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Abstract Suppose a hunter starts hunting over certain given t periods with i bullets in hand. A distribu- 
tion of the value of each appearing target and the hitting probability of a bullet are known. For shooting, 
he takes a strategy of shoot-look-shoot scheme, implying that if a bullet just fired does not hit the target, 
then the hunter must decide whether or not to shoot an additional one. At the end of each period, it is 
allowed to replenish a given number of bullets by paying a certain cost. The objective here is to examine 
the properties of the optimal policy which maximizes the total expected net reward. We get the following 
main results: (1) the optimal policy for shooting is monotone in the number of bullets in hand if it is always 
optimal either to replenish a certain number of bullets every period or not to replenish them at all, (2) if 
only one bullet can be replenished per period, then both the optimal policies for shooting and replenishment 
are monotone in the number of bullets in hand, (3) if more than one can be replenished per period, then 
there exist examples where the optimal policies for shooting are not monotone in the number of remaining 
bullets. 

1. Introduction 
Consider a problem of allocating countable resources to investment opportunities appearing 
one by one over a given planning horizon. At the beginning of each period, an opportunity 
comes with a certain value which is a random sample from a known probability distribution. 
Assume the resources are allocated to the opportunities pursuant to the shoot-look-shoot 
policy, implying that, if investing one unit of resources yields an unsuccessful result, then 
it is decided whether or not to invest one more at once. At the end of each period, the 
resources can be replenished by paying a certain cost; it must be decided whether or not 
to replenish m units of resources then. The aim is to maximize the total expected reward 
obtained from the successful opportunities minus the tot a1 cost for replenishment. 

In general, there exist two kinds of policies in sequential allocation problems: shoot-look- 
shoot and volley policies. In volley policy, it must be decided how much resources to invest 
in salvo. Mastran and Thomas [4] treat the problem as a target attacking one in which 
the computational method to obtain the optimal decision rules for both policies are shown. 
Kisi [3] considers a model of shoot-look-shoot policy and examines the relation between the 
approximate solution and the exact. Sakaguchi [g] investigates the continuous-time version 
of [4]. Narnekata et al. [5] deal with a model of volley policy where there exist two kinds of 
targets in a sense that the necessary number of resources to get them are different. They 
also examine problems with volley policy in [6] and [7]. In 161, it is discussed how to allocate 
perishable resources, and in [7], a case with a random planning horizon is investigated. 
Derman et al. [2], and Prastacos [S] deal with the problems as investment ones with volley 
policy. In [10], a problem with shoot-look-shoot policy, in which the search cost must be paid 
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to find an investment opportunity, is discussed, and it is derived that the critical value, at 
which investing or not become indifferent in the optimal decision, is not always decreasing^ 
in the number of remaining resources. 

In models such as stated above, if all of the resources are spent before the deadline, then 
later chances, which may be more attractive, will be unavailable. However, if the resources 
can be replenished by paying a certain cost, then the decision maker can continue investing 
activities in order to gain the total expected reward. In this paper, we discuss the problem 
where such replenishment is assumed. 

In the following section, we exactly define our model and formulate fundament a1 equa- 
tions. In Section 3, properties of the optimal policy are derived. In Sections 4 and 5 that 
follow, a case for which it is optimal to replenish the resources every period and a case for 
which it is optimal not to replenish at all are investigated. A case that only one unit can 
be replenished per period is considered in Section 6, and a case for more than one unit is 
examined and some numerical examples are shown in Section 7. Finally, in Section 8, we 
summarize conclusions obtained and examine the problem with volley policy roughly. 

2. Model and Fundamental Equations 
Now using the following hunting problem, we will explain the model treated in this paper. 
Suppose a hunter starts hunting over a given planning horizon t with i bullets in hand. At 
the beginning of each period, he goes t o  hunt and can find only one target. The case that he 
cannot find any target is regarded to be equivalent to  finding a target of value 0. The value 
of a target, W,  is a random variable having a known probability distribution function F(w)  
with a finite expectation p,  continuous or discrete where F(w) = 0 for W < 0, F(w) < 1 for 
W < 1, and F(w) = 1 for 1 < W. The distribution does not concentrate on only a point, 
i.e., Pr(w) < 1 for any W. The values of successive targets are assumed to be stochastically 
independent. 

