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Abstract A family of queueing networks with a two-layer configuration is proposed and analyzed in 
order to provide well structured hierarchy of network models for performance analysis of computer and/or 
communication systems. The upper layer describes the often-disregarded software behavior while the lower 
layer describes the usual hardware behavior. For the case in which the upper layer includes no outstanding 
queues, a product form equilibrium joint distribution is established assuming state-dependent arrival and 
state-dependent service rate functions with general service time distributions. The marginal distributions 
are derived for convenience in applying the results. For the case in which the upper layer dose include 
outstanding queues, an approximation method is proposed, which generalizes the flow-equivalent methods. 

1. Introduction 

Queueing networks have been used effectively as performance evaluation models in prac- 

tical applications, and most of these are based on queueing networks with product form 

distributions studied by Jackson [16], Baskett et  al. [2], Chandy [10], Chandy and Martin 
[Ill ,  Kelly (191, and Whittle [36]. Many authors, including Serfozo [28], [29], [30], Van Dijk 

[32], [5], Henderson et al. [15], and Miyazawa [25] have extended the class of product form 

type of networks. For related studies, see Refs. [4], [14], and [34]. 
In this paper, queueing networks with two layer configuration are proposed to  provide 

well structured hierarchical network models for performance analysis of practical applica- 

tions. Two-layer queueing network consists of an upper layer and a lower layer. The upper 

layer consists of multiple stations and the lower layer consists of multiple queues. Each sta- 

tion in the upper layer is associated with a routing chain according to  which customers travel 

through queues in the lower layer. The routing structure for customers to  travel through in 

the upper layer may consist of open, closed, or mixed routing chains, and customers in the 

upper layer are distinguished by types according to  their routing chains. Each queue in the 

lower layer is assumed to  be either a symmetric queue or a local balance queue. A general 

framework is considered for service time distribution and for service-rate and arrival-rate 

functions that depend on the global state of the network. 

This paper considers two types of two-layer queueing networks:those without outstanding 

queues, and those with outstanding queues. For the two-layer queueing network without 

outstanding queues, each station in the upper layer is assumed t o  be an infinite server station 

so that there is no capacity constraint for a customer t o  enter each station. For the two- 
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Figure 1: Two-layer network for a computer system. 

layer queueing networks with outstanding queues, on the other hand, capacity constraints 

for each station in the upper layer are assumed. Thus, customers less than or equal to  the 

constraint number can enter the station and can travel through the queues in the lower layer 

according to the routing chain associated with the station. The excess customers have to  

wait in the outstanding queue until the number of customers in the station become less than 

the constraint number of the station. The two-layer queueing networks with outstanding 
queues are generalizations of simultaneous resource possession models and passive server 

models proposed by Sauer [26]. Here the product form equilibrium distribution for the state 

of the two-layer networks without outstanding queues is derived by using the supplementary 

variable method [12]. This distribution shows that  arrival rate of customers depends on the 

population vector of customers in the upper layer, but dose not depend on the state of the 

lower layer. On the other hand, the service rate for customers a t  each queue in the lower 

layer depends on the states of both the upper layer and the lower layer. 

An approximate method t o  analyze two-layer networks with outstanding queues is then 

proposed, and applications of this method to  the evaluation of the performance of computer 

systems are suggested. The approximation technique is an extension of the standard de- 

composition or flow-equivalent method to  which many authors have contributed: see, for 

example, Refs. [8], [g], [l], [3], [13], [22], [35]. Thus one of effective application of the 
two-layer networks with outstanding queues may be found in the field of performance eval- 

uation of computer systems. Various software packages for the application field have been 

developed, such as BEST11 [7], RESQ [27], QNAP [33], and QM-X [20]. Conventionally, 

hardware resources CPU, DISK, etc. are considered to  be the principal origin of congestion 

delay in a computer system. Congestion due to  software resources, however,also causes 
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significant performance degradation. For example, one may find a hierarchical structure 

between the hardware resource congestion and the process congestion ( "process" is used 

here in the same sense in which it is used in the field of computer science). A transaction 

requires a number of processes t o  finish its work, which is accomplished by using each process 

one by one. To allocate hardware resources to the transaction, an operating system always 

allocates a process to  a transaction in advance. A transaction thus cannot use any hard- 

ware resource unless a process is assigned to  the transaction. Each process has a capacity 

constraint specifying the greatest number of transactions that  can use the process a t  the 

same time. A transaction that  finds the process busy has to  wait in an outstanding queue 

until the operating system can assign the process to  it. Thus a process itself may cause 

congestion, and the service time a t  the process may depend on delay times due to hard- 

ware resource congestion. Because process congestion and hardware resource congestion 

are closely related, the calculation of performance measures for computer systems requires 

unified analysis of both types of congestion. 

