
Journal of the Operations Research 
Society of Japan 

Vol. 40, No. 1, March 1997 

A METHOD TO ESTIMATE RESULTS OF UNKNOWN COMPARISONS 
IN BINARY AHP 

Kazutomo Nishizawa 
Nihon University 

(Received September 14, 1995; Revised April 22, 1996) 

Abstract In this paper we propose an algorithm to estimate results of unknown comparisons in binary 
AHP. For incomplete comparison case, which includes unknown pairwise comparisons, there are various 
methods to calculate weights, for example, Harker method, Two-Stage method and so on. However these 
methods are to estimate weights of activities but not to estimate results of unknown comparisons directly. 
We intend to estimate results of unknown comparisons directly. For this purpose we introduce a kind of 
syllogism which is to connect two activities with unknown comparisons by an arrow so that there are no 
cycles in the graph corresponding to the given comparison matrix. We apply our algorithm, first, to estimate 
results of unknown comparisons and compare our weights with Barker's and Two-Stage's, for four examples, 
respectively. Next, we also apply our algorithm to construct comparison matrix using a personal computer 
and the performance of our algorithm is discussed based on simulation using random number. From results 
of these examples and simulation, we can illustrate an effectiveness of the proposed algorithm. 

1. Introduction 
In this paper we propose an algorithm to estimate results of unknown comparisons in an 
incomplete binary AHP[1] and illustrate applications. 

In binary AHP, result of pairwise comparison is represented by 0 or 110, where 6 is a 
parameter whose value is grater than 1. If activity i is important than j, we have A( i , j )  = 0 
and A(j,  i )  = 110 where A(i, j) is an element of a comparison matrix A (i  = 1 n,  j = 
1 n where n is the number of activities). If activities i and j are equally important then 
we have A(i, j) = 1. Of course A(i, i)  = 1. (Here we represent (i, j) element of a matrix X 
by d . )  

For incomplete comparison case, which includes unknown pairwise comparisons, there 
are various methods to calculate weights of activity, for example, Harker method [ 2 ] ,  Two- 
Stage method [3] and so on. However Barker method and Two-Stage method are not to 
estimate results of unknown comparisons since an element of estimated comparison matrix 
does not exactly coincide with 1, 0 or 110. Our method is to estimate results of unknown 
comparisons by any values of 1, 0 or 110. 

For this purpose we introduce a directed graph which corresponding to comparison ma- 
trix A. If A ( i , j )  = 0 (l/@) then i and j are connected by an arrow "i -+ y ("2 +- j").  
However if A(i, jl = 1 then i and j are connected by a straight line "1 - f and unknown 
comparisons are not connected by lines. In previous study we proposed a criterion of consis- 
tency by number of cycles [4] and how to find cycles of various lengths. A basic idea of our 
method is based on two principles, a kind of syllogism and rule of avoiding inconsistency; 
that is, if "i --+ j" and "j Ã k" and the result of comparison of (i, k)  is unknown, then we 
estimate i must be important than k ("i Ã‘ k") unless "I -+ fc" induces new inconsistencies. 
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In order to implement the estimation of unknown comparisons based on the directed 
graph, we introduce n X n matrix P and n X n matrix V. If A(i, j) = 6 (116) then let 
P ( i ,  j) = 1 (-l), and if A(i, j )  = 1 then let P ( i , j )  = 0. If comparison between i and 
j is unknown then we assume P ( i ,  j) = 9. If A( i , j )  = 0 then let V(i, j) = 1, otherwise 
V(i, j) = 0. In our estimating algorithm matrix P and matrix V play important roles. 

In this paper, we describe how to estimate results of unknown comparisons in Section 2. 
In Section 3, we apply the proposed algorithm to estimate results of unknown comparisons 
and illustrate four examples. In Section 4, we also apply our algorithm to construct compar- 
ison matrix using a personal computer and the performance of our algorithm is discussed. 
Finally, we conclude this investigation in Section 5. 

