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Abstract In the just-in-time context, parts are often processed by a single-unit production and conveyance 
system (called "zkko-nagash? in Japanese) without conveyors. The U-shaped layout, in which each multi- 
function worker takes charge of several machines, has been introduced as an implementation of this concept. 
Presently the layout is gaining an increasing popularity due to the low running cost. 

In this paper, first we deal with the U-shaped production line with a single multi-function worker. We 
derive his waiting time and a cycle time of the line when processing times of items, operation times, and his 
walking times between machines are constants. Then we deal with a U-shaped production line with multiple 
workers. We derive the overall cycle time of this line, and consider an optimal worker allocation problem 
that minimizes the overall cycle time when the number of workers is given. In particular, it is shown that 
the U-shaped layout is superior to the linear layout for lines with one or two workers. We also discuss the 
case where those processing, operation and walking times are stochastic. 

1. Introduction 
In a conveyor system for mass production as in the Ford system, each station processes 

just one item in one cycle time, where the cycle time is the time-interval between two 
successive outputs. The sums of necessary operation and processing times are intended to 
be equal among the stations, the items are processed synchronously among the stations, 
and there exist no items between adjacent stations. 

In the just-in-time (JIT) production system, the above concept, which is called a single- 
unit production and conveyance ("ikko-nagashi," in Japanese), is applied to a production 
line without conveyors which manufactures different kinds of relatively small parts (Monden 
[3], p.107). To achieve this at a low production cost, a U-shaped layout is used with multi- 
function workers. The U-shaped production line with three workers and ten machines is 
shown in Figure 1. When the entrance and exit of items are near as shown in Figure 1, we 
call this layout a U-shaped layout, and if the same worker handles both machines at the 
entrance and exit in the U-shaped layout then we call this layout a U-shaped production 
line. 

The multi-function worker takes charge of multiple machines, and visits each of them 
once in one cycle. When he arrives at one of these machines, he waits for the end of 
processing of the preceding item if it is not completed, and then operates the items and 
walks to the next machine. The operation consists of detaching the processed item from 
the machine, putting it on a chute to roll in front of the next machine, attaching the new 
item to the machine, and switching it on. The cycle time of the worker is the time-interval 
between his consecutive arrivals at his first machine, and consists of the waiting times for 
the end of processing, operation times and walking times between machines. 

In the JIT production system, two kinds of Kanbans, that is, a production ordering and 
a withdrawal Kanbans are used as tools to control production and withdrawal quantities in 
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Analysis of a U-shaped Production Line 91 

each production line. In the U-shaped line, the same worker inputs a new item and outputs 
a completed product. Consequently, he can observe changes of two kinds of Kanbans and 
respond to them promptly. Since a new item enters the system only after one completed 
product exits, the work-in-process in the system is always constant. Further, there exist 
more possible allocations of the workers to machines than in the linear layout. Therefore, 
when the demand changes we can more appropriately reallocate the workers to machines 
so that the cycle times of workers are balanced. That is, the U-shaped layout can be more 
properly adapted to the changes of the circumstances than the linear layout. 

In this paper, we first consider the U-shaped production line with just one multi-function 
worker. We analyze his waiting time and the cycle time. Then we consider the overall cycle 
time of the U-shaped line with more than one multi-function worker, which is the maximum 
of the cycle times of all workers. It is noted that its reciprocal gives the throughput, or the 
production rate of finished products. Moreover, we consider an optimal worker allocation 
problem that minimizes the overall cycle time. 

In Section 2, we explain the U-shaped production line with a single worker, and analyze 
his waiting time and the cycle time of this line, when the operation, walking and processing 
times are constants. We show that the n-th cycle time becomes constant for n > 2, and 
that after several cycles the worker waits for the completion of processing of at most one 
specified machine. 

