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Abstract Given demand points on a plane, we consider where a new facility should be located. In this 
article, we consider a single facility minisum location problem under the A-distance, and study properties of 
optimal solutions for the problem, and propose ''The Edge Tracing Algorithm" to find a11 optimal solutions. 

l. Introduction 
Given demand points on a plane, we consider where a new facility should be located. This 

problem is called a single facility location problem, and usually formulated as a minimization 
problem wit h an objective function involving distances between the facility and demand 
points. 

When a distance between two points is defined on the plane, minisum and minimax 
criteria have been used in location problems. Using minisum criterion, the optimal location 
is given by a point which minimizes the weighted sum of distances between the facility 
to be located and all demand points. Minisum criterion is used in location problems for 
the public facility[3]. Using minimax criterion, the optimal location is given by a point 
which minimizes the m&mum distance among weighted distances between the facility to 
be located and all demand points. Minimax criterion is used in location problems for the 
emergency facility[6]. 

On the other hand, various distances are used in location analyses [2,3,6,8-111. For 
example, the .ll distance (the rectilinear distance) is used in [l l], lp  distances are used in [2] 
where the .l2 distance is the Euclidean distance (p = 2), and the one-infinity norm is used 
in [lO]. 

P. Widrnayer et al. generalized the rectilinear distance and proposed the A-dist ance 
[12]. The A-distance is used in many distance problems, e.g. Voronoi diagrams, minimum 
spanning trees, minimum distances between convex polygons and other sets of points[l2], 
and minimax location problems[6] in location analyses. 

In this article, we consider a single facility location problem under the A-distance 
In section 2, we give some definitions and results for the A-distance. In section 3, which 

is our main part, we formulate a single facility minisum location problem under the A- 
distance, and give some properties of the optimal solution, and propose "The Edge Tracing 
Algorithm" to find all optimal solutions to that problem. In section 4, we give a numerical 
example. Finally, in section 5, we give some conclusions. 
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2. T h e  A-Metric 

In R2, we assume that m(> 2) orientations 0 5 a1 < a 2  < < am < T are given 
where ai's are angles with the positive direction of the x-axis. We set A = {al, a 2 ,  - ,  am}. 
If the orientation of a line (a half line, a line segment) belongs to A, we call the line (the 
half line, the line segment) an A-oriented line (half line, line segment), We set B = {L : L 
is an A-oriented line segment. } and [al, z2] = {a = Aal + (l  - A)a2 : 0 5 A 5 l} for 
zl, a 2  E R2.  The A-distance is defined as follows: 
Definition l ( T h e  A-Distance) For any al,z2 E .R2, we define the A-distance between 
a1 and a 2 ,  dA(~1 ,  ~ 2 1 ,  as 

d2(~1,332), [ ~ 1 , ~ 2 1  E B 
min {d2(a1, a3) + d2(a3, a2) : [al, a3], [a3, a2] E B}, otherwise 

a3cR2 

where d2 is the Euclidean metric. We call dA the A-metric. In fact, dA is a metric in R2 

P21 . 
Theorem l ([12]) For anyA and al,z2 E z2, dA(al ,  332) is always realized b y  a polygonal 
line segment which consists of at most two A-oriented line segments. 

In the following, we assume that A is given. 
Definition 2 ( T h e  A-Circle) For y E R2 and a constant c > 0, 

is called the A-circle with radius c a,t center y .  
We set a m + k  = 7r + a k ,  k = l, 2, . , m, a 0  = a 2 m  - 27r, and a2m+1 = al + 27r. In this 

case, it follows that 0 5 a1 < a 2  < < am < 7r 5  am+^ < < a2m < 27r. Moreover, 
we set aj = (cos aj, sin aj) for each a j .  By Definition l, we can show two following lemmas 
easily. 
Lemma l ([8]) For a = (X', x2) and y = ($, y2) such that z E y + C{aj, aJ+'}, where 

q a j ,  aj+11 = {Aaj + /++l A ,  p 2 01, 

(2.1) 
(X' -  sin aj+l - sin aj) + (x2 - ZJ~)(COS aj - cos aj+') 

d ~ ( a ,  Y) = sin(aj+' - aj) 