2. A Method to Estimate Results of Unknown Comparisons 
In this paper we often use terms "path" and "cycle" in a graph. These are most important 
then we define them through matrix P as follows; 

path: A series of points i ,  i l ,  - . , imel, j is called path starting at i and ending at j if 
and only if P ( i ,  i l )  = P( i l ,  i2) = - - = P(im_^,j) = 1 (some of points i ,  i i ,  - - - ,  im-1,j  are 
permitted to coincide). 

cycle: A path whose starting point coincides with ending point (that is i = j) is called 
cycle. 

it diagonal line of cycle: Let S = (io, i l ,  - - - , im-l, io) be a cycle, then zj --+ 6" ( k  # 
j + 1 (modm)) is called diagonal line of S. 

First we consider a simple case with three activities shown in Fig. 2.1. For this case 
we can simply estimate "i -+ j" by syllogism (of course such estimation "j -+ i" cannot 
be considered). But in Fig. 2.2 we cannot apply syllogism, so the relation of (k, j) is left 
unknown. 

Fig. 2.1 Can apply syllogism Fig. 2.2 Cannot apply syllogism 

Note that in Fig. 2.1 a path "i --+ k -+ j" (starting at  i and ending at j), represents 
V2(ii  j} > 0 [4], and the fact that the comparison of (i, j) is unknown is represented by 
P( i ,  j) = 9. So the both conditions V 2 ( i i j )  > 0 and P ( i , j )  = 9 give the estimation 
"2 -+ 7". 

Next we consider a case of four activities. For example in Fig. 2.3 we can estimate not 
only "i -+ l" (V2(i, l) > 0 and P( i ,  l) = 9) and "k -+ j" (V2(k, j )  > 0 and P(k ,  j )  = 9) but 
also can estimate "i -+ j" which is based on the conditions V3(i, j) > 0 and P( i ,  j) = 9. 

Generally if there is a path of length m (starting at  i and ending at jl, then we have 
Vm(i, j) > 0 so Vm(i,  j) > 0 [4] and P( i ,  l} = 9 is the condition of estimation "i --+ j". 

However in Fig. 2.4 the situation is rather complicated. We can consider the possibility 
"i -+ l" with V2(ii l) > 0 and P ( i ,  l)  = 9, but "i Ã‘ l" induces another inconsistency 
i l j i (that is "8 -+ f induces a cycle (i  I j )  in the graph), which is represented by 
V2(l, i)  > 0 [4]. As a result, we can estimate "i -+ l" if the following condition is hold; 
V2(i,l)  > 0, P ( i ,  l)  = 9 and V2(l, i )  = 0. 
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i j i < j 
Fig. 2.3 Can apply syllogism multiply Fig. 2.4 An incomplete directed graph 

already exist cycle 

Considering as above, we can set up our estimating principle as follows; If and only if 
there exists a path (of length m > 2) starting at  i and ending at j and there are not any 
paths starting at j and ending at i ,  we estimate i is more important than j (that is " i  -+ j " ) .  

This principle is very simple, but implementing it to construct an efficient algorithm 
we use matrix P and V based on a given comparison matrix A and further introduce an 
n X n matrix C called check matrix. Based on C we have estimated matrix Pest and have 
estimated comparison matrix Aest. The following is our fundamental algorithm; 

Prepare matrix P ,  Pest (= P )  and V based on given matrix A ( i  = 1 n, j = 1 n) .  
If A(i, j )  = 0 ,  110 and 1 then let P ( i ,  j )  = 1,  -1 and 0 ,  respectively. 
If A(i, l} is unknown then let P ( i ,  j )  = 9. 
If A(i7 j )  = 0 then let V ( i ,  j )  = 1,  otherwise V ( i J )  = 0 .  
Let each element of check matrix C be zero. 
For each a =  2 W n - 1. 
Calculate V' and find a pair of i and j ( i  = 1 n,  j = 1 n ) ,  with V f f ( i , j )  > 0 and 
P ( i , j )  = 9 ,  then let C ( i ,  j )  = 1. 
If C ( i , j )  = 1 and C ( j , i )  = 0 ( i  = 1 n, j = 1 n )  then let Pest(^?) = 1 and 
Pest ( j ,  2 )  = - 1. 
If P e s t ( i , j )  = 1 ( - 1 )  then let A e s t ( i 7 j )  = 0 ( 1 / 0 ) ,  otherwise A e s J i 7 j )  = 1 
( i = l W n ,  j = l W n ) .  

