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Abstract We introduce a conceptually new method of generating strong cuts for the simple plant location 
problem. Based on the simple structure of the problem, we generate inequalities which even cut off part of 
the integer feasible region but still provide valid and sharp lower bounds of the problem when added to its 
linear prograkming relaxation. Also shown is the relation between such inequalities and the conventional 
valid inequalities of the problem. 

1. Introduction 
Consider the following simple plant location problem(SPLP) 

where I = {l, - , m} is the set of potential locations; J = {l, - , n} is the set of customers; 
yi is 1 if facility i is established and 0 otherwise; xu is the fraction of customer f s  demand 
supplied from facility i; fi is the nonnegative fixed cost for establishing facility i, and is 
the nonnegative variable cost for supplying all of customer j's demand from facility i. The 
SPLP has received a great deal of attention due to its practical and theoretical significance. 
An excellent survey on this subject can be found in Krarup and Pruzan[ll]. 

Recently, several researchers have studied on valid inequalities and facets for (P): see 
Guignard[9], Cornuejols and Thizy[6], and Cho et al. [4,5]. This kind of approach is based on 
the belief that any linear programming(LP) based algorithm can be sped up by incorporat- 
ing valid inequalities in it. In fact, a number of researches show that integer programming 
problems can be solved efficiently using valid inequalities[2,7,13]. Valid inequalities, despite 
their redundancy to the integer feasible region, are useful in that they can cut off fractional 
points of the LP relaxation. Thus, the quality of a given valid inequality depends on how 
deeply it chops off part of the feasible region of the LP relaxation. 

The purpose of this paper is to introduce a new type of inequality by extending the 
concept of the valid inequality. Consider an inequality which doesn't cut off the optimal 
solution but some integer feasible solutions of (P). The LP relaxation of (P) with those 
inequalities which we will call feasible region reduction cuts (FRRC's), still can provide a 

© 1996 The Operations Research Society of Japan



Feasible Region Reduction Cuts for the SPLP 61 5 

lower bound for (P).  An FRRC can be thought stronger than a conventional valid inequality 
in that it can cut off even part of the integer feasible region as well as the feasible region of 
the linear programming relaxation. Now we extend the concept of the valid inequality to 
the one which includes FRRC's. An inequality is called quasi-valid for (P) ,  if the optimal 
solution of (P) satisfies that inequality. Thus, both FRRC's and valid inequalities for (P)  
are quasi-valid for (P).  It is obvious that this extended concept of the valid inequality can 
be applied to any integer programming problem. 

For the SPLP, we can easily characterize the specific subset of the feasible region of (P) 
which contains an optimal solution of (P). We will call this specific region the efficient 
region of (P ) .  In this paper, we derive quasi-valid inequalities and FRRC's for (P) using 
its efficient region. Barany et al. [l] also consider the convex hull of a subset of the feasible 
solutions, however, the new region derived by them is not the reduced one compared with 
the feasible region of the original formulation. Martin et al.[12] and Guignard and Spiel- 
berg[10] introduced some constraints, generated during the branch and bound procedure, 
which cut off a certain subset, of integer feasible solutions. Beasley[3] also derived a cut 
which eliminates some integer feasible solutions found during the solution process. Their 
constraints might be thought similar to FRRC's. However the FRRC's derived in this paper 
are basically different from theirs in that the former can be generated without enumerating 
any integer feasible solution eliminated by the cut. Moreover, we can show that even their 
constraints can be strengthened using the underlying idea of an FRRC, i.e., the efficient 
region of (P). 

In the next section, we briefly describe valid inequalities and facets of (P) presented by 
Guignard[9], Cornuejols and Thizy[6], and Cho et al. [4,5], since those inequalities can be 
used for generating FRRC's of (P) .  In Section 3, we describe the efficient region of (P) 
and introduce some results on its polyhedral structure. Section 4 presents the procedure 
generating FRRC's using the efficient region. Also is shown that the constraints developed 
by Martin et al. [12], Guignard and Spielberg [10], and Be&ley[3], are strengthened using the 
efficient region of the SPLP. Finally, some concluding remarks are given in the last section. 