Recently, Miltenberg and Wijngaard [2] considered the line balancing problem of the 
U-shaped line with constant operation times, no waiting times and no walking times. They 
discussed the optimal machine allocation problem to workers (which they called stations) 
under the constraints on the orders of machines in which the items are processed, like the 
assembly line balancing problems (Baybars [I], for example). In the U-shaped line, however, 
the walking times should be taken into account to derive the exact cycle time. In addition, 
it is possible for the worker to wait for the end of processing at a machine for an allocation, 
because the time interval from departure to next arrival of the worker at the machine may 
exceed the processing time at the machine. Therefore, the problem which they discussed 
does not represent the real features of the U-shaped line. In Section 3, we consider a 
production line with I workers and K machines, and derive the overall cycle time of this 
line under a given allocation of workers to machines. Then we discuss the optimal worker 
allocation problem that minimizes the overall cycle time of this line. It is shown that the 
problem can be formulated into a combinatorial optimization problem. We examine the 
optimal worker allocation problem with one or two workers in a production line with K 
machines placed at the same distance. This will reveal advantages of the U-shaped layout 
over the linear layout. 
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Figure 1. A U-shaped Production Line 
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We can further reduce an overall cycle time by admitting what Toyota calls mutual relief 
movement ([3], p.114). This means that a worker who has finished his own operations in 
one cycle helps another adjacent worker. This, however, is not taken into account in this 
paper, because the problem becomes more complicated. 

If multiple kinds of items are processed in this line, the processing times and operation 
times are not constant. In addition, the operation and walking times of the worker may 
fluctuate because of his weariness and learning effect. In Section 4, we deal with the case 
where the processes of operation, walking and processing times are stochastic. In particular, 
we discuss the case where the sequences of random variables in these processes are inde- 
pendent and identically distributed and there is a bottleneck machine such that the sum 
of processing and operation times of this machine is larger than that of any other machine 
with probability one. It can be shown that the worker waits for the completion of processing 
at the bottleneck machine in all cycles. 

2. Cycle and Waiting Times of a Multi-Function Worker 
In this section we consider the U-shaped production line with a single multi-function 

worker, which is shown in Figure 2. The worker handles machines 1 through K. The facility 
has enough raw material in front of machine 1. The material is processed at machines 1,2, 
. . . , K, sequentially, and departs from the system as a finished product. Let K = {l,. . . , K}. 
When the worker arrives at machine k G K, if the processing of the preceding item is 
completed, then he removes it from machine k,  sends it to machine k + 1, attaches the 
present item to machine k and switches it on. After the operation at machine k, he walks 
to machine k + 1. If the preceding item is still in process at his arrival, then he waits for 
the end of the processing before the operation. 

It is assumed as an initial condition that at time 0, there is one item on each machine, 
which has been already processed at this machine. That is, in the first cycle the worker 
operates without waiting at all machines. In this and next sections, we assume that the 
processing, operation and walking times are constants at each machine. This assumption is 
satisfied when one kind of products are produced and the worker is well experienced in the 
operation. We use the following notations: for k G K and n E Z^ = {l, 2, . . .}, 
ik: the processing time at machine k, 
sk: the operation time of the worker at machine k, 
r k :  the walking time from machine k to machine k + l ( K to l, if k = K), 
Wk(n): the waiting time of the worker at machine k in the n-th cycle, 

f i n i H  
nro uc 

worker I--- j 
E- a-U-rl 

U material machines 

Figure 2. A U-shaped Production Line with a Single Worker 
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C(n): the n-th cycle time, 
a V b = max{a, b}, a A b = min{a, b}, [a]+ = max{O,a}. 

Figure 3 illustrates the behavior of the worker and the above defined variables. The 
initial condition implies that 

Consider the n-th cycle time for n > 2. If the worker does not wait at any machine then the 
cycle time is simply the sum of all operation and walking times. Since one item is processed 
and operated at each machine in one cycle, the cycle time must be greater than or equal to 
the maximum of the sums of the processing and operation times among all the machines. 
If the worker starts from the machine with the maximum sum, then the cycle time will 
be equal to the maximum of the maximum sum and the sum of all operation and walking 
times. That is, the cycle time will be given by 

and then the total waiting time of the worker in one cycle is given by 

( D - 1 ) t  h c y c l e  n t h  c y c l e  

W o r k e r  
.Ã‘ Wa i  t i  n g  
- O p e r a t i n g  
- "  W a l  k i  n g  

Figure 3. Behavior of a Multi-Function Worker 
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In the following, we derive the n-th waiting time at machine k for all k E K and n E -E+, 
and show that (2) and (3) hold in the n-th cycle for all n >_ 2. In the (n - l)-th cycle where 
n > 2, when the worker finishes the operation at machine k and starts walking to machine 
k + 1, machine k begins the processing of the (n - l)-th item. When he returns to machine 
k in the n-th cycle, if the machine completes the ( n  - l)- th processing, then he begins the 
operation for the n-th item without waiting. If the (n - l)-th item is still in process at his 
return, then he waits for its completion. Figure 3 shows that the time from the (n - l)- th 
departure to the n-th arrival of the worker at machine k is given by 