It is clear that the above algorithm actually implements our principle; from (2.3)  if 
and only if there exists a path (of length m 2 2 )  starting at i and ending at j ,  we have 
P ( i , j )  = l ,  and so C ( i , j )  = 1 and C( j^  i )  = 0 represent the condition of estimating "i -+ j" 
in our principle. 

Theorem 1. B y  our  algorithm (2.1)-(2.5) we have unique estimated matrix Aest from 
given a comparison matrix A, and even i f  we again apply the algorithm (2.1)-(2.5) to  the 
estimated matrix Aest, the Aest remains unchanged ( tha t  is  (Aest)est = Aest)- 

Proof. It is clear the procedure (2 .3)  uniquely determines the check matrix C so that by 
(2.4) and (2 .5)  Aest is determined uniquely from C .  This proves the uniqueness of Aest- 

The latter part is also clear. Let denote the check matrix corresponding to Aest by C " .  
From (2 .4)  we have Pest ( i ,  j )  = 1 for every pair ( i ,  j )  satisfying the condition C ( i ,  j} = 1 
and C ( j ,  i )  = 0 .  So C 1 ( i ,  j )  = 0 for every pair ( i ,  j )  from (2 .3)  (that is C" is zero matrix), 
which means that Aest is unchanged by algorithm (2.1)-(2.5). B 

By the above algorithm and Theorem 1 we can further describe the following important 
theorem. 

Theorem 2. If the original data is  inconsistent, that is  the graph corresponding to com- 
parison matrix A include a cycle S ,  diagonal lines of S do not  newly arise i n  the graph 
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correspond to  Aesh that is we cannot estimate importance among member of S .  

Proof. Assume comparison i and j is unknown and i and j are member of cycle. For pair 
( i , j ) ,  C(i ,  j) = 1 and C ( j , i )  = 1 then not satisfying estimate condition C(z,j) = 1 and 
C ( j ,  i) = 0. H 

For example it is clear that in Fig. 2.4, shown above, we cannot estimate importance of 
pairs ( k ,  j) and (I, l). Further we show next example in Fig. 2.5. 

Fig. 2.5 An example of directed graph for Theorem 2 

In Fig. 2.5 we have cycle of length 6, (1 5 4 2 3 4). Based on Theorem 2 we cannot estimate 
importance of (1 ,2 ) ,  (1,3),  (2,5)  and (3,5). We describe details in 5 3.4 Example 4. 

3. Examples to Estimate Unknown Comparisons in Binary AHP 
Now we show four examples in binary AHP to  illustrate usefulness of the proposed estimat- 
ing algorithm. All these examples have six activities, n = 6, so we consider 6 X 6 incomplete 
comparison matrix A. Example 1 is consistent, or acyclic graph, and all unknown compar- 
isons are completely estimated. Example 2 is consistent but some unknown comparisons 
are not estimated. Example 3 is inconsistent, or cyclic graph, but all unknown comparisons 
are completely estimated without forming new cycles. Example 4 is inconsistent and some 
comparisons are not estimated because of forming new cycles. 

The procedures to estimate results of unknown comparisons for each example as follows: 

(1) Given incomplete comparison matrix A and corresponding directed graph. 
(2) Prepare matrix P and matrix V based on A. 
(3) Examine consistency of A by finding cycles corresponding directed graph. 
(4) Obtain estimated matrix Aest form A by proposed algorithm. 
(5) Obtain AHM by Barker method and ATSM by Two-stage method form A. 
(6) Calculate the weights from Aest, AHM and ATSM, respectively where 6 = 2. 
(7) Compare with the weights, obtained (6), normalized sum of them is equal to 1. 