Lemma 2 ([g]) For each y E R ~ ,  f(z) = dA(z,  y )  is a convex function, 

3. T h e  Minisum Location Problem 

In this section, we consider a single facility minisum location problem under the A- 
distance. In R2, we assume that n demand points y; = (y:, y:), i = l, 2, - .  . , n are given. 
Let W; be a positive weight for each yi and a be the location of the facility to be located. 
The problem is formulated as 

where F(a) = w;dA(a, y;). Since F is a convex function by Lemma 2, (3. l) is a convex 
programming problem. Furthermore, there exists an optimal solution for (3. l). Let S* be 
a set of optimal solutions for (3.1). We set Lij = {y; + ya j  : y E R} for each yi and aJ, 
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12 M. Kon & S. Kushimoto 

i.e. Lij is an ai-oriented line which passes yi. For j # jl, we call a point Lij Liljl a n  
in t e r sec t ion  point .  Let I be a set of intersection points, i.e. 

We call a 
zntS # 0, 

convex polygon S C IZ2 a region if all boundary lines of S are some of 
where 

Lij7s and 

-1. 

Figure l .  A = 10, :, :, 21, e : demand points 

Since any region S is represented as 

for some ji (l 5 ji 5 2m), F is linear in z on each region S by (2.1). For any z $ UiIi Lij, 
a region S whose interior contains z is determined uniquely by yi + C{aji, aji+l}, z = 
l7 2, , n which contain z .  In this case, we call a region S a region charac te r i zed  b y  z, and 
denote it by S(z ) .  
Theorem 2 

s * ~ I + o .  

Proof For z* E S*\I, two following cases may happen. 
Case l. For some adjacent intersection points zl and 

Azl + (1 - A)z2 for some A(0 < A < 1). Since F is constant on 
zl and z 2  are optimal. 

Case 2. For some region S, we assume that z* E zntS. 

z2, we assume that X* = 
[zl, z2], intersection points 

Since F is constant on S, 
intersection points which are vertices of a convex polygon S are also optimal. U 
Theorem 3 L e t  Sl, S2 be ad jacen t  bounded  regions.  

Proof Assume that Z E S* n(zntS2). Since F is differentiable at z* E intSl, VF(z*)  = 0 ,  

It follows 

(3.2) 

(3.3) 

5 sin aji+l - sin aji 

s i n ( ~ j ~ + ~  - aji)  
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for some 3i ( l  5 3; 5 2m). Let X I ,  x2 be end points of a line segment Sl n S2 and ajo (l  5 
jo 5 m) be an orientation of a line which passes x l  and x2. We set 

Iajo = { i  : yi = 
X1 + 332 

2 + yajo for some y > 0, l 5 i  5 n l I 
= { i  yi = X1 + 332 

'am+~O 2 
+ yam+j0 for some y > 0, l 5 i 5 n . I 

Note that I a J o U I a m + J o  # 0. For i  â I a Jo ,  (a) X* E Yi+c{am+J~,am+jo+l} or (b) X *  c 
Yt + c{am+jo -1 7 am+jo } holds. It is sufficient to show the case (a). We assume that the case 
(a) holds. 

Figure 2 .  
From (3.2) and (3.3), 

sin aji+l - sin aji X wi . + X wi 
Sin am+ jo +I Sin a m + j o  

2 Qaj0 U I c ~ ~ + ~ ~  ~ l ~ ( ~ j i + l  aji) i c ~ ~ .  JO sin(am+j0 +I - am+jo ) 

COS aj0 -1 COS aj0 + wi = 0. 
~ ~ I a m + j o  sin(aio - aio -l) 

Therefore VF(Z) can be represented as 

For i c Iajo, 

V ~ A  (X*, Yi) c infc{am+jo 7 am+jo +I}, V ~ A  (z, 'Yi) intc{am+jo -1 7 am.+jo }- 

For i  c Ia m+jo l 

Since 
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and 

we have 

Thus E is not optimal. This contradicts the assumption. 0 
Let {PA, A E A} be a set of all convex polygons such that they include all demand points 

and their all boundary lines are A-oriented lines, where A is an index set. We set 

P is the smallest convex polygon such that it includes all demand points and its all boundary 
lines are A-oriented lines(Figure 3). Note that boundary lines of P are A-oriented supporting 
lines to { Y ~ ,  y2, . 