2. Valid inequalities for the SPLP 
Cho et al. [4,5] and Cornuejols and Thizy[6] derived several facets and valid inequalities 
of (P) by using the fact that (P) can be transformed into a set packing problem. Let 
G = (TV, E) be the graph whose node is associated with each variable X̂  for i E I and 
j G J and yi for i E I. We will use the same notation for a node and its associated variable. 
E contains the following arcs: For all i I and j E J ,  the arcs joining x~ to y,, and the 
arcs joining X,, to every xo for k # i. For C I and Js C J, let S = (sy) be 1 1 ~ 1  X 1 JS\ 
0-1 matrix with no zero column and no zero row and Gs be the subgraph of G induced by 
the vertices y,, for i E Is, and xi,, for i Is and j c Js such that s~ = 1. Let /?(Gs) be 
the minimum number of plants i E Is necessary to cover all destinations j E J~ using arcs 
of G'. 

Let F be the convex hull of all the integer feasible solutions of (P). Then the inequality 

is a valid inequality of (P).  Cho et al.[5] derived the necessary and sufficient condition for 
(5) to be a facet of F. 

Theorem 1 (Cho et al.[5]) Let Is C I and JS C J, then the inequality (5) is a facet of 
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F iffS is an \IS1 X 1 JS\ 0 - l matrix with no zero column and no zero row which satisfies 
the following conditions: (i) Gs is connected, (ii) there exists at least one zero element in 
each column of S, (iii) \IS\ > 3 and 1 J ~ \  > 3, and (iv) changing a zero element of S to one 
decreases ~S{G') by one. 

Cornuejols and Thizy[6] and Guignard[9] derived two particular families of facets of F 
which are special cases of Theorem 1. 

Theorem 2 (Cornuejols and Thizy[6]) Consider any integers q and t such that 2 < t < 
q < m and (3 < n, and any subsets C I and JS J such that 1 JS\ = (z) and \IS\ = q. 

Let S be a matrix with {Is} rows and lJs1 columns whose columns are all the different 0-1 
vectors with t ones and q - t zeros. Then the corresponding inequality ( 5 )  is a facet of F ,  
and ,8(Gs) = q - t + l. 
Theorem 3 (Guignard[9]) Let S be a k X k cyclic matrix whose rows are 0-1 vectors in 
which k - 1 consecutive ones are successively moved one position to the right. Then the 
corresponding inequality ( 5 )  is a facet of F ,  and ^(Gs) = 2. 

3. The efficient region of (P) 
In this section, we show that the optimal solution of (P) exists in the specific subset of 
the integer feasible region of (P) which depends on the objective function. For any given 
binary g-vector, an optimal set of xij's is easily determined. Let I" = { i  : yi = l} be a 
nonempty subset of open facilities, then an optimal set of xy's is as follows: 

1, if Ci j  = minkdo Ckj  and j E J ,  
X i j  = 

0, otherwise. 

Define F = conv{(x, y) : y E Y, and a; satisfies (6) for all y ? Y} where conv means convex 
hull and Y is the set of all the 0-1 vectors of dimension m except the zero vector. 

@ is the efficient region of (P) as already defined since the optimal solution of (P) 
exists in F .  Consider an inequality that every (X, y) E F satisfies. Even though some 
(X, y) E F - @ violates that inequality, the inequality is quasi-valid with respect to F, and 
becomes an FRRC of (P).  Therefore, if we are able to know the polyhedral structure of 
F, we can derive strong cutting planes for F by using the above extended concept of the 
valid inequality. Since F depends on a given cost coefficient vector and doesn't show a nice 
structure, it isn't easy to describe the facial structure of F which we will discuss shortly in 
the remaining section. Nevertheless, we still use the concept of the quasi-valid inequality 
to derive the strong cutting planes for (P), which will be shown in the next section. 

Here we introduce an integer programming representation of and the following partial 
results for the polyhedral structure of F: the dimension of F and a necessary and sufficient 
condition for the nonnegativity constraint to define a facet of F .  Throughout the paper, we 
assume that for each j E J ,  c&s are strictly ordered, that is, ties are resolved arbitrarily. 
Without this assumption, may cut off an alternative optimal solution of (P). However, 
this assumption is made only for the exposition brevity. This can be relaxed and most 
of the results in this paper will remain valid in a slightly modified form. Moreover, this 
restriction doesn't affect the optimal selection of open facilities, i.e., y-vector. And since 
the determination of xij's for a given y-vector is a relatively easy job, our assumption 
doesn't bring in any noticeable difficulties when solving the real-life problems having the 
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same values of cy's for some j. For each j we define the following notation to represent 
the order of Gj: Cl ( j ) , j  < ~ 2 ( j ) , j  < < cm(j),j. Let I<( i , j )  = { k  G I[ct, < Q,} and 
I'(i,$ = { k  G /Icy > C,,} for i G I and j G J .  And let A = {(i,j)\i G I,j E J}. 