In this study we calculate the weights of comparison matrix where 0 = 2. A consistent 
case the weights are not depend on 0 (see [5]), however it is not clear an inconsistent case. 
We usually calculate where 0= 2 and we consider it is appropriate value. 
3.1 Example 1 
In Example 1, all unknown comparisons are completely estimated by using the proposed 
algorithm. An incomplete comparison matrix A is shown as (3.1) where the symbol "n" 
represents unknown comparison. The number of unknown comparisons, in this case, is nine. 
Corresponding directed graph is shown in Fig. 3.1. 
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To Estimate Unknown Comparisons Binary A H F  

Fig. 3.1 Directed Graph for Example 1 

From (3.1) we have matrix P and matrix V, shown as below. 

First, we examine consistency of comparison matrix I based on cycles. To find cycles 
of length 3 ~ 6  in Fig. 3.1, we apply the algorithm which proposed in previous paper. As a 
result, there are no cycles in Fig. 3.1 then we judge A is consistent. 

Secondly, we estimate unknown comparisons in (3.1) by our algorithm (2 .1 )~(2 .4)  for 
a = 2 - 5 .  

For a = 2, we need P and Vs, shown as (3.4). 
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By the proposed algorithm we have four sets (1,4), (2,6), (4,3) and (5,2), satisfying (2.3) for 
a = 2. Then we have C( l ,4)  = 1, C(2,6) = 1, C(4,3) = 1 and C(5,2) = 1. 

For a = 3, we need P and V3, shown as (3.5). 

Then we have three sets (1,2), (4,6) and (5,3), satisfying (2.3) for a = 3 and let be C(1,2) = 
1, C(4,6) = 1 and C(5,3) = 1. 

For a = 4, we need P and V4, shown as (3.6). 

Then we have two sets (1,3) and (5,6), satisfying (2.3) for a = 4 and let be C ( l , 3 )  = 1 and 
C(5,6) = l. 

For a = 5, we need P and V5, shown as (3.7). 

There are no another sets satisfying (2.3) for a = 5. 
Thirdly, from above process, we have matrix C, shown as below, then let us decide 

results of unknown comparis'ons. 

As there are no sets, i and j, satisfying C(i, j) # 0 and C(j ,  i) # 0, we can estimate unknown 
comparisons without forming new cycles. For example, since C(1,2) = 1 and C ( 2 , l )  = 0 
then let be Pest (l, 2) = 1 and Pest (2, l) = -1. Thus we have estimated matrix P- shown 
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as below. 

(3-9) 

Then all unknown comparisons in (3.2) are completely estimated. Based on (3.9)) we have 
Aest, completed estimating unknown comparisons of A, shown as (3.10). 

The value of Aest(i,j) is the power Pest(i, j )  of 0 , (i = 1 n, j = 1 m n) ,  that is, if 
Pest(^) = 1 (-1) then Aest(i,j) = 0 (l /$) ,  and if Pest(i,j) = 0 then Aest(i,j) = 1. Of 
course directed graph of Aest is acyclic and so consistent, and we have values of weights of 
all activities analytically (not numerically) by the formula given in [5]. 

On the other hand, from (3.1), we have AHM by Barker Method and have ATSM by 
Two-Stage Method shown as below. 

Finally, we calculate the weights from Aest, ARM and ATSM, respectively where 6= 2. 
The results, compered with each weights, are listed in Table 3.1. 

As a result, for consistent and completely estimated case, an order of six activities are 
coincide with three kinds of method's. It is interesting that the calculated weights from Aest 
by our algorithm are agree well with the weights from AHM by Barker method. 
3.2 Example 2 
Next example is consistent but incompletely estimated. An incomplete comparison matrix 
A is shown as (3.13) and corresponding directed graph is shown in Fig. 3.2. The number of 
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Table 3.1 Results of weights for Example 1 

1 Amax I 6.2710 I 6.2163 1 6.2661 

unknown comparisons is nine. 

1 D 6 n  
n i n e  

116 q 1 
q 116 0 l 

116 e D D 

q q 116 116 

Fig. 3.2 Directed graph for Example 2 

From (3.13) we have matrix P and matrix V, shown as below. 
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To Estimate Unknown Comparisons Binary AHF 113 

By the same way in Example 1, we examine consistency of comparison matrix A. As a 
result, there are no cycles in Fig. 3.2 then we judge A is consistent. 

By the proposed algorithm, we have matrix C shown as below. 