The two-layer queueing network with outstanding queues can consistently represent the 

hierarchical structures of processes as well as the hardware resources. Each process can be 

described by a station in the upper layer, and process switching sequences for a type of 

transaction can be described by a Markov transition matrix. Each hardware resource can 

be described by a queue in the lower layer, and a process's sequence of hardware resource 

utilization can be described by the associated routing chain. Each waiting queue due to  

process congestion can be described by an outstanding queue in the upper layer. Figure 1 

shows an application of the two-layer model with outstanding queues to a computer system 

with both process congestion and hardware congestion. 
The outline of this paper is as follows. Model and notations are described in the next 

Section, the product form distribution for the two layer queueing networks without out- 

standing queues is derived in Section 3. To make the use of this kind of distribution more 

convenient in practical applications, marginal distributions of the original product form 

distribution and throughput between the upper layer and the lower layer are derived with 

respect to the aggregate network states in Section 4. The two-layer queueing networks with 

outstanding queues are described and an approximation technique is proposed in Section 5, 
and conclusions are given in Section 6. Details of the proof for the product form distribution 

is given in Appendix 1, and notations are listed in Appendix 2. 

2. Two-layer networks without outstanding queues 

Model description and notations for two-layer networks without outstanding queues are 

given in this section. The notations are summarized in Appendix 2. An example of a 

two-layer queueing network without outstanding queues is shown in Fig. 2. 

Vector notations: Throughout the paper vectors are denoted by boldface italic letters, 

and are row vectors. The vector X = (xi,  x2, - - , xn) is written in the form X = (x,):=~, and 

the transpose of vector X is denoted by xt. Let X = y = (Y~):=~, and p = (pi):=l- 
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Figure 2: Two-layer network without outstanding queues. 

For simplicity, 

(i-th) 
= p:' p? - - - p ?  and e, = ( 0 , : - - , 0 ,  1 , 0 , - . . , 0 ) .  

The length of vector ei may be interpreted in the context in which it appears. 

Random variables: For simplicity, the notations used in this paper will usually not 

distinguish between random variables and particular values of them. For example, if the 

context is such that confusion is unlikely, the notation P ( x )  is used for the probability that  

the random variables (X)  take the generic values of (X). 

Stations and queues: Consider a queueing network consisting of two layers, an upper 

layer and a lower layer. Suppose that  there are a number R of stations labeled 1,2,  - - , R 
in the upper layer and a number N of queues labeled 1,2,  - - , N in the lower layer. The 

outside of the network is labeled by 0. Each station in the upper layer is assumed to  be an 

infinite server queue, so that  there is no waiting time for a customer to  enter in each station. 

Type of customer: Suppose there are a number M of customer types labeled 1,2, - , M .  
A customer of type m a t  station i ,  after the completion of his service, either joins station j 

with probability sij(m) or leaves the network with probability sio(m). A type-m customer 

who arrives from outside of the network joins station i with probability soi(m). Let IM be 

an integer set of { l ,  2, - , M}. Define Gm for m G IM be a set of stations which a type-m 

customer may visit. Each Gm is a subset of IM .  Assume that 
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The routing chain of a type-m customer in the upper layer is written in the form 

for m E IM and i,  j E Gm, where s(+)(m) = (soi(m))iecm and S(-)(m) = (s,o(m))fEGm . 
If a customer of type m enters the network again immediately after his departure from 

the network, then the routing chain becomes a closed routing chain in the form 

where the matrix S*(m) = {sij(m)} , i ,  j E Gm. Thus the routing chain of each type of 

customers may be an open or closed chain, and the routing structure in the upper layer may 

consist of mixed routing chains. 

Class of customer: Suppose that there are a number K of customer classes labeled 

1,2,  ..., K. Let IK be an integer set of {l, 2, , K}.  The class of a customer identifies 
the service-time distribution for the customer. Without loss of generality, those classes are 

treated globally across the queues since individual queues need not be given to  customers of 
all classes. Service time Sk for a class-k customer is assumed to  have a distribution function 

Fi. for each k 6 IK.  Assume that each distribution function is differentiable and has a finite 

mean. The probability density function and the reciprocal of the mean are denoted by fk(y) 

and = l /E (Sk) .  

Routing chains in the lower layer: Let IN and IR be integer sets of { l ,  2, - . , N} 
and {l, 2, - - , R}. Suppose that  there are a number R of Markovian routing chains labeled 

1,2, ..., R associated with stations 1,2,  - - , R. Those routing chains specify the routing 

rules for customers traveling through queues in the lower layer. When a customer arrives 

at  station i in the upper layer, the routing chain P(i) is assigned to  the customer without 
regard to his customer type. A customer whose routing chain is P ( i )  will be henceforth 

referred to as a station-i customer or a customer of station i. A customer of station i may 

change both his class and queue according to  the routing chain P ( i )  after completion of his 

service time a t  a queue. 

A customer may join queue j in the lower layer as a class k customer with probability 

r,,(j,k)(i) ( j  E IN ,k E IK, 2 E IR) immediately after his arrival a t  station i in the upper layer. 

