl = 9 f ( y O )  / 9yi = 2.000 and c2 = my0) / 8y2 = 1.250, then 

is optimal to (Q(  y O ) ) .  We also obtain a feasible solution of (MP): 

which gives an incumbent value: 

According to Step 3 (i), we generate 

and let y = { y o l ,  yo2}  (see Figure 4.2).  
Since f ( y o l )  = f ( y o 2 )  = 3.397, both yol  and yo2 are optimal to the second relaxed 

problem ( P l ) .  We select an arbitrary y 1  from y, say y1  = yo2.  and solve 

minimize 2 = max{ci(3.750 - 1.250x1),  ~ ( 2 . 2 8 2  - 0.750x2)} 
subject to X E X, X I  > 1.875, x2 > 1.000, 
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Figure 4.2. The master problem of (4.28). 

where cl = 9f ( y l )  / a y ,  = 2.718 and c2 = 9 f ( y ' )  / ay2 = 1.250. Then we have 

and let y = { y o l ,  y l l ,  y12}. 
Since f (go1)  = 3.397 is smaller than f ( y l 1 )  = f (y12) = 4.142, we select yol as y2 and 

solve 

MY')) 1 minimize 2 = max{cl(3.302 - 1.250-t-l), c2(3.OOO - O - T S X ~ ) }  
subject to X c X, a-1 2 1.875, x2 2 1.000, 

where cl = 9 f ( y 2 )  / 9yl = 2.000 and c2 = 9 f ( y 2 )  / ay2 = 1.698. Then we have 

and let y = {y" ,  y12, y2',  y22}. 
In the next iteration, we select either y2' or y22 as y3,  say y3 = y22, since f ( y 2 ' )  = 

f ( y 2 2 )  = 4.118 < f ( y l 1 )  = f (y12) = 4.142. Solving ( Q ( Y ~ ) ) ,  we have 

and let = {v1 ' ,  y", y21, y31, yÃˆ2} Since f ( y* ( y3 ) )  < u0 = 4.616, we have to revise the 
incumbent: 
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Table 5.1. Comparison between Programs A and B for ( T P l )  when e = 1 0 4  

n 2 0 20 50 50 100 100 200 
P 2 2 2 2 2 2 9 

# of branching operations (standard deviation) 
Program A: 24.4 22.5 34.9 25.4 43.7 36.9 56.3 

(15.8) (12.9) (23.5) (19.1) (17.4) (33.4) (29.3) 
Program B: 16.6 14.4 22.6 16.6 31.4 26.0 38.2 

(11.0) (7.1) (16.0) (10.5) (15.0) (19.4) (19.0) 
CPU time in seconds (standard deviation) 

Program A: 0.05 0.20 0.66 1.68 5.54 14.97 38.48 
(0.02) (0.11) (0.62) (0.82) (4.77) (16.13) (30.16) 

Program B: 0.05 0.22 0.58 1.68 5.04 11.56 29.76 

In the same way, we can generate a sequence of y k ,  k = 4 ,  5,  . . ., which converges 
to a point y* = (1.750, 2.530). Hence a globally optimal solution of (4.28) is given by 
x * ( y * )  = (2.600, 3.293, 0.983), where the objective function value is f ( g * )  = 4.428. 

5. Computational Experiment S 
We will report the results of computational experiments on Algorithm 2 presented in the 
previous section. We solved two simple subclasses of (P): 

( T P 1 )  
1 minimize Q(M - d J x )  

j=l 

1 subject to Ax <  ̂ b, X 2 0 ,  

minimize (M1 - d T x ) ( M i  - d:x) + ̂ ( M j  - d ] _ , x ) ( M j  - d J x )  
j=2  

1 subject to Ax 5 b, X 2 0 ,  

where A E Kmxn,  b 6 R*',  d j  E K", j = 1 ,  . . . , p. We drew every component of A 
and dj's randomly from the uniform distribution over [-1.000, 1.0001 and that of b from 
[0.000, 1.0001, and let 

M = 1.1 n1ax{tlj 1 j = 1 ,  . . . , p},  M l  = 1.1 max{tl1, up}, 

M j  = 1.1 - ~ ~ X { Z . J ~ - ~ ,  ti,}, j = 2, . . . , p ,  

where cj = max{dJx 1 Ax 5 h,  X >. O}. While the objective function of ( T P 1 )  is 
quasiconcave, that of ( T P 2 )  is in general neither quasiconcave nor quasiconvex [10, 111. 