One possible way to represent F is to append the following constraint set to (P). 

If i = 1 Q), (7) is satisfied as an equality by all the points in F.  In other words, every 
(X, y) G F satisfies the following equations. 

Whether (7) defines a facet of F or not depends on the structure of cij7s. Later, we will 
show an example which illustrates a case where (7) can't define a facet. 

If I>( i , j )  = I>(i',j') = I for any pair of distinct elements (i, j) and (i'f) of A, all 
points in F satisfies 

If i = l(j) (i.e., i = i' = 1(j1)), (9) is linearly dependant on the linear equation system 
(8). Now consider the case where i G {2(j), , (m - 1) (j)}. For some nonempty strict 
subset of I, let A = {(i,j) G A m ,  j) = f}. If 121 2 2, then for any pair of distinct 
elements (i, j) and (i',f) of A, (9) holds and 1x1 - 1 linearly independent equations exist 
corresponding A. Let I = { (̂i, j)li = 2(j),-,(m - l)(}) and j E J}. Then the total 
number of linearly independent equations (9) is n(m - 2) - IZI. 

Based on the above observations, we can figure out the dimension of F. 
Proposition 4 d i m F = m + \ ~ \ .  

Proof: 
Let I = m + 111. It is not difficult to show that the total number of independent equations 
(l), (8) and (9) is equal to 2n + n(m - 2) - 1x1. So dim F 5 l. Thus it suffices to identify l + 1 
affinely independent points in F. We only exhibit y<s since xG7s are determined uniquely 
as in (6). Consider the following three types of points: one vector which has only l's as its 
elements; m vectors, each of which has a 0 in ith position and l's elsewhere; I vectors, each 
of which is constructed such that for each distinct I' 6 X, yi = 1 for z E If and 0 otherwise. 
Then those I + 1 points are affinely independent as required. 

Theorem 5 X,, > 0 defines a facet of F if and only if (a) i # l ( j ) ,  and (b) there exists 
no j' G J such that I< ( i , j )  C I<(^, jf). 

Proof: 
(>) It is obvious from the following two facts. If i = l ( j )  

and if there exists some jf G J such that Ic(i, j) C I<(i, jf), 

( )  Consider the inequality xij 2 0 which satisfies (a) and (b), then it suffices to show 
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that there exist I (as defined in the proof of Proposition 4) affinely independent points. 
All the points exhibited in the proof of Proposition 4 satisfy X,, = 0 except one point 
(3;, Q )  G F such that fjk = 0 for each k E I< (i, j) and 1 otherwise. Note that such (2, G) 
corresponds to a point of the second type when i = 2(j) and that of the third type when 
i G {3(.7), ,m(j)}. D 

Example 3.1. We illustrate the above results via an example presented by Erlenkotter [g]. 
In this example, m = 5 and n = 8. The total demand costs ~j are given in Table 1, and 
the facility fixed charge vector ( fi) = (200,200,200, 400,300). We arbitrarily resolve ties as 

Table 1. 
total demand cost cu 

1.21 = 16 and thus dim -F = 21. In this example, any inequality (7) with i # l ( j )  doesn't 
define a facet of F .  For example, y5 + X31 + X41 + x 2 1  5 1 doesn't define a facet of F since 
all the feasible solutions of F satisfying y5 + x 3 1 +  X41 + x 2 1  < 1 as an equality also satisfy 
3 1 4  > 0 as an equality. By Theorem 5, X14 > 0 is a facet but X I S  > 0 is not. 

4. Generating FRRC's using F 
In this section, we show how quasi-valid inequalities and FRRC's for (P) can be derived 
using its efficient region. We first show that some classes of valid inequalities including those 
defining facets of F can be strengthened while being kept valid with respect to F. Second, 
we derive some particular classes of FRRC's for (P). 