Then we have estimated matrix Pest shown as below. 

We cannot estimate three elements P(2,3), P(3,4) and P(3,5). We consider that these 
results of comparisons are equally important, let Pest(2, 3) = Pest(3,2) = 0, Pest(3; 4) 
Pest (4,3) = 0 and pest (3,5) = Pest(5, 3) = 0, shown as below. 

(3.18) pest  = 

Thus we have matrix Aest, from (3.18), shown as below 

On the other hand, from (3.13), we have AHM by Barker Method and have ATSM by 
Two-Stage Method shown as below. 
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Then we calculate the weights from Aest, AHM and ATSM, respectively where 0 = 2. The 
results are listed in Table 3.2. 

Table 3.2 Results of weights for Example 2 

As a result, using our algorithm, we cannot estimate results of three comparisons, 
A(2,3), A(3,4) and A(3,5). If possible to obtain these comparisons, we can completely 
estimated all unknown comparisons. However an order of six activities are coincide with 
Harker Method's and Two-Stage Method's. It is interesting that the value of unestimated 
elements of Aest are equal to 1, and same elements of ATSM, except ATSM(4, 5)) also equal 
to 1. 
3.3 Example 3 
Next example is inconsistent, or cyclic graph, but all unknown comparisons are completely 
estimated without forming new cycles. An incomplete comparison matrix A is shown (3.22) 
and the corresponding directed graph is shown in Fig. 3.3. The number of unknown com- 

(D 
@ 
@ 
G!) 
@ 
@ 

Amax 

parisons, in this case, is five. 

(3.22) A =  

From (3.22) we have matrix P and matrix V, shown as below 

From AeSt 
0.2782 
0.1573 
0.1533 
0.1245 
0.1988 
0.0879 

6.1898 

From AHM 
0.3527 
0.1409 
0.1392 
0.0883 
0.2235 
0.0553 

6.0574 

From ATSM 
0.2673 
0.1641 
0.1549 
0.1473 
0.1745 
0.0910 

6.1789 
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Fig. 3.3 Directed graph for Example 3 

By the same way in the previous examples, we examine consistency of comparison matrix 
A. As a result, we have one cycle of length 3, (2 4 5), in Fig. 3.3 then we judge A is 
inconsistent. 

By our algorithm, we have matrix C, shown as below, then let us decide results of 
unknown comparisons. 

0 1 0 1 0 0  
0 0 1 0 0 0  1 

Thus we have matrix Pest, shown as below, whose unknown comparisons are completely 
estimated. 

0 1 1 1  
-1 0  1 1 - 1 1  

Then all unknown comparisons in (3.23) are completely estimated. From (3.26), we have 
Aest, shown as below. 
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Then we calculate the weights from Aest, AHM and ATSM, respectively where 0 = 2. The 
results are listed in Table 3.3. 

Directed graph of Aest is inconsistent since forming cycle (2 4 5), but there are no another 
new cycles. 

From (3.22), we have AHM by Harker Method and have ATSM by Two-Stage Method 
shown as below. 

Table 3.3 Results of weights for Example 3 

AHM 

" 3  0 6 0 6 6 -  
0 3 0 6 1 / 6 6  

1/6 0 3 0 110 6 
0 116 0 3 0 0  

116 6 0 116 2 0 
- 116 116 116 110 0 2 

(I) 

As a result, in Table 3.3, from Aesh Q, @ and @ have the same weight but from A H ~  
and from ATSM, Q, @ and (5) have different weights but near. It may be consider that 
Q, @ and (5J are equally important since cycle of length 3, (2 4 5), already forms and in 
corresponding directed graph of A, all unknown comparisons are completely estimated wit h 
forming no another new cycles. 
3.4 Example 4 

(3.29) ATSM = 

@ 
@ 
@ 

Amax 

The last example is inconsistent and its some unknown comparisons are not estimated 

- 1 6lI2 6 6lI2 6 6 - 
6-'l2 l 6lI2 6 l / O  6 

116 6-lI2 l 6-'l2 116 0 
0-ll2 116 P I 2  1 6 6 
1 / 6 6  8 116 l e4I5 
116 116 116 116 6-*!" l - 

From ATSM 
0.2433 

From Aest 
0.2706 

0.1793 
0.1793 
0.0849 

6.3896 

From (3.30) we have matrix P and matrix V, shown as below. 