He observes the value of a target as soon as finding it and has to immediately decide 
whether or not to shoot. If the value is rather small, then he may decide not to shoot and 
come home with no profit. Suppose the value is favorable and he decides to shoot a bullet. 
Then the bullet will hit the target with hitting probability q. If the bullet does not hit it, 
then two cases are further possible: either the target disappears immediately with escape 
probability r or still remains without any defense. If it stands still there, then he has to  
decide whether or not to fire an additional bullet. Assume that repeated firings waste no 
time. If he decides not to  shoot any more at the present target, need not shoot (get i t , )  or 
cannot shoot (it flees or i = 0,) then he comes home. On his way home, he must furthermore 
decide whether or not to  replenish m bullets by paying a cost a; it is not permitted to supply 
more or less than m bullets. Thus, the period ends and the next comes. The objective is to 
maximize the total expected discounted net reward over t periods. The decision process is 
illustrated in Figure 1. 

Now we shall formulate the fundamental equations of the model. Let points of time 
be numbered backward from the final point of the planning horizon as 0, 1, and so on; 
an interval between time t and time t - 1 is called period t. We define ut(i, W) to  be the 
maximum of the total expected net reward starting from time t when i bullets are in hand 

t ~ h r o u ~ h o u t  this paper, the following terms are used in order to  avoid the expressions of double negatives; 
"increasing (decreasing)" means "nondecreasing (nonincreasing)." 
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and a target of value W is found, and ut(i) to be its expectation in terms of W, that is; 

Furthermore, zt (i) is defined as the maximum of the total expected net reward starting from 
time t when he decide not to shoot at the present target any more, provided that i bullets 
remain. Then we have the following relations: 

where p = (1 - })(l - r) E [O, 1) and /? E (0, l], a discount factor. The first (second) 
term inside the braces in the right hand side of (2.2) represents the maximum of the total 
expected reward when it is decided not to shoot (to shoot) at the present target, and the 
first (second) term inside the braces in the right hand side of (2.4) denotes the maximum 
of the total expected reward when it is decided not to replenish (to replenish) m bullets. 

Figure 1. Flowchart of the Decision Process 
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Further, we immediately have the following final conditions: 

Here, (2.5) and (2.6) hold for i 2 0. 
Below, we examine the properties of the fundamental equations. 

Lemma 1. 

(a) ut(i, W), vt(i) and zt (2) are increasing in t for any i and W.  

(b) If p > 0, then ut (i, W), ut(i) and &(i) are strictly increasing in i for any t and W except 
~ ( i )  and uo(i, 0). If p = 0, then they are increasing in i for any t and W. 

(c) ut( i  + 1, W) - ut(i, W) <  ̂ q for any t ,  i and W where the equal sign holds only for i = 0 
and W = 1. In  addition, ut{i + 1) - vt(i) < q and zt(i + 1) - +(i)  < q also hold for any 
t and i .  

(d) ut(i, W) is increasing in W for any t and i .  

Proof: All of the above statements can be proven from the definitions and assumptions 
of this model. First, (a) is true because a hunter who had t + 1 periods left could simply 
follow the policy that he would have followed if he had only t periods left. If he decides 
not to  replenish m bullets at t = 1, and since uo(i) > 0, he will obtain a greater or equal 
reward. In a similar manner, (b) is immediate because a hunter with i + 1 bullets at time 
t could easily put one bullet in his pocket, decide that it is never to  be used until t = 1, 
and then follow until t = 1 the optimal policy for i bullets and t periods remaining. At the 
end of period 1, if he fishes the bullet out of his pocket, and since vo(i) is strictly increasing 
(increasing for p = 0) in i from (2.6), he will get a greater (greater or equal for p = 0) 
reward. Statement (c) follows because the hunter with i bullets can simply adopt the same 
decisions as a hunter with i+ 1 bullets, until at least one of the two events occurs: he has run 
out of bullets and the other has one bullet left; or t = 1. In the former, if the hunter wit h a 
bullet left decides to  shoot once more at some target, he can gain at  most q (the expected 
value of hitting a target of maximum worth 1;) so then ut ( i  + 1, W) < ut (i, W) + q where the 
equal sign holds only for W = 1 and i = 0 since Pr{w = l} < l ,  and so also hold the similar 
relations for ut (i)  and zt (i). In the latter, (c) is intuitive because vo(z + 1) - vo(i) = piqp. < q 
from (2.6.) Statement (c) for uo(i, W) and zo(i) is trivial. Last, (d) is clear since a hunter 
whose current target has value W', greater than W, can simply pretend the target has value 
W ,  follow the optimal policy for the value W ,  but in fact obtain a greater or equal reward. 
I 

Using these properties, we will discuss the structure of the optimal decision policy in the 
next section. 