Since the waiting time at machine k is the time difference between the processing time and 
the interarrival time, it holds that for n > 2, 

Let k* be the smallest index of machines with the maximum value of %, k 6 K. That is, 

Define 

k 

and A k ( n ) = y w j ( n ) ,  for ~ E K  a n d n ~ - E + .  
j=l 

If yk* $ 0, then by (5) Wk (n) = 0 for all k â K and n ? -E+, and hence Ak(n) = 0 
for all k C K and n E Z4'. 

We assume temporarily that yk* > 0. We show that for n >_ 2 and all k E k, 

Let n  = 2. For k = 1, by (1) and (5) A1(2) = W1(2) = [yl]+. Suppose that Ak(2) = [ym(k)]+. 

Then (1) and (5) lead to 

Hence 
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We suppose that (7) holds for n, and show that (7) also holds for n + 1. Since AA- (n) = yk* 
from the assumption yk* > 0, (5) and the inductive assumption lead to 

where the last equality holds because y1 - yk* < 0. Then by (5)) 

where the last equality holds because 

Similarly, it holds that for all k 6 { 3 , .  . . , I<} 

Therefore (7) holds for all k E K and all n 2 2. Note that (7) also holds when yv 5 0. 
In particular, m(k) = k* for k 2 k*, and hence for n > 2 

AV (n) = A P + ~  (n) = - . = AK (n) = [%.I+, (8) 

and from (4) and (6) it follows that 

k* = min{k; yk = max y,i} = min{k; + s k  = max(ij + S,)} 
j(=K JCK 

c(") = bp]+ + ;̂ (st + rk) = max{G* + sk*, x(sk + Q)}, for n > - 2. (9) 
kâ‚ k â ‚  

Equations (8) and (9) show that (3) and (2) hold. 
Equation (8) implies that the sum of waiting times in the n- th  cycle for n > 2 is constant 

and independent of n, and that 

Wk(n) = 0 for all k > k* and n > 2. (10) 

Suppose that yk* > 0. Then for n > 2 and k <: k*, 
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Hence for k < k*,  

2a - X 2 ~ * *  - ~ ~ ( f - 1 )  2 y k *  - 
Since f ( X )  = - is increasing in X G (-m, a )  when a > 0 ,  - 

Y m ( k )  

a - X  Y k *  - ym(k*-l) yk* - yrn(k) 
for k = 1 , .  . . , k* - 1 ,  and hence 

Equations (8) through (11)  imply that if yk* > 0, then 

Therefore, we have the following proposition: 

Proposition 1. When yk* < 0 ,  the worker does not wait at any machine. The cycle time 
is G g k ( s k  + r k ) ,  and if this does not meet the demand rate, then it is necessary to increase 
the number of workers. When yk* > 0 ,  after the cycle given by (12)  the worker waits yh*  

only at machine k * )  the cycle time is ik* + sk*, and the throughput, or the production rate 
1 

of the U-shaped production line, is . 
L . If this does not meet the demand rate, it is 

zk* + sk* 
necessary to improve the production line by reducing the operation time sk* or replacing 
the bottleneck machine k* with a new machine with smaller i + S .  

We give a numerical example. The parameters are given as follows: 

K = 4,  rk = 1 for all k ,  ( i l , i 2 , i 3 ,  i 4 )  = (16,19,22,17) ,  ( 5 1 ,  ~ 2 ~ ~ 3 )  5 4 )  = ( 2 , 2 , 1 ) 3 ) .  

Machines 
Figure 4. Example: Waiting Times of the Worker at Machines 
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Then ( y i , ~ ~ s , ~ f )  = (6,9,11,8), which implies k* = 3. The waiting times of the worker 
at each machine for the 2nd, . . ., 7th cycles are shown in Figure 4. As the number of cycle 
increases, the waiting time at the bottleneck machine 3 increases by 2, which is the value of 
y3 - (yl V y2), and then becomes constant 11 after the 7th cycle, as shown by (12). 