4.1. Lifting valid inequalities of (P) using 5 
As already shown in Section 2, several classes of valid inequalities for (P) are derived using 
its set packing formulation. Here we show that those inequalities can be more strengthened 
using the concept of the quasi-valid inequality. For a given 11'1 X J'I 0-1 matrix S, let 
Is = {i E ITS., = l} for j E Js and As = {(i, j)li E Is,j E J', and sij = l}. And also let 
$(if7 j') = {j G ~~1 If C I>(i',j), I; 5 I<(il, j'), or j = j'} for each (if, jl) E A \ A ~ .  

Theorem 6 Suppose that (5) is valid with respect to F. Then for any (2, f) E A \As, the 
following inequality 

A 

( S '  l is valid for F where p = max 1, maxiE1s \{j E J (i , j)1sij = l}l). 

Proof: 
If p = l, the theorem trivially holds. Suppose p :Â 2. Consider any integer vector (?,G) E F .  

A 

If 3;ilj = 0, then the inequality is trivially satisfied since F C F. If = 1, then = 0 
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for all i E I! and j E Js(i', j'). Let S' be a submatrix of S obtained by removing all the 
columns of JS (il, jl). Then 

is also valid with respect to F and (?,G) satisfies (11) And by the definition, @(QS) 5 
S '  1 W )  + (IJ (i ,j)l - p +  l), Is' C Is, and 1JS1 = lJS'l + I~'(i',fl. Therefore, (g,?) 

satifies (10). 
Moreover, the procedure of Theorem 6 can be performed sequentially by the following 

procedure: 

Initialization. Set t = 1, Ao = As, Jo = 0, and pi, = 1 for all (i, j) E A \As. 

Iterative Step. For some (it, jt) E A \ At-', 
set p̂  = max (l, max,â‚¬ l{.) 6 JS(it,5) \ 2'lsij = l}l), 
At = At-' U {(it, jt)} and Jt = Jt-' U JS(it7 jt). 

Termination. If either t = \A \ A'I or 1 JS \ Jtl <, 1, stop. Otherwise, increase t by 1 and 
go back to the iterative step. 

Then we obtain the following inequality 

E E s i j x i j - E ~ i +  E (pi,-1)xijS 1 ~ ~ 1 - W )  
i ~ I ~ j e J ~  î I3 (i, j) A\As 

which is valid with respect to F. 
Now consider why this new lifting procedure can be any help when implementing valid 

inequalities to solve the SPLP. The usual procedure of implementing valid inequalities 
takes the following steps: (i) solve the LP relaxation of the current problem; (ii) find a 
valid inequality which cuts off the LP solution; and (iii) add this inequality to the current 
problem and return to Step (i). Any algorithm which directly finds a cut of Step (ii) has 
not been reported as yet. So one tractable method is to generate a candidate inequality 
and then to check whether this inequality cuts off the current fractional solution. In this 
case, if the current fractional solution is not cut off by an inequality generated, an attempt 
is usually made to further strengthen that inequality by a lifting procedure. Theorem 6 
and its generalization can be used as an effective vehicle for this purpose. Recall that for 
the conventional way of lifting (5), it requires to solve an NP-hard set covering problem for 
obtaining the associated covering number[5,6]. If priority is given to the tightening effect, 
we can apply the simple procedure developed here in addition to the conventional lifting 
procedure. Otherwise, only our procedure, bypassing the conventional one, can be run to 
save the associated computation. Another point to note is that even the facets of F can be 
strengthened, as illustrated by the following example. 

Example 4.1. Refer to Example 3.1. The optimal solution to the LP relaxation is frac- 
tional. yl = yg = ys = 113, y2 = 213 and y4 = 0. The corresponding values of xu are 
indicated in Table 2. 
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Table 2. 
xij7s of the LP optimal solution 

Consider the following two valid inequalities of F. 

(12) and (13) define facets of F. Our new lifting procedure can be applied to strengthen 
both (12) and (13) as follows: 

(14) and (15) cut off some integer feasible solutions of (P), but they are valid for g. 
Furthermore, (14) with j = 1,2,3,4, and 6 and (15) cut off the LP optimal solution while 
(12) and (13) 'don't. 