3. Properties of the Optimal Policy 
Now define gt(i, W) and h(?) as follows: 
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210 M. Sato 

Then, the lemma below holds true. 

Lemma 2. 

(a) For t > 1 and i > 1, gt (i, W) is strictly increasing in W, which is also true for t + m. 

(b) gt(i, W )  = 0 has a unique solution W = ht(i) E ( 0 , l )  for p > 0 ( E  [O, 1) for p = 0). 

Proof: (a) It is immediate from Lemma l(d) .  
(b) Assume p > 0. It can be easily proven by induction that ut(i ,  0) = zt(i) for any t and 
i. Accordingly we get 

gt(i, 0) = put( i- l ,  O)+(l-p)zt(i-l)-zt(i) = zt(i-l)-zt(i)  < 0 (3.3) 
from Lemma l(b).  In addition, it is obvious from Lemma l(c)  that 

for i >, 1 and t >, 0. From (3.3), (3.4) and the continuity of gt(i, W )  in W, it follows that  
gt(i, W) = 0 has a unique solution ht(i)  E ( 0 , l )  for p > 0. For p = 0, the proof is almost the 
same as above. B 

Remark: We call hdi )  a critical value when i bullets and t periods remain. From Lemma 2, 
the optimal decision policy for shooting becomes as follows; if gt (i, W) > 0 (W > ht (i) ,) then 
fire, or else don't fire. The optimal policy for replenishment becomes as follows; if &(i) > 0, 
then replenish m bullets, or else don't replenish them. 

From Lemma 2(b), it follows that 

0 = gt(i + 1, ht(i + 1)) = put(i, ht(i + 1)) + qht(i + l )  + (l - p)zj(i) - ,q(i + 1) (3.5) 
2 qht(i+ l) + zt(i) - zt( i+ l ) ,  (3.6) 

or 

ht(i + l )  5 (zt(i + l) - q(i)) /q,  i > 0. (3.7) 
In particular for i = 1, it is true from gt ( l ,  h t ( l ) )  = 0 that 

h t ( l )  = (zt(l) - ~t(O))/q. (3.8) 

The following lemma gives a more detailed description of the relation between ht(i) and 
G). 
Lemma 3. 

(a) If p > 0, then for i >_ 1 and t >_!, 

When p = 0, it always holds true for i > 1 and t > 1 that ht ( i  + l )  = (zt(i  + l )  - zt (i))/q. 

(b) F o r t >  1 a n d p > O ,  

(c) F o r i > l  a n d t z l ,  if h t ( i ) > ( = ) h t ( i + l ) ,  t hen2z t ( i ) - z t ( i - l ) - z t ( i+ l )  >(>)(I. 

(d) F o r i > l  a n d t > l ,  if 2zt(i)-zt(i-l)-zt(i+l) < 0 ,  thenht( i)  < ht( i+l ) .  

(e) Assume ht (2) = (zt(i) - zt (i  - l))/q for i > l and t 2 l .  Then 
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Proof: (a) It is immediate from Lemma 2(a) and (3.5). 
(b) Using (3.8), we have 

542, ht(1)) = put(1, W)) + qht(1) + (1- ^ ( l ) - 4 2 )  = 2.41) - ~ ( 0 )  - zt(2), (3.9) 

which yields the statement. 
(c) From the assumption and (3.7), we have 

O < ( = ) g t ( i + l , h t ( i ) )  =^')+G)-%(?+l) < 2 & ( i ) - z t ( i - 1 ) - & ( ? + l ) .  (3.10) 

(d) The statement is the contraposition of (c). 