3. Optimal Worker Allocation Problem 
In this section, we consider a production line with I workers and K machines, where 

I <, K. For i E I = {l, 2, . . . , I}, we denote by K, the set of all machines which worker 
i operates, where for empty set (j), K = uL1ki, K, H K = (j) for i # j, i,  j E I, and K, 
may be empty. This allocation of I workers to K machines is denoted by (K*, KZ, .  . . , &). 
We derive the overall cycle time of this line, C(& , . . . , K,). This reciprocal gives the 
throughput of the line. 

Define Y = max(ik + sk) ,  s (K~)  = sk for i E I such that A'; # 4, and S(4) = 0. We 
k<-K ke K, 

also denote the cycle time of worker i E I and the sum of walking times of worker i in one 
cycle by c(K,} and R(K,), respectively. For example, if machines are arranged according 
to technical precedence relations, then ~ ( k i }  is given by the total walking time of the route 
of worker i determined by the relations. Otherwise, R(I?J may be given by the shortest 
of the total walking times in one cycle among all the possible routes of worker i. Then (9) 
leads to 

If there is a buffer for one item between any pair of machines where different workers operate, 
then the cycles of all workers can be synchronized. That is, for all n E -S'+, whenever the 
worker with the maximal cycle time ends his n-th cycle time, the other workers have already 
completed their re-th cycle times. Therefore, the overall cycle time of this line is equal to 
the maximal cycle time. That is, 

We consider an optimal worker allocation problem that minimizes the overall cycle time 
of the production line with I workers and K machines. Then this problem is formulated 
directly into the following optimization problem: 

minimize T 
subjectto E x i j = 1  for j E K,  

if-1 

E sjxij + R(J<i({xik})) < T for i E I, 
jeK 

where Ki({xik}) = {k E K; xi^ = l} for i E J .  The variable x~ takes the value 1 if worker i 
operates machine j ,  and 0, otherwise. The first constraint implies that each machine should 
be operated by just one worker, and the second one implies that the sum of operation and 
walking times of each worker in one cycle must be less than or equal to T. If the route 
of worker i is determined by the technical precedence relations, that is, worker i can move 
from machine k to machine k' wit h (k ,  k') E A;, then conditions (1 4) become 
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E y i k p  5 \W\ - l for all W C {k;xik = l}, W # 4, W # {k; X.,. = l}, (15) 
( k , k t ) â ‚ ¬  

x;k = 0 or 1 for k E K, i E I, 
yikv = 0 or 1 for ( k , k l )  6 A;, i E i, 

where rkkl is the walking time from machine k to machine k' for k ,  k' 6 A" and 15'1 denotes 
the number of components of set S. The variable y&k '  takes the value 1 if worker i walks 
from machine k to machine k', and 0, otherwise. Inequality (15) creates just one route 
consisting of all elements of the set {k; Xik = l} in the same way as the formulation of 
traveling salesman ~roblems. Let T+nd C; be a minimum objective value of this problem 
and a minimum overall cycle time of the line with I workers, respectively. It is clear that 
C/ = Y VT/. 

Although it is important to develop an algorithm for solving (14), it will not be discussed 
in this paper. Instead of it, we discuss the optimal worker allocation problem with one or two 
workers in the remainder of this section. This will reveal advantages of the U-shaped layout 
over the linear layout. Suppose that the daily demand, D, and the daily operating time, OT, 
are given. The problem is to find an optimal worker allocation with the minimum number 
of workers that can produce D in OT. Then (13) and (14) imply the following results: 

OT 
i) If Y 2 s(K) + R(&, then C+ Y. If - 2 D, then the allocation of one worker to all 

ci* 
machines is optimal. Otherwise, the bottleneck machine attaining Y must be improved. 

OT 
ii) If Y < S(K) + R(K), then C: = S(K) + R(K). If Ã‘ > D, then the allocation of one 

c* 
worker to all machines is optimal. Otherwise, we have to solve (14) with I = 2. 

