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Abstract This paper is concerned with local and g-superlinear convergence of structured quasi-Newton
methods for solving unconstrained and constrained optimization problems. These methods have been devel-
oped for solving optimization problems in which the Hessian matrix has a special structure. For example,
Dennis, Gay and Welsch (1981) proposed the structured DFP update for nonlinear least squares problems
and Tapia (1988) derived the structured BFGS update for equality constrained problems within the frame-
work of the SQP method with the augmented Lagrangian function. Recently, Engels and Martinez (1991)
unified these methods and showed local and g-superlinear convergence of the convex class of the structured
Broyden family. In this paper, we extend the results of Engels and Martinez to a wider class of the struc-
tured Broyden family. We prove local and g-superlinear convergence of the method in a way different from
the proof by Engels and Martinez. Our proof for convergence is based on the result by Stachurski (1981).
Finally, we apply the convergence results to unconstrained nonlinear least squares problems and equality
constrained minimization problems.

1. Introduction
In this paper, we consider numerical methods for solving the minimization problem of a
nonlinear function: '

(1.1) :{IGI}%I'I‘ (z), f:R"— R

Assume that f is twice continuously differentiable and that there exists a local minimum
of the problem, say z,. The problem of interest in this paper is the case where the Hessian
matrix of the function f(z) has special structures given by

(1.2) V?f(z) = C(c) + G(a),

where C(z) is a computed part, while it is expensive to calculate the part G(z).
For the problem (1.1), Newton’s method constructs a sequence {zx} such that

(1.3) Tk+1 = Tk + Sk,
where sj satisfies the Newton equation
(1.4) (C(x) + G(ax))s = =V f(a),

where V f denotes the gradient vector of f.

Standard quasi-Newton methods approximate the whole Hessian of f(z) and many kinds
of updating formulae were proposed, and convergence of these methods were discussed. On
the other hand, if the information of the Hessian matrix is partially known, it is desiable to
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542 H Yabe & N. Yamaki

use the information to obtain more efficient methods. Quasi-Newton approximations to only
the second part G(z) of the Hessian matrix (1.2) have been developed [5]. These strategies
are called structured quasi-Newton methods. In this case, the step s; can be computed by
solving

(1.5) (C(zx) + Ax)s = =V f(zr),
where the matrix Ay is the k-th approximation to the second part G(z;) of V2 f(z;) so that
sz(mk) =~ C(:Ck) + Ag.

Thus, we have a condition a new matrix A;;; should satisfy as the form

(1.6) (C(zg+1) + Apt1) sk = 2k,
where
(1.7) Sk = Th41 — Tk

and z; is imposed to be a good approximation to V2 f(z.)s; (or V2f(zk+1)sk). In structured
quasi-Newton methods, z; is set to be as follows;

(1.8) 2k = C(zi41)sk + Uk,

where ¢! is a good approximation to G(z,)sx (or G(zx41)sx). Thus the matrix Ay is updated
such that the new matrix A;; satisfies the secant condition

(1.9) Ak+1$k = y]lc.

Problems whose Hessian matrices have special structures like (1.2) arise in several opti-
mization problems. The first example is an unconstrained nonlinear least squares problem
1

(1.10) neu'Rr}) f(z) = gr(x)Tr(:c), r:R*—> R, I>n,

where r(z) = (ry(z),...,71(z))T. In this case, the Hessian matrix is of the form
Vf(e) = C(e) + Gle),
with :

(1.11) C(z) = Vr(z)Vr(z)" and G(z) =Y ri(z)V?ri(z),

=1
where Vr(z) = (Vri(z), ..., Vri(z)) € R**.
The second example is the equality constrained minimization problem

(1.12) Ig.}{l}. F(z) subject to h(z) =0, F: R® — R, h: R —» R™, m < n.

Within the framework of the sequential quadratic programming (SQP) method, Tapia [11]
dealt with the augmented Lagrangian function

(1.13) L(z, X;p) = F(z) + ATh(z) + %ph(m)Th(m),

where A € R™ is a Lagrange multiplier vector associated with the equality constraint and p
is a positive penalty parameter. The Hessian matrix of this function is formed by

V2L(z, X;0) = C(e, ) + G(a, )
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Structured Quasi-Newton Methods 543
with
Cl,)) = pVh(z)Vh(z),
(1.14) Gla,)) = V2F(c)+3 AV7hi(z) + o3 hilz) VPhila).