After service completion of a station-? customer of class k a t  queue j, that  customer may 

join queue h as a class-1 customer with probability r(j,k),(h,J)(Ãˆ ( j ,  h 6 IN, k, l G IK , i G IR) 
or depart from the lower layer and come back to  the upper layer with probability r(j,q,,(i). 

When a type-m customer comes back to the upper layer, he can either leave the network 

or choose his next station and immediately enter the lower layer again as a customer of a 

different station according to a routing chain S(m) .  Assume tha t  for i G I R ,  

Define the matrix Q(i) = {ri,k},(h,n(i)} ( j ,  h 6 IN ; k, l â I K ;  i â IR), the row vec- 

tor r (i) = ( ( r e  (j,k) (z))̂ ,)" and the column vector q(i)  = (((r(j,k), . (i))^,l)gl)t. The 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



168 1. Kino 

Markovian routing chain for a sta,tion- i customer is written in the form 

p ( i )  = (y) 4 2 )  W) 
for i c I ~ -  

Service time at a station: The service time of a customer at  a station in the upper 

layer is defined by a period of time from an epoch in which a customer enters the lower 

layer t o  an epoch in which the customer comes back the upper layer. Characteristics of the 

service time of a customer a t  each station in the upper layer cannot be specified a priori 

because they may depend on the overall state of the network. 

States description and network occupancy: Each queue in the lower layer consists 

of a set of positions, each of which may be occupied by one customer. If there are n 

customers in a queue, the occupied positions are indexed by 1,2,  , n. 

A customer in position I a t  queue j is indexed by his type index Uj i ,  his station index 

U j l  , and his class index w,-l . That is, if a type-m and station- i customer of class k is in 

position l a t  queue j ,  

U$ = m ,  u j ~  = i , and W,< = k . 

Define the state of position I a t  queue j by a triplet of indexes (type, station, class) of 
ic, l a customer in position l a t  queue j .  Let c,; = (uj1, vji, wj1), c,- = ( c , - ~ ) ~ = ~ ,  and c = 

(c~);=~. Those vectors, - C,-{, c,-, and c - are respectively referred to as the occupancy 

of position l at queue j ,  the occupancy of queue j, and the occupancy of network. They 

describe discrete parts of the network state. Let yji be a positive real supplementary random 

variable representing the remaining service time of a customer in position l a t  queue j. Let 

y j  = (yjl)iQ and y = (yj);=l. Those random variables provide the continuous parts of the 
network state. 

When a customer of class k arrives a t  position I of queue j ,  the new yji is chosen according 

to the distribution function Fk. When the yji reaches zero, the customer departs from the 

position. Using those notations, we can denote the state of queue j ( j  E IN) by (cJ, y,) 

and can write the complete state description of queues as (c, y) ,  where 

State-dependent queueing discipline: Assume that  queue j (j  G IN) operates in the 

following manner. When a customer finds the occupancy c a t  his arrival instant, he moves 

into position I (I = 1,2,  + , [cj 1 + 1) of the queue j with a queue-occupancy- dependent 

probability $(l, c). Customers previously in positions 1, 1 + l, , [c,- 1 move t o  positions 

1 + 1,1+ 2, - , Icj 1 + 1 a t  the queue j .  Assume that  for all feasible c , 
IC,l+l 

S j ( l , c ) = l  for j~ I N .  
1=1 

Given a network occupancy is c, let 7,- (l, c) be a network-occupancy-dependent service rate 

for a customer in position I a t  queue j .  That  is, 

d 
%(l, c) = -- y9 for j E IN , l = l ,  2, - , lcj1 

d t  
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When a customer in position I a t  queue j leaves the queue after his service completion, 

customers in positions I + 1,1+ 2, - . - , IcJ move to positions l ,  I + 1 , .  , IcJ - 1. 

Aggregation of states: Given queue occupancy c,, let X ~ ( ~ , ~ ) ( C ~ )  be the total number 

of type-m and station-? customers a t  queue j .  That  is, 

where the I(A) is an indicator function for a statement A, and let 

and 

xj(cj)  = ( xji(cj) ,  xj2(cj), . . , x,M(c,}) 

for G IN and m E /M. Note that  I I ~ j ( c j )  1 1  = 1 ~ ~ 1 .  The aggregate network occupancy 
vector x(c)  is defined by 

Given network occupancy c, let ms(c) be a total number of type-S customers in the network. 
That is, for S G IMi 

The type occupancy m ( c ) ,  given the network occupancy c,  is defined by 

Let zji(cj) be a total number of station-? customers at  queue j. Formally, 

Denote 

Let ni(c) be the number of station-? customers in a network whose occupancy is c. Formally, 

The station occupancy n(c) is defined by 
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Network-occupancy-dependent  service rate.: Let @(x(c))  be a positive real func- 

tion of the aggregate network occupancy x(c) .  Assume that  service rate ?,(l, c) depends on 

the aggregate network occupancy in the following way: 

Here e j (m,  i )  is a unit vector whose element is one if the position corresponds to  the position 

of type m and station z a t  queue j in the vector x(c) .  Formally, ej(m, z) is a unit vector 

whose ( ( j  - 1 ) R M  + (m - l ) R  + i)-th element is one and whose others elements are zero. 