To obtain more concrete results from (14) with I = 2, we assume that K = 41 for some 
I 6 Z + ,  sk = s for all k 6 K, the machines are laid out in a U-shaped layout shown in 
Figure 5 and that the walking time between two machines is proportional to the distance 
between them. Note that since each operation mainly consists of detaching a processed item 

finished 
product 

0- Irjpl - . .  

material 

Figure 5. A U-shaped Layout with 41 Machines 
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Figure 6. Allocations of Two Workers 

from the machine and attaching a new item to the machine, the above assumption sk = s for 
all k E K will hold in many situations, and that machines are placed at the same distance 
when there are K machines of similar sizes. We denote the walking time between machines 
k and k + 1 for k # 21, 41 by e, and that between machines k and 41 - k + 1 for k E A' by 
d. Then the walking time r j k  is given by 

Since the operation times of all machines are the same, Figure 5 implies that candidates for 
an optimal allocation can be restricted to the following two types of allocations (see Figure 
6): 
Allocation (a): worker 1 handles machines in A':(lu) and worker 2 handles machines in 
k m ,  where A'f(lu) = { l , .  . . , lu}  and k f l )  = {lu + 1, .  . . ,K}  for some 1 5 lu < A". 
Allocation (b): worker 1 handles machines in K;(Z:, 1;) and worker 2 handles machines in m, l:), where A'x, 1;) = {l, .  . . , l;, 1; + 1 , .  . . , K }  and A'x, 1:) = {l; + 1 , .  . . , l;} for 
some 1 5  1' < l$ < K .  

For allocation (a), if 1' 2 21, then s(&(lu))  3 21s and R ( ~ ; ( P ) )  > 2(21- 1)e. Therefore 
from the symmetric property of the layout, lu* = 21 minimizes C ( K ~  (la), &(lu)). Similarly, 
for allocation (b), (l!*, 1;') = (l, 31) minimizes C(A';(l!, l$), A';((;, l$)). Hence the minimum 
cycle times of allocations of (a) and (b) are given by 

~ ( a )  = Y V {2ls + 2(21- l)e} 

and = Y V {2ls + 2(1- l ) e  + 2d}, 

respectively. If Y 2 21s + 2(1 - l ) e  + 2(le V d), then C(") = C(b) = Y, and otherwise, 
C(') if and only if le 2 d. Hence we obtain the following results: 
i) If Y > 21s + 2(1- l ) e  + 2(le V d), then the minimum cycle time is Y, which is attained 
by ku* = ({l , .  . . ,211, {21+ l , .  . . ,411) or kb* = ({l,. . . , l, 31 + l , .  . . ,411, {l + l , .  . . ,311). 
ii) If 21s + 2(1 - l ) e  + 21e > Y and le > d, then the minimum cycle time is which is 
attained by Kb*. 
iii) If 21s + 2(1 - l ) e  + 2d > Y and le < d, then the minimum cycle time is C("), which is 
attained by K". 
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It usually holds in the U-shaped layout that le is larger than d. Therefore, allocation Kb* 
attains the smaller cycle time than Ka*. 

We compare the overall cycle time of allocation (K," (la), Q (la)) in the U-shaped layout 
with that in a linear layout where rjk = \ j - k\e for all j, k G A', j # k. From the symmetric 
property of the U-shaped and linear layouts, it can be assumed without loss of generality 
that 1' > K/2. If d = e, then the walking time from machine la to machine 1 in the U- 
shaped layout is less than or equal to that of the linear layout, and the other walking times 
are the same. Therefore, from (13) the overall cycle time of the U-shaped layout is less than 
or equal to that of the linear layout. Thus, we have the following proposition: 

Proposition 2. When two workers are available in a production line with K = 41 stations 
placed at the same distance and the same operation times, the U-shaped layout with allo- 
cation K^ has the smallest overall cycle time among the U-shaped layout with two types 
of worker allocations K0' and Kb and the linear layout. 

4. Stochastic Case 
In Section 2, for the U-shaped production line with a single worker we have analyzed 

his waiting time and a cycle time of this line, for the case where the operation, walking 
and processing times are constants. If multiple kinds of items are processed in this line, the 
processing and operation times are not constants. In addition, the operation and walking 
times of the worker may fluctuate because of his weariness and the learning effect. In this 
section, we deal with the U-shaped line with a single worker when the operation, walking 
and processing times are stochastic. 

We define the following random variables: for k E K and n E P, 
Ik(n): the processing time at machine k in the n-th cycle, 
Sk (n): the operation time of the worker at machine k in the n-th cycle, 
Rk(n): the walking time from machine k to machine k + 1 ( K to 1, if k = K) in the n-th 
cycle. 