Now we show another example of strengthening some valid inequalities based on (P) 
by using the concept of the quasi-valid inequality. Martin et al.[12], Guignard and Spiel- 
berg[10] and Beasley[3] also developed some specially constructed constraints which cut off 
the integer feasible solutions of integer programming problems. However their constraints, 
when applying to the SPLP, are quite different from FRRC's derived in this paper, because 
their constraints can be used only after the complete information about the integer feasible 
solutions eliminated by the constraint, is known through any implicit or explicit enumer- 
ation process. Moreover, their constraints can even be strengthened using the concept of 
FRRC 'S. 

Let 1Â and Ic be two mutually exclusive sets of indices of yi variables whose values are 
fixed as 1 or 0, respectively. To eliminate a set of feasible solutions, {(X, y) E F : yi = 
1 for i G 1Â and yi = 0 for i G Ic} from the integer feasible region of (P), we add the 
constraint 

Guignard and Spielberg[lO] called (16) a 'preferred variable inequality' and showed how 
to derive and use it. When 1Â U Ic = I, (16) eliminates a single integer y vector. Beasley[3] 
tries to obtain sharp lower bounds of the capacitated plant location problem using that 
constraint. Martin et al. [l21 also uses (16) with 1' = 0, through the specially designed 
branch and bound procedure. 

Suppose that we obtain an inequality (16) during the solution process of (P). One 
possible way of using that inequality is to append it to the LP relaxation of (P)  as in [3,12]. 
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In this case, we strengthen the inequality using the same way as used in deriving FRRC's 
of (P). (16) can be converted into the following form 

and (17) can be lifted by extending it to a valid inequality for F. 

Proposition 7 Any integer feasible solution o f f  satisfying (17) also satisfies the following 
inequality: 

where, 

11Â - I'(i,j)l, for i E Ic, j C J, 
max (0,l I" - I>(^, j) 1 - l ) ,  otherwise. 

The proof. is straightforward and thus omitted. 

Example 4.2. Refer to Example 3.1. Suppose that all the integer feasible solutions with 
yl = 1 and y3 = 0 are known and we want to know lower bounds of the remaining integer 
feasible solutions. Then, we can add yl + (1 - y3) <: 1 to the LP relaxation of (P).  However, 
yl + (1 - y3) + X31 5 1 is stronger than yl + (1 - y3) 5 1. Moreover, the former cuts off 
the LP optima} solution while the latter doesn't. 

4.2. Valid inequalities for F 
We can also directly derive the following particular classes of valid inequalities of F without 
using a valid inequality for (P).  

Theorem 8 For any A C A, suppose that any pair of elements, (i, j )  and (i'f) of A 
satisfy i E I<(il,jl}, if E I<(%, j ) ,  or j' = j .  Then the inequality 

is valid with respect to F . 

Proof: ,. A 

Consider any integer vector (2, G) C F. If iff = 1 for some (it, If) C A, then Â£i = 0 for all 
(i, j) E A with (i, j) # (i', j'). D 

Theorem 9 For some i' C I, j C J, and J' C_ J \ {jl} with \ J'\ > 2, the inequality 

is valid for F if I'(if, j') I'(il, j ) .  
j^J 

Proof: 
Consider an integer vector (?,G) E F. If = 0, 2,, = 0 for all j C J .  Since \J\ 2 2 

I '  I and E!itf 5 1, (19) is satisfied. Suppose = 1. Since I (i , j} C (J1'(il,j), if some 
iâ‚ J^J 
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xij/, i 6 P \ {if} equals 1, then at least one Â£it for some j E J equals 0. Therefore, (19) is 
satisfied. 

Example 4.3. Refer to Example 3.1. The inequalities 2-53 + 2-43 + xu + X26 + 2-38 :< 1 and 
x~~ + 2-26 + < 1 are those of the form of (18). X% + 2-% + 2-54 + 2-44 + X% + X^ - y2 < 1 is 
an inequality of the form (19) where i' = 2, j' = 4, and J = {5,6}. Moreover, all the three 
inequalities cut off the LP optimal solution. 

5. Conclusions 
We have proposed a method of generating valid inequalities for the SPLP by considering the 
objective function as well as its integer feasible region. The cutting planes thus generated 
even cut off a part of the feasible region, which is not possible with the conventional valid 
inequalities. This way of widening the boundary of valid inequalities gives us flexibility in 
deriving valid inequalities which are computationally expensive to generate. 
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