(e) Because qht(i} = zt(i} - zt(i - 1) for i 2 1 from the assumption and qht(i + 1) < 
~f ( i  + 1) - zt(i) from (3.7), we have 

0 < (=) 2zt(i) - zt(i + 1) - ~ f ( i  - 1) 

= qht(i) + ~ t ( i )  - ~ f ( i  + 1) < q(ht(i) - ht(i  + l ) ) ,  (3.11) 

from which we get the statement. 1 

Lemma 4. The critical value ht(i)  is strictly decreasing (decreasing) in i for a given t if 
and only if for all i :> 1 

Proof: If h,(!') is strictly decreasing in i, then 2 4 i )  - zt(i - 1) - zt(i + 1) > 0 for all i > 1 
from Lemma 3(c). The sufficient condition can be proven as follows. From Lemma 3(b), 
h t ( l )  > ht(2) holds true, hence we have 

due to  Lemma 3(a). Accordingly, we get ht (2) > ht (3) using Lemma 3(e), so 

Repeating the same procedure, we obtain ht(i)  > h d i  + 1) for all i > l .  In a similar way, 
we can prove the case that ht(i)  is decreasing in i. 1 

Next, we clarify the relation between ht(i)  and vt(j) .  

Lemma 5. If ht(i) is strictly decreasing (decreasing) in i for a given t ,  then for all i 1 

Proof: We only prove the case that hf(i) is strictly decreasing in i. For the case that ht{i) 
is decreasing in i ,  it can be proven in a similar way. 

From Lemma 3(a) and the assumption of this lemma, we get ht(i)  = (h (? )  - zt(i - l ) ) /q  
for all i > 1. Hence, we can express 2vt(i) - vt(i - 1) - vt(i + 1) as follows; 

where 
At(;, $) = 2q( i )  - zt(i  - 1) - zt(z + l), (3.15) 
Bt(i ,  $) = 2zt(i) - zt(i - 1) - (pzt(i) + q( + (1 - p)%(;)) = zt(2) - zt(i - 1) - q$, (3.16) 

Ct(i, $) = 2ut(i, $) - ut(i - 1, C) - (put(i7 0 + qf, + (1 - P)+)) 

= (2 - p)(put(i - l ,  $) + q$ + (l - p)zt(i - l)) - ut(i - 1, $) - d - ( 1  - p)zt(i) 
= -(I- - l , $ )  + (l- p)q$ - (1- p)^,(<) + (2-p)( l -  p)zt(i -1). (3.17) 
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Then, we get At(?, f )  > 0 for 0 5 f 5 h t ( i  + 1)  from Lemma 4 and Bt(i, 0 > 0 for 
h t ( i  + 1 )  5 f < hi(?) from Lemma 3(a) .  

Below, using induction, we shall verify Ct(i,^} > 0 for h t ( i )  < f < 1 and all i > 1. If 
i = 1, then we get for h t ( l )  < < < 1 

C t ( l ,  f )  = -(l  - p ^ O ,  f )  + ( 1  - p)^ - ( l  - P ) ^ ( l )  + ( 2  - p ) ( l  - P^t(O) 

> -(l  - p f z t ( 0 )  + ( 1  - p)qht ( l )  - ( 1  - p ) z t ( l )  + ( 2  - p ) ( l  - P)z,(O) 

= ( 1  - p)(qht ( l )  + ~t ( 0 )  - zt ( l ) )  = 0-  (3.18) 

Assume C t ( i  - l, () > 0 for ht(i - 1 )  < (, < 1. Then, we have for ht(i - 1 )  < (, S 1 

Further, we obtain for h t ( i )  < f h d i  - 1 )  

ct(i, f )  = -( l  - p)2z t ( i  - 1)  + ( 1  - - ( 1  - p)z t ( i )  + ( 1  - p)(2 - p)zt ( i  - 1 )  

= ( l  - p) (qf + zt ( l  - l )  - z t ( i ) )  > 0.  (3.20) 

Therefore, we get Ct(i,f,) > 0 for h t ( i )  < f < 1 and i > 1. In addition, it follows by direct 
calculation that Bt(i, ht( i))  = Ct(i, h t ( i ) )  = 0. Finally, from the fact that the distribution 
does not concentrate on only W = h,  ( i ) ,  we get 2vt ( i )  - v t ( i  - 1 )  - v,  ( i  + 1 )  > 0 for i > 1. 
I 

We have investigated the basic structure of the optimal policy for shooting. In the fol- 
lowing sections, the properties of the optimal policy for some special cases will be discussed. 

4. Case for Which Replenishment is Always Optimal 
In this section, suppose &(i) > 0 for all t > 1 and i > 0 ,  implying that it is always optimal 
to replenish m bullets. Then we shall clarify the monotonicity of ht(i) in i and the condition 
for O t ( i )  > 0 for all t > 1 and i > 0.  

Theorem 1. 