In the same way as in Section 2, the initial condition implies that 

Wk(1) = 0 for k G K, and C(l) = V (Sk(l) + Rk(l)) .  
ke K 

For k G K and n > 2, we have 

K 

Ak(n) = max [Y,(n) + A,{n - 1) - AK(n - l)]' = max [&(n) - Wi(n - l)]', (16) 
K ] < k  K j < k  l=j+1 

where 

The proof of (16) is given in Appendix A. For n > 2, we define k*(n) as 

K K 

k E K;[Yk(n) - Wl(n- l)]' = max[V,(n) - Wl(n- l)]' 
l=k+l Â¥ie 

Then (16) implies that 

W1 (2) = [K (2)]', Ak(2) = max [V, (2)]' for k G K, 
K l < k  
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Ai, (2) = -&*pi (2) for k 2 k* (2) and Wk (2) = 0 for k > k* (2). 

Similarly, for n > 3 

Equations (16)) (17) and (18) correspond to (7)) (4) and (10) in Section 2, respectively. 
In the following, we assume the following condition: 

Condition (C). For some k* C A', 
P([~*(2)]+>[y^)]+fora11j<k*,[Y~*(2)]+>[~2)]+fora11j>k*)=1, (19) 

and {Ik(n); n E Z+}, {Sk(n); n E Z+} and {Rk(n); n E Z+} are sequences of independent 
and identically distributed random variables with finite means ik ,  sk  and r k  for k G I?, 
respectively, and are mutually independent. B 

Under Condition (C), since {(&(n), . . . , YK(n)) ; n = 2,3 , .  . .} is stationary, for all 
n > 2, 

[Yk*(n)]+ > [ y ( n ) ] +  for all j < k*, and [&*(n)]+ > [y (n ) ]+  for all j > k* (20) 

hold with probability one (W. p. 1). Since Y,  (n) denotes the difference between the (n - 1)- 
th processing time and the time interval from the (n - l ) - th  departure to  the n-th arrival 
at machine j under the assumption of no waiting times, equation (19) means that if Yk* (n) 
is positive, then it is larger than &(n)  at all machines j < k* and larger than or equal 
to Yy(n) at all machines j > k*. We consider the properties of the waiting time process 
{Wk(n); k E K, n E Z + }  and the cycle time process {C(n); n Z+} under Condition (C). 
Note that Condition (C) is satisfied when the processing, operation and walking times are 
constants as in Sections 2 and 3. 

From (20)) it follows that 

k*(n) = k* for all n > 2, w.p.1. (21) 

The proof of (21) is given in Appendix B. Equations (16)) (18) and (21) imply that for 
n > 2, 

Ak (n) = [Yk* (n)]' for all k > k*, and Wk(n) = 0 for all k > V. (22) 

That is, the worker does not wait for the completion of processing at machines k* + 1,. . . , K. 
The n-th cycle time for n > 2 is given by 

Consequently, for n > 2 the n-th cycle time has an identical probability distribution which 
is independent of n ,  and the expected n-th cycle time is given by 
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Equations (22) and (23) correspond to (8) and (9) in Section 2, respectively. 
When k* = 1 and P(Yl(2) < 0) > 0, (22) implies that the worker waits for the end of 

processing at machine 1 in the n-th cycle if and only if K (n) > 0, and that he does not wait 
at the other machines in any cycle. Therefore, if k* = 1 and P(K (2) > 0) = 1 hold, then the 
worker waits for the completion of processing at machine 1 in all cycles. In the following, 
we assume that k* > 2 holds. Since the first inequality of (20) implies that Yk*(n) > 0 w.p. 
1 for n > 2, equations (22) through (24) are reduced to 

Ak* (n) = Yk* (n), Wk(n) = 0 W. p. l for all k > k*, 

C(n) = I t*(n - l) +S t* (n  - l )  + x ( ~ i ( n )  + Ri(n)- Si(n - l ) -  Rl(n - l)) W. p. 1, 
l>k* 

and 

E[C(n)] = ik* + sk*, for n > 2. 