=1 1=1

For solving the problem (1.10), Dennis, Gay and Welsch [6] proposed the structured
DFP update, and Dennis and Walker [5] showed local and g-superlinear convergence of this
method. Dennis, Martinez and Tapia [7] later derived the structure principle, and proved
local and g-superlinear convergence of the structured BFGS update, which was proposed
by Al-Baali and Fletcher [1]. On the other hand, for solving the problem (1.12), Tapia [11]
derived the structured BFGS update and showed local and g-superlinear convergence of the
SQP method. Recently, Engels and Martinez [8] unified these methods, and proposed the
structured Broyden family and showed local and g-superlinear convergence for the convex
class of the structured Broyden family.

In this paper, we will extend the results of Engels and Martinez to a wider class of the
structured Broyden family. We prove local and g-superlinear convergence of the method in
a way different from the proof by them. Our proof for convergence is based on the result
by Stachurski [10]. In Section 2, we briefly review the structured Broyden family that was
originally given by Engels and Martinez, but we deal with a wider class of the family. In
Section 3, we present some useful lemmas, and in Section 4, we show local and g-superlinear
convergence. Finally, in Section 5, we apply our convergence results to the unconstrained
nonlinear least squares problem (1.10) and the equality constrained minimization problem
(1.12).

Throughout this paper, || || denotes the I, norm for vectors or matrices, and || || and
|| |72 denote the Frobenius norm and the weighted Frobenius norm for some nonsingular
matrix M, which are defined by

Qllr = \/Trace(QQRT) and ||Q|lram =M QM™||F,

respectively.

2. Structured Broyden Family

Based on the structure principle given by Dennis et al. [7], Engels and Martinez [8] derived
the structured Broyden family:

B’sksTB’ 2k 28 ’
Pk T : + ¢k(skTBI’csk)Ukvlz'a

2.1 By = B! —
21 k F IBls | stu

where ¢, is a scalar parameter and

Zk B};Sk

T o .
stz sTBlsy

(22) Bk = C(ﬂ:k) + Ak, B,E = C($k+1) + Ak and VU =

From this, an A-update can be obtained as follows:

Bls,sTB' 22T
kSkSK Dy, k<) T pt T
7 + br(si B sk )vr vy -

2.3 Agy1 = A —
( ) k+1 k S{Bllcsk Tz

They dealt with the convex class, i.e. 0 < ¢, < 1, of the family.
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Recent researches on standard quasi-Newton methods pay attention to the Broyden
family that allows for negative values of ¢,. For example, Zhang and Tewarson [12] studied
the preconvex class of the Broyden family and presented encouraging numerical results.
Hence, in structured quasi-Newton methods, it is interesting to consider a class of updates
that is wider than the convex class of the structured Broyden family and it is desirable to
discuss a convergence property of such a wider class of updates. In this paper, we will deal
with a wider class of the family than that of Engels and Martinez. Specifically, we only
impose a boundedness condition on the parameter ¢;.

We should note that the family can be rewritten by

(2.4) Biy1 = BPEE + (¢ — 1)ABy,
where ! T 1. \T T i

— Bisi)zi + zi(zx — Bysk) sk (zx — Bisk)
2.5 BDFP _ gl o (2x k k k _ 5% k T
( ) k+1 k ngk (ngk)z Zk2k

T ot 2k B,{sk 2k B,Esk *

2.6 ABy = (s3 B.s - — .
(26) h = k)(sfzk SfBisk) (SZZk SfBﬁsk)

This is a useful form to analyse a convergence property in the following sections.

3. Basic Preliminaries

In this section, we give assumptions and useful lemmas to show a local convergence property.

Since we use the form (2.4) in order to show local convergence of the structured Broyden

family, most of the lemmas in [10] can be applied to our proof. The significant difference

between our proof and that in [10] is that we must deal with an intermediate matrix B!.
Let D be an open convex subset of R*, which contains a local minimizer z,. We assume

the following standard conditions.

(A1) There exist positive constants £ and p such that

(3.1) IV2£(2) = VEf()ll < €llz — =,
(3-2) IC(=) — C(@I < &llz — 2|1

for any z and z’ in D.

(A2) V2f is symmetric positive definite at z,.
It follows easily from assumption (A1) that, for z,z’ € D,

(3.3) | IVf(z) = V() = V2 f(z.)(z — )|

< é(max(||z — 2.]|, ||z’ — z.[))llz — &'

(see Lemma 4.1.15 in [4]).
In what follows, define

(3.4) M =V?f(z,)?

and

(3.5) o = max(||zxs1 — 2., [lzx — 2.]).
Set

(3.6) Bl=MTBIM™ 3. =M1z, 8 =Ms and By = M B, M
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Structured Quasi-Newton Methods 545

Note that by the equivalence of norms, for any n x n matrix @, there exists a positive
constant 7 such that

1
(3.7) E”Q”F,M <@l £ nllQllra-

Now we have the following three lemmas. These lemmas will play a fundamental role in
the analysis presented in Section 4.