(a) O n  the above condition, the critical value h t ( i )  is  decreasing in i for any t 2 1. Par- 
ticularly for p  > 0 ,  it i s  strictly decreasing in i .  

(b) It holds true i f  and only if a = 0 that O t ( i )  > 0 for any t > 1 and i > 0 .  

Proof: (a) We only verify the case for p > 0.  The proof for p = 0 is almost the same as 
below. Since h(?) > 0 for all t > 1 and i > 0 ,  z t ( i )  = ,8vt--\(i + m) - a always holds true. 
Therefore, using (2.6),  we get for i > 1 

2z i ( i )  - z i ( i  - 1)  - zi(i + 1 )  = ,8(2vo(i + m) - vo(i  - 1 + m)  - vo(i  + 1 + m))  > 0. (4.1) 

Hence it follows that 2vi ( i )  - v l ( i  - 1 )  - v l ( i  + 1)  > 0 for all i > 1 due to Lemmas 4 and 5. 
Accordingly we obtain 

222(i) - 2 2 ( i  - 1 )  - 2 2 ( i  + 1)  = ,8(2vl(i + m) - v l ( i  - 1 + m)  - v1(i  + 1 + m))  > 0 (4.2) 

for all z > 1. Repeating the procedure above yields 2zt ( i )  - zt ( i  - 1 )  - zt ( i  + 1 )  > 0 for all 
t > 1 and i > 1. Hence h t ( i )  is strictly decreasing in i for any t > 1 from Lemma 4. 
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(b) Now suppose 4>&) >. 0 for all t >. 1 and i 2 0. Because the number of targets the 
hunter gets over the whole planning horizon is at  most t + 1, vt(i) has an upper bound for 
any t ,  implying that vt(i) converges as i -+ m. Hence we get 

lim &(z) = -a > 0. 
i-00 (4.3) 

Therefore, it must be that a = 0. To go the other way, if a = 0, then h ( ? )  = /3(vt-l(i + 
m )  - vtp1(i)) >. 0 for all t > l and i 2 0 since vt(i) is increasing in i. 1 

5. Case for Which No Replenishment is Always Optimal 
Next, suppose &(i) < 0 for all t > l and i > 0, implying that it is always optimal not 
to  replenish m bullets. The case is the same as the model in [7] with c = 0, in which the 
conclusion that ht(i)  is strictly decreasing (decreasing) in i for p > 0 (p = 0) is obtained. 
Using this fact, we examine the condition for which it is always optimal not to  replenish at 
all. 

Theorem 2. If (3rnq < a ,  then 4>t(i) <? 0 for all t 2 1 and i > 0. In  particular for /3 = 1, 
4>t(i) < 0 for all t >_! and i >.0 if and only if mq <, a.  

Proof: Now, we define the limits of vt (I), zt(i), 4>t (i) and ht (i)  as t --+ oo, if they exist, by 
v(i), z(i), +(i) and h(i\ respectively. Using Lemma l(c),  we obtain vt ( i  + m) - vt (i)  < mq 
for all t and i ,  from which we get for all t > 1 and i > 0 

Thus, the former part of the theorem, which is also the sufficient condition for the latter 
part, is proven. Now assume /3 = 1 and Ot(i) < 0 for all t > 1 and i > 0. Then, noting that  
z[i) = v(i), we get for i >,! 

which is rewritten 

Now suppose h(i) < 1. Then from Lemma 2(a), we obtain v(i) < pu(i - 1, t )  + q t  + (1 - 
p)v(i - 1) for hit} < f, <, 1, which contradicts (5.3) because F (w)  < 1 for W < 1. Therefore, 
h(i) must be equal to  1. Thus, it follows from Lemma 3(a) that 

1 = h(,) = (z(i) - z(2 - l))/ ,  

= (v(i) - v(i - l ) ) /q,  2 > 1, (5.4) 

which yields v(i + m) - v(i) = mq for any i. Thus, we have 

O(i) = v ( i + m )  - v(i) - a  = mq - a < 0, (5.5) 

that is, mq < a. 1 
Incidentally, as stated in Derman et al. [2], the no replenishment case for certain param- 

eters can be reduced to the sequential assignment problem by Derman et al. [l] .  In fact, the 
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critical value for p = 0 and j3 = 1 can be expressed in the same expression as Equation (8) 
in [I], i.e., 

hi-1 (i-l) 

h t ( i )  = 1 ~ $ ~ W ( ~ + h ~ - ~ ( i ) F ( h ~ - ~ ( i ) ) +  ht-l(i-l)(l-F(ht-l(i-l))), t 2 1, z 2 1 (5.6) 
ht-l(i) 

where h t (0 )  is assumed to be 1. Further, we can obtain a relation for any p and j3 which is 
regarded as an extension of the above equation. 