Equation (16) implies that 
wk*(n) = Ak*(n) - Ak*_l(n) 

k * - l  

max {V, (n) - Wi(n - l)} V Wk. (n - l) K ] < k  -1 
1=.7+1 1 

Therefore, 
Wk*(n) - Wk*(n - l) 

If K*(n)  > Wk*{n - l), then (20) implies 

W,* (n) - W,*(n - l) 2 mi? {Yk* (n) - [q (n) ]+}  A {Yk* (n) - WP (n - l)} > 0. \ < 3 < k  -1 

If Yk*[n) < Wk* (n - l), then from (l6) ,  (20) and (22)) 

which implies by (22) that Wj(n) = 0 for j < k* and Ak* (n) = Wk* (n) = Yk* (n). That is, 

the waiting time process {Wk("); k E A\ n E Z + }  behaves as follows: for n > 2, 
i) if Yk*(n) > Wk*(n - l), then Wk*(n) > W d n  - 1) and W,{nl = 0 for all j > k*, 
ii) if Y,:* (n) = W,:* (n - l), then Wk. (n) = Yk* (n) = Wk. (n - 1) and Wk(n) = 0 for all 

k # k*, 
iii) if Yk* (n)  < Wp (n - l),  then Wk* (n) = Yk*{n) < Wk*{n - 1) and Wk[n} = 0 for all 
k # k*. 

From the above behavior i) to iii) and (25), we have the following propositlion: 

Proposition 3. Under Condition (C) and k* 2, the worker always waits at the bottleneck 
machine k*, and he may wait at machine j < k* in the n-th cycle only if Wk* (n) > Wk* (n- l). 

1 
The throughput of this line is given by 

_L 

. Â 
ik* + S k *  
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If the throughput 
1 

does not meet the demand rate, it is necessary to improve 
ik* + SA-* 

the bottleneck machine. 

Remark. For the U-shaped line with multiple workers, the cycle times of each worker 
fluctuate with cycles. That is, in one cycle he may force the others to wait for the end of his 
cycle, and in another cycle some other worker may force him to do. Therefore, the expected 
overall cycle time of this line is not always the maximum of the expected cycle times of 
workers. 

5. Concluding Remarks 
In this paper, we first considered the U-shaped production line with one multi-function 

worker, and obtained his waiting time and the cycle time for the case where the processing, 
operation and walking times are constants. Then we derived the overall cycle time of the 
U-shaped line with I multi-function workers, and formulated the optimal worker allocation 
problem that minimizes the overall cycle time. We also investigated the problem with I = 1 
or 2 in the production line with K machines placed at the same distance, and showed the 
advantages of the U-shaped layout over the linear layout. Finally, we discussed the U-shaped 
production line with one worker in which the processes of operation, walking and processing 
times are stochastic. We showed that the worker waits for the completion of processing at 
a bottleneck machine in all cycles under Condition (C). 

In the future research we wish to investigate stochastic properties of the cycle time and 
the waiting time for the U-shaped production line in which Condition (C) does not hold. 
An efficient algorithm to optimize worker allocation would also be desirable. 

Acknowledgments. The authors would like to express their appreciation to an associate 
editor and anonymous referees for their helpful comments. 

Appendix A. Proof of Equation (16) 
Since the time from the (n  - l ) -  th departure to the n- th arrival of the worker at machine 

k is given by 

the waiting time at machine k is given by 

- m i ( n -  l )  , for k E K, n 2 2, 
j>k 1 + 

where Yk{n} is given by (17). First, it follows from ( A l )  and (17) that for n > 2, 

Al(n) = Wl(n)  = [yi(n) - E wi(n  - l)]' = [Y,(n) + Al(n - 1 )  - AK(n - l ) ]+.  
.?>l 
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In addition) 

A2(n) = A1 (n) + W&) 
= A1 (n) + [K (n) - Al (n) - (AK (n - l) - A2 (n - l))]' 
= {K (n) + A2(n - l) - AK (n - l)} V Al (n) 
= 1 < j < 2  m a x [ y ( n ) + A j ( n -  l) -AK(n - l)]+. 

Repeating this process) we derive (16). 

Appendix B: Proof of Equation (21) 
Condition (C) implies that k*(2) = k*) w.p.1. Suppose that k*(n) = k*) W. p. l for 

n 2 2. Then it follows from (18) and (20) that 
P(k*(n + l) = k*) = P(k*(n + l)  = k* 1 k*(n) = k*) P(k*(n) = k*) 

and [Yk* (n + l)]' 2 max [y (n + l)]+ 1 k* (n) = k*) P(k*(n) = k*) 
k*+l<j<K 

2 P([Yk*(n+l)]+ > ma? [ Y ( n + l ) ] + )  and 
l < ~ < k  -1 

[Yp(n + l)]' 2 rnax [K(n + l)]+lk*(n) = k*)P(k*(n) = k*) 
k*+l<j<K 

The proof of (21) is concluded. 
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