From AHM 
0.2302 

because of forming new cycles. The incomplete comparison matrix A is shown as (3.30) and 
corresponding directed graph is shown in Fig. 3.4. The number of unknown comparisons, 
in this case, is five. 

0.1917 
0.1890 
0.0837 
6.3472 

A = 

0.1826 
0.1823 
0.0879 

6.3405 

- 1 U 110 6 6 -  
0 1 6 116 0 0 

116 1 6 a 6 
6 6 116 1 110 0 

116 6 l 6 

1/0 116 116 110 l - 
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Fig. 3.4 Directed graph for Example 4 

We can estimate Pest (4,6) = 1 and Pest (6,4) = - 1, satisfying (2.4). According to our predic- 
tion we cannot estimate four elements P ( l , 2 ) ,  P ( l , 3 ) ,  P(2,5)  and P(3,5) ,  because forming 
new cycles since, for example, C ( l , 2 )  = 1 and C ( 2 , l )  = 1, not satisfying (2.4). We consider 
that these results of comparisons are equally important, then Pest(l, 2) = Pest(2, l )  = 0, 
Pest(l,3) = Pest(3, l )  = 0, PÃˆt(2,5 = Pest(5,2) = 0 and Pest(3,5) = Pest(5,3) = 0. Thus we 

By the same way as the previous examples, we examine consistency of comparison matrix 
A. As a result, we have two cycles of length 3, (1 5 4) and (2 3 4), in Fig. 3.4 then we judge 
A is inconsistent. 

These two cycles are connected and forming cycle of length 6, (1 5 4 2 3 4). Based 
on Theorem 2, mentioned in Section 2, we can predict that we cannot estimate unknown 
comparison pairs (1,2), (1,3), (2,5) and (3,5), since there are member of cycle. 

By our algorithm, we have matrix C, shown as below, then let us decide results of 
unknown comparisons. 

(3.33) c = 

- 0  1 1 0 0 0 -  
1 0 0 0 1 0  
1 0 0 0 1 0  
0 0 0 0 0 1  
0 1 1 0 0 0  

0 0 0 0 0 0 -  
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have estimated matrix Pest shown as below. 

Thus we have matrix Aest from (3.34) shown as below. 

Directed graph of Aest is inconsistent since forming cycle (1 5 4) and (2 3 4), but there are 
no another new cycles. 

From (3.30) we have AHM by Barker Method and have ATSM by Two-Stage Method 
shown as below. 

(3.36) AHM = 

Then we calculate the weights from Aest, AHM and ATSM, respectively where 0 = 2. The 
results are listed in Table 3.4. 

Table 3.4 Results of weights for Example 4 

(T) 

@ 
@ 
@ 
@ 
@ 

Amax 

From Aest 
0.1795 
0.1795 
0.1822 
0.1934 
0.1822 
0.0832 

6.5125 

From AHM 
0.1778 

From ATSM 
0.1799 

0.1778 
0.1833 
0.1980 
0.1833 
0.0799 

6.5 177 

0.1799 
0.1821 
0.1905 
0.1821 
0.0855 

6.5147 
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As a result, in Table 3.4, it is impossible to order Q and 0, and (3) and @, since having 
same weight. It may be consider that such result in Example 4 is caused by already include 
cycles before estimating. Note that the value of weights from Aest are similar to from ATSM 
since the elements of Aest are coincide with ATSM except ATSM(4, 6). 

4. Constructing Comparison Matrix Using The Proposed Algorithm 
In previous section we apply our algorithm to estimate results of unknown comparisons 
for incomplete comparison matrix. In this section we apply our algorithm to construct 
comparison matrix. In general a number of all comparisons is n(n  - 1)/2. If n becomes 
large, it is the donkey work to  construct comparison matrix. But if we introduce the principle 
of successive experiment with our algorithm then we can reduce a number of comparisons 
remarkably. 