Figure 3. P for {pl, y2,  - ,  y5}, A = {0, 2, :, 9)  
Theorem 4 

S* c P. 

Prooj We assume that E f P is optimal. There exists a line L such that L is an A-oriented 
supporting line to P and separates Z from P and E i s  not on L. By the rotation of the plane 
and the translation, without loss of generality, we assume that Z is the origin and L is y  = c 

for some c > 0. According to such rotation and translation, we transform A-orientations 
and reset a ~ ,  a 2 ,  , am. Note that {gl, y2, . . , yn} C {(X, y )  : y  > 0} and a1 = 0. For 
each yi ,  yi E C{aji, aji+l} for some ji (l 5 ji 5 rn - l) and yi  is not on a line y = 0. 
Now we consider the A-circle with radius dA(z,  yJ at center yi .  For the simplicity of the 
notation, we set 

(i) when 9; E intC{aji, aji+1} for some j; (l 5 j i  5 na - l), for su%ciently small E > 0 and 
any 

a E {z E : (cos oji, sin@ji) zT 0} , 
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we have 
dA ( W a ,  y,) < dA (5% y,). 

(ii) When y, = 70,. for some 7 > 0, ji (2 < ji < m), for sufficiently small E > 0 and any 

a E {ie E f 1 2  : (cos&.l, .cT < O} n {ie E f i2  : (cos bi, sinpji) .cT < O} , 

we have 
d ~ ( x +  &a, YZ) < dA(5, Y ~ ) .  

Since 
m 

(0,1) E 0 {.B E : (cos p,, sin@,) ieT < 0} , 
,=l 

we have 

d ~ ( z +  ~ ( 0 ,  I ) ,y , )  < d ~ ( a ' , y , ) ,  i = 1 , 2 , - - - , n  

for sufficiently small E > 0. Therefore 

F@+ ~ ( 0 ,  l)) < F ( 4 .  

This contradicts the assumption. D 

By Theorem 2 and 4, there exists an optimal solution which is an intersection point in 
P. So we consider the determination of such an optimal solution by the iterative method 
that traces only intersection points in P, where an initial point is any demand point. Now 
we assume that we have a point .E(") after r th  iteration. Note that ie^ E I. We say a, 
satisfies condition (Q) for x̂  if 

3yi s.t. yi  = a'(") + 70, for some 7 6 R 

and 

We set 

3e > 0 s.t. US'-') + e a j  E P. 

J = { j  : aj satisfies condition (Q) for idT).}. 

For the objective function F, we represent the right differential coefficient of F at XQ E 
f 1 2  with respect to o # a 6 f 1 2  as 9+F(ieo; a), and set 

If U^ > 0, then x^ is optimal by the convexity of F. 
By Theorem 3, 4 and the proof of Theorem 3, S* is an intersection point or an A-oriented 

line segment whose end points are adjacent intersection points or a region. 
Before we state an algorithm, we consider the determination of P. We sort Lij's according 

to X-intercept or y-intercept. For each aj, if a, # -, then L+ is -X tan oj+ y = y]- y} tan aj 
and we set bij = y; - y: tan a,. Otherwise Lij is X = IJ] and we set bij = y:. For each j, we 
sort all different lines among Lij's according to 6;:s in ascending order. Let <, g, - , 
be those lines, where t\ is the ith line among &,-oriented sorted lines. Note that n j  < n. 