Corollary 1. Assume h t ( 0 )  = 1. If it is  always optimal not to replenish, then for t > 1 
and i > 1 

i ht-1 (j-1 1 i-1 

( i )  = j3 (Y, pi-j./ f d F  (C,} + h,-1 ( i )  F (ht-l ( 2 ) )  + (l -p )  pi-j-lht-1 (3 ) ( l  - ~(ht-dd))) 
j=i ht-1 ( A  j=l 

where let x j  = 0 for any series of x j .  

Proof: We can see that if the hunter follows the shoot-look-shoot policy, he does not need 
to make a decision after each miss, but it suffices to decide up to how many bullets to 
consume when he finds a target. Because ht(i) is decreasing in i ,  if the hunter has i (> j )  
bullets in hand and encounters a target of value W such that h t ( j  + 1 )  <  ̂ W < h t ( j ) ,  he 
should continue firing until at least one of the following three events occurs: he obtains the 
target; loses it in his sight; or the number of remaining bullets becomes j .  Therefore, we 
get for h t ( j  + 1) W < ht(j'j 

i - j  

u t ( i ,  W) = Pr{the kth bullet for the present target hits it }(W + z,(i - k ) )  
k=l 

i - j  

+ Pr{t he target flees just after the At h miss shot}%, ( i  - k )  
k= l 

+ Pr{t he hunter decides not to shoot the ( i  - j + 1)st bullet; 

nevertheless it does not escape after the ( i  - j ) th  miss shot Is, ( j )  
i - j  i - j  

= x p k - l q ( w  + %t(i - k)) + X P  l r ( l  - q)zt ( i  - k )  + pi-^, ( l )  

It follows from Lemma 3(a) that 

Substituting (5.7), we obtain 
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Therefore, it follows that 

Thus the proof is complete. H 

6. Case of m = 1 
Now suppose that only one bullet can be replenished each period. Then, the properties below 
can be stated. Here, if necessary, we will use the symbols <^(i, a ) ,  u t ( i ,  W, a) ,  v t ( i ,  a )  and 
zt ( i ,  a )  instead of t f t  ( i ) ,  ut ( i ,  W),  vt ( 2 )  and s, ( i )  in order to emphasize them to  be functions 
of a. 

Theorem 3. F o r a n y t  > 1, 

(a) h t ( i )  is decreasing i n  i ;  

(b) (f>t(i) is decreasing i n  i ;  

(c) ^>i ( i ,  a )  is decreasing in a. 

Proof: (a) It is clear for m = 1 that & ( z )  is decreasing in i for any t > 1 if and only if 
2vt( i )  - vt( i  - 1)  - v t ( i  + 1)  > 0 for any t >, 0 and i  > 1. From (2.6))  it is true that  

2 v o ( i ) - v o ( i -  1 ) - v o ( i + l ) =  ( l - p ) p ^ l w  > 0 ,  i >  1, (6.1) 

accordingly for i  > 1, 

221 ( i )  - z l ( i  - l )  - z l ( i  + l )  

= 2max{~vo(i),/?v~(i+l)-a}-max{/?vo(i-l),/?vo(i)-a}-max{~vo(i+l), /?vo(i+2)-a} 

(3(2~0(i+l)-vo(i)-v0(i+2)) ,  0 $ a < /?(vo(i+2) -vo(!'+ l ) ) ,  

2(/Wi+l)-a)-(/W!)-a)-/Wi+l), 

/?(vo(i+2)-vo(i+l)) 5 a < /?(vo(i+l)-vo(i)) ,  (6.2) 

2/?vo(i)-( /Wi)-a)- /?v0(!+1),  /5(vo(i+l)-v&)) 5 a < /?(no(!)-vo(i-l)) ,  

/ ? ( 2 ~ 0 ( i )  -vo(2- l )  -vo( i+l ) ) ,  ~ ( v 0 ( i ) - v o ( i - l ) )  5 a. 