Assume that @(O, 0, - . . , 0 )  = 1 and 

The function @(X) is referred t o  a service-rate function. By choosing the service-rate func- 

tion @(X) appropriately, one can represent various types of queueing behavior. 

Type-occupancy-dep endent ar r iva l  rate: Define a positive real function A (m) of 

vector m (= (mi) 5) each element of which is a non-negative integer. The function A is 

referred to as an arrival function. Assumed that A(0,0, - - - , 0) = 1. 

Assume that customers of type m arrive a t  the network according t o  a Poisson stream 

with rate Am(c) that depends on type occupancy m ( c )  in the following manner: 

Each Poisson stream is assumed to be independent of the others. The total arrival rate of 

customers from the outside of the network becomes 

One can formulate various types of networks - such as open, closed, mixed networks [2] as 

well as loss systems and triggered arrival systems [23] - by specifying the arrival function A 
appropriately. 

3. P r o d u c t  f o r m  d i s t r ibu t ion  

The product form equilibrium distribution for the two layer queueing network is derived 

in this section. 

Traffic equat ion:  Define the (N X K)-dimensional square matrix 

Dik = q{ i ) r ( k )  for i , k  E I p  
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For m E I M ,  define a block diagonal matrix 

0 soil ( m )  X r ( i i )  soi2 (m) X r(i2) SO,,. ( m )  X r ( i r )  

silo (m) X q(i1) silil (m)Dil il si1 i2 (m)Dil  i2 . Sil  i, (m)Di1 i, 

si20(m) X g(&) ~ i 2  il (m)Di2 il si2 i2 (m)^',, i2 + Si2  i,. (m)Di2 ir 

and a traffic matrix 

T ( m )  = V ( m )  + Q*(m)  

where i j  G Gm for j = 1 , 2 , * - - , r .  
The matrix Q*(m)  expresses transition probabilities for a type-m customer to  move 

through queues in the lower layer without changing his station and the matrix V ( m )  ex- 

presses transition probabilities for the customer to  choose next queue with changing his 
station in the upper layer. Let 

where, for j C IN , m E IM , i  C IR, 

and e,(m, i )  = (flj(m, i ,  l ) ,  9, (m, i ,  2) ,  - , fl,(m, i ,  K ) ) .  
Assuming that the Markovian transition matrix T ( m )  (m C I M )  is irreducible and 

positive, in which case there exists an unique stationary distribution, we can formulate the 

traffic equation for the two-layer network in the following form: 

( 1 ,  e ( m ) )  = ( I ,  e ( m ) )  ~ ( m )  for m e  I ~ .  (3.2) 

Note that the vector (1, @(m)) is not a probability vector but the vector normalized such 

that the first element should be one. Thus equation (3.2) can be solved uniquely. The  
solution 0;(m, i ,  k )  represents the relative frequency with which a type-m and station- i 
customer of class k visits queue j when j E IN ,  m E I M ,  1 C IR, k E IK . Similarly, the 
traffic equation for a type-m customer to  change his station in the upper layer is written in 

the form 

(1, v ( m )  ) = ( 1 ,  v ( m )  ) S ( m )  7 (3.3) 

where v(m) = (vil (m),  v i2(m),  , V,, (m) ) and i j  C Gm for j = l ,  2 ,  , r. The term 
vi(m) ( i  C Gm) is the relative frequency with which a type-m customer visits station i .  

The traffic equation for a station i  customer to visit queues in the lower layer is written 

in the form 

( l, W ( ! )  ) = ( l ,  w ( i )  P(2) , (3-4) 
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where W (i) = ( ( w(jjk) (i) )Fai The term W(+) (i) is the relative frequency with which a 
station-? customer visits queue j as a class-k customer. Note that 

where (X, y )  denotes the inner product of vectors X and y. The following proposition can 

be derived straightforwardly from the definitions of traffic equations (3.2), (3.4), and (3.5). 

Traffic intensity: The traffic intensity due to  a type-m and station-z customer of class 

k a t  queue j is defined by 

Define the traffic-intensity function a t  queue j in the form 

Definition 3.1 (Symmetric queue) Queue j is referred to as a symmetric queue if the 
queueing discipline satisfies the following relation for feasible c. 

where R(,,;) (c) = (cl,  7 cj-1, (cji, . . 7 c ,  1-1 Cj, 1+1, 7 cjÃ£ 7 cj+l, 7 CN) 

Definition 3.2 (Local balance queue) Queue j i s  referred to  as a local balance queue 
if each service class at the queue is  described by a negative exponential distribution and 
queueing discipline satisfies the relation 

Note that the Definition 3.2 is a generalization of the local balance queue defined by Chandy 
et al. [lO].  