Lemma 1 Suppose that assumptions (A1) and (A2) hold. Assume that zx, 2541 € D. If yh
in (1.8) satisfies
(3.8) llye = G(z)skll < Cofllsal

for some positive constant C*, then there exists a positive constant ¢ such that
(3.9) 124 = 3l < Cotlisel
Furthermore, assume that

lzx —z.|| <e  and  |lzgy — 2] < e

for € sufficiently small. Then there ezist positive constants 1 and Bz such that

(3.10) Ball3kl? < sfzi < Ball3klf
and
(3.11) Ballskll < 112kl < Ball34]l-

Proof. Assumption (A1) and (1.8) yield

1M |2k = V2 (2) sl
IMH(IC (zr41) = Clallsell + llyk = Gle)sill)
1M + ¢Haflizll.

Setting ¢ = ||M~||?(€ + ¢*), we obtain the first result (3.9).
Since expression (3.9) gives

12 — 3l

ININ A

il

5% 2k — 34)|
15 l11Zx — Skl|
ClI3k|IPo%

ClIsli*e?,

Isk 2 = 15!

IA INA A

we have
(1= CeP)I3ell® < sz < (1+ Ce)lI3lf*.
Since expression (3.9) yields

12l = N3kl < 12k = 3l < Collsil,

we have
(1= ™)l < 12kl < (1 + CeP)I3kl-

Thus, for ¢ sufficiently small, the second results (3.10) and (3.11) are proved. Therefore the
proof is complete. g
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Lemma 2 Assume that, for some positive constants 8% and 7,
b
0< |IB} = V2f(z)|lrm < 8 and |Bill < .

Suppose that the assumptions of Lemma 1 hold. Then

=1
2k — B Zk||?
”BI?-SP - sz(a:,,)HF,M < ”BI{ - vzf(z*)”F,M - -———-——-—” ;53”,2:”;” + wo?,

where

C T”(l + Be) a)
w= 51 (ﬁ +2_—_ﬁ1 +47].

Proof. We use the same estimate as Lemma 3.5 in [10]. It follows from (2.5) and (
that

M~Y(BPFP _ 2 M= (1= 23\ gt _p (1= 22 L
BEE - e = (1- 22 ) (B, - 1) (1 22 ) 4
where
o= 2,57 B! + Bl52?  337BL 4+ Blaa?
Sk Zk [EAl
( Bis,,) 237 ( z{BL%k) 2427
S (SRRl ) [l Y [ R L
322k | 352k Zell? ) 11241
= Tp1+ Tiy + Tz + Tia,
Tkl = 2’}2{ - flff,
skzk Zx 2k
T = BB r BBiE o
ENG (2 2x)?
Tys = Bi;sz B}Tﬁkify
212k Sk 2k
T = TE.

Since Lemma 1 yields

AR

”TklllF < T~
Sk 2k
< Prgp
1
~T R~
S BiSk ZkBka 3T
|Tizllr = |Z2 — 2k
el 6Ty~ G|
= WI(SI: B3x) (372 + 872,) (27 2% — 3724)
. N TS P
+(372,)2 (3T By(8x — 21) + 27 By(Ge — Zr))]
2
< (1B lllIBxl?l12e — 3ell(lIsk]] + [124]1)

&z
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S (1+,B2)Uk)
ﬂl
[Tsllr = || Trallr
ST 3k
< B | —— — ———
< BB |7t -
>4
|| Billl| 2l 573
< MZkUN<EIL — _
S TlP6Tz )(( 2k = 3l + 113112 11Z% — 3xl)
2 L it ine
< oz = Sllll BillIIskl
Ska
2(7” »
) )
= B
we have
ITllr < [Tallr + 1Trellr + | Txsllr + | TeallF
< wdf,
where C \( )
T l+,82 )
w= +2——"2 47t
B (ﬁ 2
Denoting
D (1 Ekﬁ'{ )(B“ 1) <1 Z"Zz)
k= -— - ,
2el?) " F [1Z]]2
we have
ID:|lz = Trace(DkD,:f)
Zka
= Trace -1
Q - P
! 2, NBL= DR | GLBL = Dz
= ||By —I|[z — 2
B [EAlR [EAlS
=4 ~
N 2 By = DZil?
< By =1l - —mm—
OO 1z ]2
~4 ~ 112 2 =1 = 112 2
_ O@Q_mp_gnua—nau) _(1MBM—nuu)
=1 ~ =1 “~
2|1By — IllplI21? 2|1B, — Illplizell?
=1 2
~1 1 (B, = I)z]]?
< Owk—nn—g'ﬂk )ﬂz).
| By, — I]|rllZx]l
Since
IBL — V2f(2a)llrae < 6
and
| ~ |
~1 1 (B, — Iz.||? ~f 1B — TI2115.112
”Bk—I“F 2 ”( k )k” - > HBk’_‘I”F"'gn,\;c ”F”Ak”
1B}, — Ille 1zl | Bx — Il |22