The branching rule we employed was a compromise between the best bound and depth 
first rules, i.e. among the last twenty yk ' s  of we selected one with the least f (  y k )  when 
lyl > 20, where / ( y k )  = Wy: for ( T P 1 )  and f(yk) = + $-iyf for ( T P 2 ) .  Then 
we tried different weighting vectors for ( Q ( y k ) ) ,  i.e. c = ( 1 ,  . . . , in Program A and 
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Table 5.2. Computational results on Program B for (TP1) when e = l O W 4  

m 10 30 30 70 70 10 30 
n 20 20 50 50 100 20 20 
P 3 3 3 3 3 4 4 

# of branching operations (standard deviation) 
259.8 163.6 491.5 657.9 1293.1 1079.7 2107.2 

(457.5) (107.8) (480.6) (1399.3) (1245.1) (1593.4) (2609.0) 
CPU time in seconds (standard deviation) 

0.95 2.13 7.88 32.44 73.18 5.32 25.59 

Table 5.3. Computational results on Program B for (TP2) when e = l o 4  

m 10 30 30 70 70 10 30 
n 20 20 50 50 100 2 0 20 
P 3 3 3 3 3 4 4 

# of branching operations (standard deviation) 
577.5 698.2 981.0 1375.5 2506.6 2498.6 3195.8 

(887.9) (1282.0) (1597.3) (1480.3) (2636.1) (2775.8) (3093.8) 
CPU time in seconds (standard deviation) 

2.22 7.41 14.75 71.93 155.50 13.75 47.70 
(3.82) (12.74) (19.61) (72.25) (140.41) (17.33) (47.67) 

c = f (yk) / v f ( y k ) e  in Program B. The minimax problem (Q(yk)) of both (TP1) and 
(TP2) can be reduced to a linear program. We solved it by using a dual simplex algorithm, 
where we took the solution of the preceding (QCy^')) as the starting point. We coded 
both Programs A and B in C language and tested them on a microSPARC I1 computer (70 
MHz) . 

Table 5.1 shows the comparison between Programs A and B for (TP1) when e = 1 0 4  
and p = 2. (Note that (TP1) is equivalent to (TP2) in this case.) The size of (m, n) ranges 
from (10, 20) to (150, 200). Tables 5.2 and 5.3 show the results on Program B for (TP1) and 
(TP2) respectively, when E = lO-*, p = 3, 4 and (m, n)  is between (10, 20) and (70, 100). 
Each column of the tables gives the average number of branching operations and CPU time 
in seconds (and their standard deviations in the brackets) needed for solving ten examples. 
The number of branching operations corresponds to that of (Q(yk)) 's solved in the course 
of computation. 

We see from Table 5.1 that the performance of the algorithm considerably depends on 
the choice of the weighting vector. Program A requires more branching operations than 
Program B. This would affect the total computational time seriously when p > 2. We also 
see from Tables 5.1, 5.2 and 5.3 that Algorithm 2 is very sensitive to the size of p. The 
number of branching operations sharply increases as a function of p. However, we should 
emphasize that the number is rather insensitive to the size of (m, n )  for each p. This implies 
that the total computational time is dominated by that for solving (Qtyk)), i.e. a linear 
program in this case, if p is fixed. 
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Since we have experiments with only two subclasses (TP1) and (TP2). which have special 
structures handled more efficiently by some existing algorithms (e.g. [12, Is]) ,  no final 
conclusions can be made about the conlputational performance of our algorithm. However, 
we can expect from the above preliminary observations that the algorithm will be reasonably 
practical if p is a small number. say, less than four, and if efficient algorithms for ( Q ( ~ ^ ) )  
are available. Computational experiments with more general classes of ( P )  are now under 
way, whose results will be reported elsewhere. 

6. Concluding Remarks 
In this paper, we have shown that a globally c-minimum point of a composite function f o g 
can be obtained in finite time if e > 0. While nothing is imposed on f regarding convexity or 
quasiconcavity, the approach requires f to be coordinatewise increasing. Though this may 
seem to be a rather big assumption, it is quite reasonable in the context of multiple objective 
decision making, where objectives such as quality, safety, or cost surely do monotonically 
effect overall utility. 

To solve the problem, we have first made a transformation which allows the problem to 
be solved in the p-dimensional space of variable y replacing g(x). This transformation is 
profitable, especially in decision making, where the number p of decision factors is usually far 
less than the number n of original variables. We have then developed a variant of the outer 
approximation method yielding a globally â‚¬-optim solution of the p-dimensional problem. 
Unlike the usual cutting-plane algorithms, the proposed algorithm approximates the feasible 
region by using the union of finitely many rectangles. This makes the computation for each 
iteration fairly simpler than those of the usual algorithms. The preliminary experiments 
suggest that the algorithm is potentially practical for problems with small p. 

As we have seen in Section 3.2, the proposed algorithm generates a sequence of weakly 
efficient solutions of a multiple objective program. Therefore the approach is also considered 
to be a kind of optimization over the (weakly) efficient set. Since Philip [l61 studied the 
problem of minimizing a linear function over an efficient set in 1972, problems of this kind 
have received increasing attention and a number of promising algorithms have been proposed 
e.g.  [2, 3, 4, 5, 211). Like our problem, they belong to global optimization even though the 
objective functions are linear, because efficient sets are in general not convex 1201. 
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