Theorem 3.1 (Product form distribution) If each queue in the lower layer of the net- 

work is  a symmetric queue or  a local balance queue, then the equilibrium state probability 
for the network state (c, y )  is  given in the form 

where 

and C is a normalization constant. 

See Appendix 1 for the proof of the theorem. 
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4. Marginal distribution and throughput 

Marginal distribution for network occupancy X : The product form distribution 

(3.10) for the equilibrium network state has more information than is usually required 

for performance evaluation in actual applications. For convenience, therefore, marginal 

distribution of the product form distribution is derived with respect to the aggregate network 

states. The marginal distribution for the network occupancy c is derived from equations 

(3.10) and (3.11) in the form 
roo 

Let x ~ ( ~ , ~ )  be an aggregate number of type-m and station-; customers at  queue j. Denote 

and 

Aggregate traffic intensity for network occupancy X: Define the aggregate traffic 

intensity associated with aggregate state X j f m , i )  by 

for j E I N ,  m E I M ,  i E IR. Denote 

Proposition 4.1 (Product form distribution for aggregate state X) The equilibrium 
marginal distribution for the aggregate state X is given in the form 

where 

Proof: From the definition of the marginal distribution, 
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where 
N 

B j ( x j )  = { ~ j I ~ j ( c j )  = X , }  for j E IN and B ( x )  = <S)B,{X,). 
j=l 

The statement follows by applying the relation 

to equation (4.5). I 

Throughput for network occupancy X :  Let i p j ( m , i l ( ~ )  be the rate, for the aggregate 

network occupancy X ,  with which a type-m and station-i customer a t  queue j moves from 

the lower layer to the upper layer or from the upper layer to the lower layer. That is, 

Assumption 4.1 For j E IN and for I = 1,2 ,  - .  IcjI7 the A ( j ,  c) depends only on type and 

station indexes (uji^ u j i )  of a customer at position l in  queue j ,  that is, 

Let. 
K 

= 5 ~ ( j , k )  ( ^ ) ~ ( j , k ) , *  (^') - 
k = l  

(Throughput for aggregate state X )  Under the assumption 4.1, the 

in  the form 

N 

C ~ i ( m ) w j ( i ) A ( m ) Q ( x  - ej(m, i ) ) ~ j ( x j  - ej(m, i)) fl T,(X.) . (4.8) 
'f^j 

Proof: From the definition (4.6), product form distribution (3.12), and assumption (4.1) 

Using the proposition 3.1, we can obtain (4.8) after some calculation. 
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Marginal distribution for aggregate state z and station occupancy n: Let 

Note that 

We assume following two additional assumptions to  derive marginal distribution associ- 

ated with the aggregate state %i. 

Assumption 4.2 The  arrival function A ( m )  can be written i n  the form 

M 

A ( m )  = TT A, (ms) and A,(m,) = A" 
s=1 

If a routing subchain of a type-S customer in the upper layer is a closed subchain, then 

assume that A, = 1 for the given population m, of the subchain S ;  otherwise assume that  
A, = 0. 

Assumption 4.3 The  service rate function @ depends only on  variables z which have no 
information associated with types of customers i n  the network. W e  rewrite the service rate 
function by f̂ , that i s  

Define the aggregate traffic intensities associated with aggregate state zji and zj by 

Define 

Proposition 4.3 (Marginal distribution for aggregate state z )  Under the assumptions 

4.1, 4.2, and 4.3, the equilibrium marginal distribution for the 

the form 

Proof: Let H,(%,) = { X ,  \ x j l + ~ j 2 + * . * + ~ j ~  = z }  and 

aggregate state z is  given i n  

(4.11) 

H ( % )  = @c1 ~j ( X , )  . Then 

(Ampj(m,$"-" 
l xj(m,i) . 
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Proposition 4.4 (Marginal distribution for station occupancy n) Under the assump- 
tions 4. I, 4.2, and 4.3, the marginal distribution for station occupancy n is given in the form 

where 

and K ( n )  = {Gl + z2 + --â + z N  = n } .  

Proof: Summation EzeKfn)  P ( % )  yields the statement. I 

Note that  the G ( n )  is equivalent to the normalization constant of the closed network 

with the population vector n .  

Throughput for aggregate state z: Let ~ ' , ( ~ , ~ ) ( z )  be the rate, given the aggregate 

network occupancy z )  with which a type-m and station-i customer at  queue j moves from 

the lower layer to  the upper layer or from the upper layer to  the lower layer. 