Now we show procedures to construct a comparison matrix and show the performance 
of our algorithm. 

4.1 Procedures to  Construct Comparison Matrix 
The principle of successive experiment is the following; First we select randomly one pair 
of activities ( i l , j l )  and compare i1 and jl to have the value of A(il ,  j l ) .  Secondly select 
another pair ( i2 , j2 )  to get A( i2 , j2) , .  . -. But often the k-th step if we can estimate by our 
algorithm the value of comparisons for unselected pairs based on the information obtained 
during these k steps, we have the value of A for these pairs (k = 1,2,  - - v ) .  So after the k-th 
step we know the values of A for not only really compared pairs but also estimated pair 
comparisons. At (k + l ) - th step we select randomly one of the rest unknown pairs. Repeat 
these procedures till all values of comparison matrix A are known. 

The procedures to  construct n X n comparison matrix are shown as follows: 
(4.1) Prepare matrix P and matrix V. 
(4.2) Randomly select an unknown pair of activities i and 7. 
(4.3) Compare i and j, and if i (j) is important than j (i) then input P ( i , j )  = 1 (-l) and 

P(^) = -1 ( l ) .  
(4.4) Estimate unknown comparisons by using the proposed algorithm. 
(4.5) Repeat (4.2) to (4.4) till all pairs of activities are known. 
(4.6) Construct comparison matrix A, if P ( i , j )  = 1 (-1) then let be A(i,j)  = 9 ( I / O )  ( i  = 

l - n ,  j = l W n ) .  
4.2 The Performance of Constructing Comparison Matrix with Our Estimation 
Next we examine the number of pairs really compared by using our algorithm based on 
principle of successive experiment. Based on procedures (4.1) to (4.6), mentioned above, 
several simulations were carried out for n = 5 to 50. In our simulation, the results of 
comparison are to determine randomly. 

Thus we construct 1000 kinds of compa,rison matrix for each n and have a number r 
of comparisons necessary to  completely construct comparison matrix. The results show in 
Fig. 4.1. 

In Fig. 4.1 the vertical axis represents a number of comparisons which necessary to 
completely construct comparison matrix and the horizontal axis represents an order of 
comparison matrix (n).  The symbol "0" represents a number of all pairwise comparisons 
n ( n  - 1)/2). Performing 1000 cases, the symbol "A" represents maximum number of com- 
parisons, the symbol "e" represents average number of comparisons and the symbol "v" 
represents minimum number of comparisons. The chief values in Fig. 4.1 are shown in Table 
4.1. 
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Fig. 4.1 Results of simulation by using random number 

As a result, from Fig. 4.1 and Table 4.1, we can confirm to reduce a number of pairwise 
comparisons by using the proposed algorithm. 

For example n = 5, there is no effect of our algorithm since maximum number of com- 
parisons is equal to all comparisons. However for n = 50, maximum number of comparisons 
is 185 then it is about 15% of all comparisons. It is clear that,  in Fig. 4.1, an order of all 
comparisons is n2, on the other hand, using our algorithm an order of number of comparisons 
is n. 

It may be considered that maximum number of comparisons corresponding to n, if 
randomly compared, is an aim of number to be necessary completely estimated unknown 

Table 4.1 A number of pairwise comparisons using the proposed algorithm 

1 n I nin - 1112 I Minimum I Average 1 Maximum 1 
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comparisons. 

5. Conclusion 
In this paper we propose an algorithm to estimate results of unknown comparisons in binary 
AHP and apply two kind of applications. 

First applying our algorithm for incomplete comparison examples, we can estimate re- 
sults of unknown comparisons without deteriorating consistency. Obtained weights, a con- 
sistent incomplete comparison and completely estimated case, are coincide with Harker 
method's. An inconsistent incomplete case, the form of estimated comparison matrix is 
similar Two-Stage method's. 

Next applying our algorithm to construct comparison matrix and carrying out a simula- 
tion by using random number, we can confirm to reduce a number of pairwise comparisons. 
Thus for large n, it is possible to easy to construct comparison matrix with our estimation. 

From these resutls, we can illustrate an effectiveness of the proposed algorithm. 
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