(6.1) and (6.2),  we get 221 ( I )  - z1 ( i  - 1)  - z l ( i  + 1 )  > 0 for any a and i >, 1. Hence it 1 1  

follows from Lemma 4 that h^U} is decreasing in i for any a. Now suppose 2zt( i )  - zi{"i - 
1 )  - zt( i  + 1)  > 0 ,  so h t ( i )  is decreasing in i  and h t ( i )  = ( ~ ~ ( 2 )  - zt( i  - l ) ) / q .  Therefore, it 
follows from Lemma 5 that 

Hence we have for i > 1 

2 ' t+l ( i )  - ~ t + l ( i  - l )  - ̂+l(i + l )  

= 2max{/?vt( i ) ,  /?vt( i+l)-a} -max{/?vt(i- l ) ,  /)vt(i)-a}-max{/3vt(i+l), /?vt(i+2)-a} 
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/?(vt (i+ 2 )  -vt ( i+ l ) )  < a < /?(Q ( i+ l )  - vt ( z ) ) ,  

-/3(vt(i+ l )  -vt( i ) )+a,  (3{vt( i+l)-vt( i ) )  5 a < f i ( i ) - ~ ( 2 - l ) ) ,  
(6.4) 

[ /?(2vt( i)--vt( i- l)-vt( i+l)) ,  /?(vt(i)  -v t( i -  l ) )  < a. 

From (6.3) and (6.4),  we have 2zt+i{i) - ~ , + ~ ( i  - 1 )  - zt+l ( i  + 1)  > 0 for any a. Thus by 
induction in terms of t ,  we obtain 2 , ~ ( i )  - zt ( i  - 1 )  - zt ( i  + 1 )  > 0 for any t > 1, i  >_ 1 and 
a >_ 0 ,  so h t ( i )  is decreasing in i. 
(b) It has been verified already in the proof of (a) that 2vt ( i )  - vt( i  - 1)  - v t ( i  + 1)  2 0 for 
any t 0 ,  i 1  and a > 0 ,  which has yielded the statement. 

(c) It is clear that vo(i  + l ,  a )  - v0(i ,  a )  - a is decreasing in a for any i .  Assume that 
vt-\{i + 1, a )  - v tVl ( i ,  a )  - a is decreasing in a for any i .  Using Theorem 3 ( b ) ,  we get 

Hence (6.5) is decreasing in a for any i. Now since ~ ~ ( 1 ,  W ,  a)-ut (0 ,  W ,  a)-a = max{zt ( l ,  a)- 
.zt (0 ,  a)%, qw-a}, it is decreasing in a. Furthermore, assuming that u t ( i ,  W ,  a)-ut (2-1, W ,  a)- 
is decreasing in a as the second inductive assumption, we have from Theorem 3(a)  

Therefore, it follows that u t ( i ,  W ,  a )  - u t ( i  - 1, W ,  a )  - a is decreasing in a for i > 1,  hence 
vt( i  + 1, a )  - v t ( i ,  a )  - a is decreasing in a for all i ,  which also holds for any t by double 
induction. Because <^>t ( 2 ,  a )  = / ? ( ~ ~ - ~ ( i  + l ,  a )  - ~ ~ - ~ ( i ,  a )  - a )  - ( 1  - /?)a, <^>t ( i ,  a )  is also 
decreasing in a for t > 1 and i  >_ 0. B 

Remark: (b) implies that the critical point for replenishment in terms of i  where &(i-  1 )  2 
0 > q4(i) is at most one. Concretely speaking, if replenishment is optimal for i  = i f ,  then 
it is also optimal for i < i f .  Similarly, (c) says that if replenishment is optimal for a = a', 
then it is also optimal for a < a'. 

The monotonicity of h t ( i )  in i  for any t and a is characteristic to  the case for which 
m = 1, however, this does not always hold true for m > 2. 

7. Case of m > 2 and Numerical Examples 
Here we shall demonstrate an example that ht(i} is not always decreasing in i  for m >_ 2. 
Let p > 0 ,  m = 2 and a = /?(l +p)pqp. Then, we get 

which means h l ( l )  < h i (2 )  due to  Lemma 3(d) .  
Below, we depict the results of several numerical examples where a discrete uniform 

distribution function with 101 mass points equally spaced on [ O ,  l ]  is used. 
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When m = 1, ht(i) is decreasing in i even for a > 0 (Figure 2(a).) 