Proposition 4.5 (Throughput for aggregate state z )  Under the assumptions 4.1, 4.2, 
and 4.3, pjim)i) ( z )  is given in the form 

Proof: Calculation for p',̂ ( z )  = zxefftz) %(m,i) ( X )  yields the statement. I 

Throughput for station occupancy n: For station occupancy n, define y$&)i)(n) 

as the throughput for a type-m and station-i customer to  move from the lower layer to  the 

upper layer at  queue j ,  and define p'{Â¥')'("Â as the throughput for a station-i customer to  

move from the lower layer to  the upper layer. That  is, 

Let 

Proposition 4.6 (Throughput for station occupancy n) Under the assumptions 4.1, 

4.2, and 4.3, 

v;inz,i) (n) = CAmvi ( m ) w j ( i ) G ( n  - ei) (4.14) 

and 

ip'^(n) = Ci}. G ( n  - ei) . 

Proof: This formulas can be derived by straightforward calculation. I 

Let pi (n) be the throughput for a station-i customer t o  move from the lower layer to  

the upper layer or from the upper layer t o  the lower layer. 
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Proposition 4.7 (Throughput at station i given station occupancy n )  Under the as- 

sumptions 4.  I ,  4.2, and 4.3, 

Proof: Since y r ( n )  = ,ui(n) P ( n ) ,  the equation (4.16) is derived directly from equations 

(4.12) and (4.15). I 

5 .  Two-layer networks with outstanding queues 

Model description: We have so far assumed that  each station in the upper layer consists 

of infinite servers for the two layer networks without outstanding queues. In this section, we 

instead assume that each station in the upper layer has a capacity constraint for the two-layer 

networks with outstanding queues. In the networks with outstanding queues, if a station 

has a constraint on capacity, then a number of customers less than or equal to the constraint 

number may enter the station and travel through queues in the lower layer according to  the 

routing chain associated with the station. Customers in excess of the constraint number 

have to wait in the outstanding queue in front of the station until the number of customers 

in the station become less than the constraint number of the station. Formally, when 

ki (0 < ki < oo) is a capacity constraint a t  station i (i E IR), a number of customers less 
than or equal to  ki may travel through the queues in the lower layer according to  routing 

chain P( i ) .  Customers in excess ki have to  wait in the outstanding queue i associated 

with station i until the number of traveling customers becomes less than ki. The two-layer 

queueing networks with outstanding queues do not have the product form distribution which 

is available in the case of networks without outstanding queues. Approximate techniques 

are required to derive characteristics for the networks with outstanding queues. Figure 3 

shows an example of a two-layer network with outstanding queues. 

Approximation technique for the networks with outstanding queues: 

Let k = (/cl, k2, , h). Denote X+ = (max(0, xi) ,  max(0, x2), . - , max(0, xn))  and 

X A Y = (min(x1, YI), min(x2, ~ 2 ) 7  - .  - 7  min(xn, yn), ). 
In case of the networks without outstanding queues, one may consider that  station i 

behaves as if there was an infinite queue with state-dependent service rate p i (n)  in the 

upper layer, and the p i (n )  is equivalent to  the throughput at  station i between the upper 

layer and the lower layer where ~ ( n )  is given in Proposition 4.7. In case of the networks 

with outstanding queues, on the other hand, one may consider that  station i behaves as if 

there were an queue with a number ki of servers in the upper layer. We cannot, however, 

obtain the service rate at  the station in a closed form. If we could obtain service rate at 
each station in the upper layer, then we could obtain approximate solution for the network 

with outstanding queues by using the standard Markovian technique. 

A key observation for the approximation of the service rate is as follows. If station 

occupancy is given by n ,  then one may find that  a population (n A k )  of customers are 

traveling through the lower layer and a population ( n  - k)+ of customers are waiting in 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



I. Kino 

Outstanding queue f Upper Layer 

(Open) 

^ Chain 1 ^chain 2 
...-Â¥Â ..... . ..., .... ...-.h 

..-.. . . .. . . Lower Layer 
.... : 

L 
Chain 2 

Figure 3: Two-layer network with outstanding queues. 

outstanding queues in the upper layer layer. Thus the approximate throughput & (n) a t  

station i may, given the station occupancy n, be written in the form 

where G ( n )  is given in the equation (4.13). Assuming that  the service-time distribution of 

station i ( i  E In) is an exponential distribution with rate ,$(n), we can formulate balance 

equations with respect to  state n and obtain approximate solution by solving the equations. 

6. Conclusion 

This paper has proposed a two-layer queueing network paradigm for the performance evalu- 

ation of computer and communication systems. The main result establishes a product form 

solution for the case in which the upper layer involves no outstanding queue, generalizing 

the standard results in queueing networks. Marginal distributions have been derived for 

convenience in practical applications. For the case in which the upper layer dose include 

outstanding queues, an approximate method is proposed, which generalizes the standard 

flow-equivalent methods. The quantitative evaluation of the precision of the proposed ap- 

proximate method is remained for the future study. The proposed approximation technique 

requires that a system of equations be solved, with is formulated regarding the upper layer 

configuration under the Markovian assumptions. As the number of states in the upper layer 

increases, the system of equations quickly becomes intractable. Thus another immediate 

research direction would be on how to deal with the explosion of the number of states in 

the system of equations. 
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Appendix 1. Proof of Theorem 3.1 

Insert operator and remove operator: For description of transition caused by ar- 

rivals and departures of customers, t he following operators are defined. 