7T 7T Now we assume that 0 < a1 < < < 5, â , = 5, < < < am < T .  We 
arrange e,  i = 1, nj; j = 1,2, * * ,  m as 
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The kth line in (3.5) is ak-oriented^ = 1,2 , ' - .  ,2m).  It is the bottom line if 1 < k < q - 1 
or m + q < k < 2m, and it is the top line if q <k < m + q - 1. The top line means the 
northmost or eastmost line among drawn lines with a same orientation, and the bottom line 
means the southmost or westmost line among drawn lines with a same orientation. Note 
that an am+.-oriented line is also an aj-oriented line ( j  = l, 2, , m). In ( 3 . 5 ) ,  lf 'S are 
arranged as if they wrap P counterclockwise. The complexity for sorting n real numbers is 
O(n log n) [l]. So the complexity of the above sorting is O(n log n). 

For example, we consider the case n = 3, m = 3(Figure 4). We have 

as arranged lines. Note that nl = n2 = n3 = 3 and q = 2. A line l: is the bottom al-oriented 
line. Lines lg,l: are the top a2-oriented line and the top %-oriented line respectively. A line 
& is the top a,-oriented line. Lines g, are the bottom as-oriented line and the bottom 
ae-oriented 1QW respectively. 

"̂l 

Figure 4. : demand points 

Now coefficients of Li3's are stored. When we consider P, "=" in i\ (1 < j < m) is 
replaced by ">", and "=" in ^ ( l  < j 5 m) is replaced by "5". P is a region determined 
by its system of inequalities. Note that this system of inequalities may contain redundant 
inequalities. 

For the simplicity of the notation, let ^(l) ,  l(2), . , l(2m) be lines in (3.5). Especially, 
we set @m + 1) = l(1) and <{2m + 2) = l(2). 
The procedure for the determination of P 
Step 1. Determine an intersection point of l(1) and l(2), and let zl be its intersection 

point. Set j = 2. 
Step 2. Determine an intersection point of l(j) and /(j  + l), and let z, be its intersection 

point. 

Step 3. If zi = z j _ ~  then remove l ( j ) .  
Step 4. If j = 2m + 1 then stop otherwise set j = j + 1 and go to Step 2. 

Let lid, l(j2), , Q,) be lines left after the above procedure. P is represented by a 
system of inequalities corresponding to those lines. Now its system of inequalities does not 
contain redundant inequalities. 
The Edge Tracing Algorithm 

Step 1. Choose any demand point as an initial point do). (We choose a demand point 
with the largest weight .) Set r = 0. 

Step 2. Calculate d T ) .  
Step 3. If U^ > 0 then stop. idT) is an optimal solution. 

Step 4. 1f U^ = 0 then stop. If the number of ak7s  which satisfy U(') = 0, i.e. 9 + ~ ( a s ( ~ ) ;  ak) = 
0, is 
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1. one, then any point a* ? [a*^), zfc], where a?" is an ak-oriented adjacent inter- 
section point to a*^), is optimal. 

2. two, then for sufficiently small e > 0 and akl, ak2 which satisfy û  = 0, any 
point a* E S(Z(̂  + e(akl + at,)) is optimal. 

Step 5. Otherwise, i.e. U^ < 0, choose any a k  which satisfies U(') = Q+F(z( ' ) ;  a^), and 
let a*("+') be an ak-oriented adjacent intersection point to X̂ . Set r = r + 1, and go 
to Step 2. 

The Edge Tracing Algorithm is convergent in finite iterations because a*(') in The Edge 
Tracing Algorithm is different from a^'), a*('), S - - ,  a*('̂  and the number of intersection 
points is finite and F(z(')) > F(z(')) > > F(a(')) from Step 5. The number of 
intersection points is 0(n2) .  For a given a* ? .E2, the complexity for calculating F ( z )  
is 0 ( n ) ,  so the complexity for determining U(') in Step 2 is O(n). The complexity for 
determining S(Z^ + s-{aki + ak2)) in 2 of Step 4 is 0 ( n ) ,  so the complexity of Step 4 is 
0 (n) .  The complexity for determining is O(1) when we have sorted lines, so the 
complexity of Step 5 is O(1). Therefore the complexity of The Edge Tracing Algorithm is 
0 (n3). 

If a k  which satisfies U(' )  = a+ F(z( ' );  ak) is determined in Step 5 of The Edge Tracing 
Algorithm, we need to determine z('+') which is an ak-oriented adjacent intersection point 
to a*('). Next we consider the procedure to determine &+l). For each j, let fj(x, y) be the 
left side of LÃ£ i.e. 