The non-monotonicity of ht(i) in i is shown in Figures 2(b,c,d), which also lead us to 
the conclusion that ht(i) is not always increasing in t. In [ g ] ,  the monotonicity of ht(i) 
in t has been proven only for the case that it is always optimal not to replenish at all 
with Q = 1. 

So far we have not investigated the relations between ht(i) and parameters a, q and r ;  
it is quite intractable to reveal them theoretically. All of the numerical examples we 
calculate show that ht(i) is increasing in a and r and decreasing in q. Figure 2(e) is an 
example of the relation of ht(i) to a. 

Figure 2(f) tells us the fact that ht(i) is not always monotone in Q. We also get 
examples where ht(i) is not monotone in m. 

Such a non-monotonicity of ht(i) in i may fit our intuition in the following case where, 
for a certain j, 4((i) 2 0 if i 5 j or else <At(i) < 0. First, suppose the hunter has )' + 1 
bullets in hand. If it is decided not to shoot, then he needs not replenish m bullets at the 
period, or else he must replenish them by paying cost a according to the optimal policy for 
replenishment. Therefore, his behavior for shooting may become a little cautious, that is, 
ht ( j  + 1) may become a little high. Next, suppose he has j bullets. Then, his behavior may 
be more or less active since it is already decided to replenish them at the period whether 
he decides or not to shoot, so ht{j) may become a little low. 

On the other hand, in terms of the optimal policy for replenishment, it has been clarified 
that <At(i, a )  is monotone in i and a for m = 1. However, we have not been able to prove 
the property for m > 2 and find any counterexamples. 

(a) f i  =1.0,q=0.8,r=0.6,m=l,a=0.1 

(d) fi=l.O,q=0.8,r=O.6,m=20,a=2.0 

(b) f i  =l.O,q=0.8~=0.6,m=2,a=0.2 

(e) f i  =l.O,q=0.8,r=0.6.m=2,t=5 

(c) f i  =1.0,q=0.8,r=0.6,m=4,a=0.4 

(f) q=0.8,1-=0.6,m=2,a=0.2 

Figure 2. Numerical Examples 
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8. Conclusions and a Future Study 
We have considered a discrete-time sequential allocation problem with countable resources 
which can be replenished each point in time, and the following conclusions are obtained: 

(a) The necessary and sufficient condition for &(i) > 0 for all t > 1 and i > 0 is a = 0, for 
which ht(i) is always decreasing in i. 

(b) If ftmq < a, then <^(z) < 0 for all t 2 1 and i > 0, that is, it is optimal not to replenish 
at all. In particular for f t  = 1, &(i) <, 0 for all t > 1 and i > 0 if and only if mq < a. 

(c) If m = 1, ht(i) is always decreasing in i. Furthermore, when m = 1, if replenishment 
is optimal for i = i' ( a  = a',) then it is also optimal for z < it (a < a'.) 

(d) If m 2 2, then ht(i) is not always decreasing in i. 

As a future study, it must be interesting to consider the problem with volley policy. 
Below, we will examine the volley problem roughly where clearly, escape probability r makes 
no sense. Assuming r = 0 as a matter of form, we get p = 1 - q. Then, (2.1)-(2.4) still hold 
if (2.2) is replaced by 

ut(i,  W) = . max .{(l - p')w + 4 2  - j)}- 
3=0,l, ..., 2 

Furthermore, final conditions 
vo(i) = (l -pi)p, respectively. 
inside the braces in the right 

(2.5) and (2.6) are replaced by uo(i, W) = (1 - pi)w and 
Let jf (i, W) be the smallest number of j maximizing the term 
hand side of (8.1). Because the hunter who has a rifle with 

multiple muzzles must decide how many bullets he fires in salvo, the optimal firing policy 
is characterized by jt(i ,  W). 

It may be intuitive that jt(i ,  W) is increasing in i. However, we can also show a counterex- 
ample in this volley model. Now assume (h, p, m, a)  = (0.9,0.5,0.5,2,0.1). Then we get 
zl(i) = 19/80, 471160, 27/80, and 63/160 for i = 0,1,2, and 3, respectively. Furthermore, 
supposing W = 0.1, we obtain 

The above equations yield, respectively, jl (2,O.l) = 1 and ji (3,O.l) = 0, hence ji (2,O.l) > 
,h (3,O. 1). This is caused by a reason similar to that for the non-monotonicity of ht(i) in i. 
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