Remove operators ( c )  and ( y )  are defined by 

Insert operator l ~ j , l ) ~ m , i , k l ( c )  inserts an element of (m, i ,  k )  a t  the position ( j ,  l )  which corre- 

sponds to the position l a t  queue j  in the vector c ,  and insert operator I ( j ,L)~ul (y )  inserts an 

element U at  the position ( j ,  l) of vector y .  That is, 

and ' ( j , l ) [~ ] (Y )  = ( ~ 1 , .  . . 7 Yj - I ,  ( ~ ~ 1 ,  ' '  7 Y j , ~ - i ,  U 1 Yji, - .  . 7 Yjn), Yj+l, ' 7 Y N )  - 
Global balance equation: Let Pt ( c ,  y )  be the state probability density function of 

the network a t  time t. The balance equation can be obtained by describing the probability 

Pt+dt(c, y )  in terms of Pt(c, y ) ,  functions of ( c ,  y ) ,  and d t ;  applying the definition of the 
derivative; and equating the result t o  zero. 

Although each supplementary random variable y3 is strictly greater than zero, the de- 

scription y9 = 0 is used in this paper to describe the state of a customer whose service is 

complete and thus is ready to  depart. Define a service rate vector in the form 

We write &g,h)(c) to  denote the associated service rate vector in which the element 7,(h,  c )  

is replaced by 0, that  is, 

where 7T(c) = ( - / , ( l ,  c)){^' for j # g , and 

The standard technique of the supplementary variable method yields 
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j=1 1=1 

'0,vjl ("jO r*, (j, ( v j ~ )  . 5, (l, CA) f W j  ( yjL ) 

where 

The first term on the right-hand side of equation (a.1) corresponds to  the event that  there is 

no arrival and no departure in the time interval dt . The second term expresses the internal 

transition of customers without change of stations. The third term expresses the transition 

of customers with change of stations. The fourth term is the contribution due to  the arrival 

of a customer from outside the network. The last term implies the event that  a customer 

depart from the network to outside eventually. 

For each integral factor in equation (a- l ) ,  expanding the integrand in a Taylor series 
around U = 0 and carrying out the integration yields 

Similarly, the Taylor expansion yields 

where Jt (c, y )  is given by 
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Substituting these relations into equation ( a - l ) ,  applying the definition of the derivative, 

equating the derivative to zero, dropping the time parameter, and rearranging terms yields 

the global balance equation: 

 SO,^ ( W )  * r*, (j, W,,) (vji) 6, (I, cA) - fW,, ( gj1 ) 

Substituting the product form of equations (3.10), (3.11) , and (3.12) into the right-hand 
side of equation (a.2) , and using the relation given in the traffic equation (3.2) and the 

following relations 

we find that carrying out the calculation yields that  

the right hand-side of equation (a.2) 

Since the global equation (a.2) is a linear equation system, the product form distribution 

(3.10) is a unique solution of equation (a.2), if it exists. One can verify that  if each queue in 

the network is either a symmetric queue or a local balance queue, then the value of (a.3) is 

equal to the left-hand side of the equation. Consequently, the global balance equation (a.2) 

has a unique solution of product form (3.10). 1 
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Appendix 2. Notations 
R: the number of stations in the upper layer 

N: the number of queues in the lower layer 

M: the number of customer types 

Gm : the set of stations that a type-m customer may visit 

soi(m): the probability for a type-m customer to join station i when he arrives a t  the net- 

work 

Sij(m): the probability for a type-m customer to join station j after completion of his service 

time at station i 

S(m): the routing chain of a type-m customer in the upper 

K: the number of classes of customers 

Sk: the service time of a class-k customer 

-Fk, fk:  the distribution function of the Ski density function 

h = l/E(Sk) 

layer; i.e., S(m) = {sij(m)} 

of the Sk 

r*,(j,k)(i): the probability for a station-i customer to join queue j of the lower layer as a 

class-A; customer immediately after his arrival at  station i of the upper layer 

r(j,k),(h,l)(i); the probability for a station-i customer to join queue h as a class 1.customer 
after service time completion at  queue j as a class-A; customer 
P(i):  the routing chain of station-i customer in the lower layer; i.e., P(i) = {f(ik),(h,l)(~)} 

Uji: the type index of a customer in position I at  queue j 

Vji :  the station index of a customer in position I at  queue j 
wjl: the class index of a customer in position I at  queue j 

C 11 - - (uji, Vjl, W j i ) ,  cj = ( c j l 1 ~ j 2 , * * . , c j n )  where n =  1 ~ ~ 1 ,  and C =  ( c ~ , c ~ , - - . , c ~ )  
Vji : the remaining service time of a customer in position I at  queue j 

Y j  = ( ~ j i ,  Y j t ,  ' , ~ j n ) ,  Y = ( ~ 1 1  Y2, 7 YN)  

6j(l, c): the probability for a customer who finds state c at his arrival instant to choose 

position I at queue j where he enters. 