If a, # Â£ then V fj(x, y) = (- tan&,, l), otherwise V fj(x, y) = (1,O). 
We assume that an initial point ad0) = y ,  is given. Set r = 0 where r is a counter. We 

corresponding to Lig/s (e.g. binary search). Note that a*^ is an intersection point of <r,j)'s, 

i.e. a*(') can be represented by sT(j)'s. We concentrate on ~ ~ ( 7 ) ' s .  We assume that a k  in 
Step 5 is determined. Set 

/ =  i f l < k < m ,  
k - m  i f m < k < 2 m .  

where < -, > is the inner product, and we determine an intersection point of ^Jj0 and 

for X # 0. For j # j' (1 < j < m), let z k j  be an intersection point of 
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' E J ^ ) .  Set &+l) is an intersection point of th and ~r (_ , )+s ,gn ( tk , ) ,  J 

ST U) if j = ji, 
(3.8) S,(]) + sign(tkj) if j E J('\ 

S, (j) + 0.5sign(tki) otherwise. 

Set r = r + 1, and go to Step 2. 
Now, a point a*̂ is an intersection point of < , ' S  such that sT (j) G N where N is a 

set of natural numbers. For j such that sT( j )  $ W ,  it means that a*^ lies between i\sr(i)l 

and ~ s r , j ) l + l  where [ a ]  is Gauss' symbol. 

In The Edge Tracing Algorithm, we represent a point a*(T) after the r th  iteration as 

The above representation is only the case of r = 0. If we consider the case of r > 1, 
sT( j )  + sign(tkj) in (3.6) and the second equation in (3.8) is replaced by 

and sign(tkj) in the third equation in (3.8) is replaced by 

4. Numerical Example 
We consider a single facility minisum location problem 

rnin F(z) 
xeR2 

where F ( x )  = dA(z, yi), A = {0, f, ;, y} ,  yl = (63,97), y2 = (102,7), y, = (10, go), 
y4 = (197,57), y, = (73,20). In this case, n = 5 and wl = w 2  = WJ = w4 = w s  = 1. We set 
a*(') = y as an initial point, and apply The Edge Tracing Algorithm to this problem. 

1. (Step 1) The initial point is a*(') = (63,97) with 

Go to Step 2. 
2. (Step 2) We have U(') < 0. Go to Step 5. 
3. (step 5) We have k = 7, so x̂  is an ay-oriented adjacent intersection point to x^. 

Go to Step 2. 
4. (Step 2) We have dl) = (63,90) with 

Continuing the above procedure, we have = (63,57), a*(^ = (73,57), a*'-̂  = (73,36), and 
U^ > 0. The optimal solution is a*(*) = (73,36), and the optimal value is F(* = 340.22 
(Figure 5). 
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Figure 5. 0 : the optimal solution, m : demand points 

5 .  Conclusion 
We considered a single facility minisum location problem under the A-distance, This 

problem can be used when the facility to be located is the public one. In this case, we 
can regard the A-distance as the approximation to the road distance, and demand points 
as locations of users of the facility, and each weight as the number of users in the location 
of the demand point. We showed that at least one optimal solution is an intersection 
point(Theorem 2) and any optimal solution belongs to P(Theorem 4). A set of optimal 
solutions is an intersection point or an A-oriented line segment or a region by Theorem 3 
and 4. Based on these results, we proposed The Edge Tracing Algorithm to determine all 
optimal solutions. The Edge Tracing Algorithm is an iterative algorithm using the descent 
method. Its algorithm generates a finite sequence of intersection points converging to an 
optimal solution. We also proposed the method of determining the next point efficiently in 
its algorithm by sorting drawn lines. We chose the demand point with the largest weight 
as an initial point. But we may need many iterations if the initial point is not near to an 
optimal solution and there are a lot of demand points near the optimal solution. In this 
sense, we need further research on the choice of an initial point to find an optimal solution 
more efficiently. 
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