~ ~ ( 1 ,  c): the network-occupancy (c)-dependent service rate for a customer in position I at  
d queue j ;  i.e., -yj (l, c) = - ~ y j l  

X ~ ( ~ , ~ \ ( C ~ ) :  the total number of type-m and station- i customers at  queue j given queue 
c-l occupancy c,; i.e., X ~ ( ~ , ~ ) ( C ~ )  = I(ujl = m, vji = i) 

~ j m ( c j )  = ( xj(m,l)(cj), xj(m,2)(cj), 7 xj(m,R)(cj)) 

~ j ( ~ j )  = ( ~ j l ( ~ j ) ,  ~ j 2 ( ~ j ) ,  ' 7 ~ j A 4 t ~ j ) )  x(c)  = (xl(cl) ,  x2(c2), 1 XN(CN)) 
2ji(cj) : the total number of station i customers at  queue j given the queue occupancy cj, 

M i-e xji (C.) = Em=l xj(m,i) (cj) 

~ j (c j )  = (Zjl(cj), zj2(cj), . ' 7 zjR(cj) ), %(c) = (z l (c l ) ,  2 2 ( ~ 2 ) ,  ' ZN (cN)) 
ms(c): the total number of type-S customers in the network given network occupancy c; 

i.e., ms(c) = EY=l xj(s,i)(cj) 
ni(c): the total number of station-i customers in the network given network occupancy c; 
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@(X): the service rate function of variables X 

%(I, c): the service rate to  a customer in position I a t  queue j given network occupancy c 
f3j(ll c):  the proportion of service rate to a customer in position l a t  queue j given queue 

occupancy c 

A ( m )  : the arrival function 

Am(c): the arrival rate for type-m customers from outside the network given network occu- 

pancy c 

Qj(m, i, k): the relative frequency for a type-m and station-i customer visit queue j as a 

class-k customer 

ui(m): the relative frequency for type-m customer to visit station i 

wij,k)(i): the relative frequency for a station-i and class-k customer to  visit queue j 

oj (m, i, k) = Qj (m, i, k) /pk: the traffic intensity due to  a type-m and station-i customer of 
class k at  queue j 

1c-l 
rj{cj) = oj(cji): the traffic intensity function at  queue j 
Xj(%i): the aggregate number of type-m and station-1 customers a t  queue j 

x j m  = (xj(m,1), xj(m,2), , xj(m,R)), xj = (xj l ,  xff, - X = (XI,  X2, - 7 XN) 
N m,: the aggregate number of type-S customers in the network; i.e., m, = EL1 xji(s,i) 
N M  ni: the aggregate number of station-i customers in the network; i.e., ni = Ejs1 Em=i xj(m,<) 

m = ( m ,  mz, . , m d ,  = (^l, n2, - - - , n^) 

pj(m,i) = oj{m, i, k ) :  the aggregate traffic intensity for type-m and station-i customers 

a t  queue j 

Pjm = (~ j (m, l ) ,  /)j(m,2) 7 - * . 1 pj(m,R)) , Pj  = (PjI 7 Pj2, * ' , PjM) 

Bj (Xj)  = {C, \ X, (C.) = X,}, B(x) = @ c l  B, (X,) 

Zj i  : the aggregate number of station-i customers a t  queue j 

= ( ~ j 1 , - 2 ) 2 ) " ' ? Z j ~ ) ,  = ( ~ 1 7  ; Q > . . . ~ ^ N )  
Q(%): the service rate function of variables z 

M 
aji = S m = l  AmPj(m,i) 7 aj = (a.1, aj21 - ' 7 as) 

l l ^ l l !  ^ vj(zj) = - 
zj! 

H , ( z j ) = { x j I X j 1 + ~ j 2 + . . - + X j M = % j } ~  H ( Z ) = @ ~ ~ H ~ ( Z ~ )  
Kin) = {z 1 z l +  2 2  + - - -  + Z N  = n} 

K 
Wj(i) = Efcl W(.>,^) (i)r(j,t),* (2) 

M 
r\i = Em=i ̂m^(^) 

f j ( rn , i )  (X) ,  Gm,,) ( z ) ,  p'jJm,i) (n ) :  the throughput for a type-m and station-z customer a t  

queue j to move from the lower layer to the upper layer a t  states X ,  zl  and n 

(^*(n): the throughput for a station-i customer to move from the lower layer to the upper 

layer a t  station occupancy n 

d n ) :  the throughput for station-i customer to move from the lower layer to the upper 

layer given station occupancy n 
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