1, -1
SIBL = 1llr >0,
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we have

~f
Dillr < I1B! = V2 f(2.)|[ gy — —— 1Bk = D)2l
” k”F = “ k f(.’l) )”F,M 251 HngZ

Then
1B — V2 f(z)llre < ||Dellr + | Tillr

P

~1
1Zx — B, 2| + wo.

< ”Bli - sz(x*)”F,M - 260|242
Therefore we obtain the result. g

Lemma 3 Suppose that the assumptions of Lemma 2 hold and that ' < 1. Then

188 (1= Bzl | gl —sdl\’
“ABk“F;M S ﬂf(l —5’) ( HEkH + ”Bk” ”A “ } .

Proof. We use the same estimate as Lemma 3.4 in [10]. Using the inequality

Tl 1,8 “ ~
3Bk = 35(By—I)3k + |[54])
~ ~T D8 ~
> |ISel® = I35 (B — I)3k|
~ ~ =4
> 3ell® = 13l By, — 11| ¢
> (1- Y5l
we have
1 1

< —
P (R N
Inequalities (3.10) and (3.11) yield

1 1 ﬂg
<—— < 2 __
5xzk — BulISell® ~ Bullzkll?
Since
PN S
(3% Bi3x) 2k — (37 2:) B3|
B T A S T
= |I3% B3k — 2x)2k + 37 (By2k — 2k)2k + 37 20(Zx — By2x + B (Zx — 30))|
el e i e
< 2(|1zx = BizZell + 1 BellllZe — 3ilD)II3x 112k,
we obtain
lABllrm = |[[MT'ABM™Y|r
b o sl
_ IBEBi3k) 2k — (37 2k) B2
= P P
(3% By3k) (3% 2x)2

~ ~ LIRS -~
4B318uIP Iz (12 — Bizall + I ByllZe — 34ll)?
CHIEA R D AR

~ o
41624 ”zk - Bkzk” + ”Bk” ”Z Sk” .
pi(1— &) [124| lIZx]]

IN
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4. Local and Q-Superlinear Convergence

This section is devoted to the study of the convergence property of our method. We first
prove local and linear convergence of our method.

Theorem 1 Suppose that the standard assumptions (Al) and (A2) are satisfied and that
there erists a positive constant (! such that

(4.1) Iyt = Glz)sll < Cofllsill

for each k. Let the matriz Ay be updated by (2.3). Assume that there exist positive constants
Prmin 0Nd Py such that —¢in < P < Ppmas- Let the sequence {zi} be generated by

(4.2) k41 = 2p+ sk and  (C(zx) + Ax)sk = =V f(zi).
Then, for any v € (0,1), there exist positive constants € and § such that if
llzo — z.]| < €, 9 €D

and
I(C(z0) + Ao) — V2 f(z)llpae <6,

the sequence {zy} 1s well defined and converges linearly to the local minimizer z., i.e.

lex+1 — @all < vllzi — a.]l.

Proof. Set
(4.3) Ny ={z € R"| ||z — .|| < €},
(4.4) Ny ={B € R ||B - V?f(z.)|lrum < 26}.

Since D is an open set, we can choose € such that N; C D. The boundedness condition on
éx implies that there exists a positive constant ¢’ such that |¢x] < ¢'.
Now we prove, by mathematical induction, that the following expressions (E1;k) through

(E4;k) hold for all £ > 0 :

(EL; k) BieMN, |Bl<n, and [BIY<m
(E2}k) ”a"k+1 - (II*“ < V”xk - ﬂf*“, Ty € Nl,
(E3k)  |BL-BJi<2el  IBUI<,  and  BY <A
(E4; k) 1Biss — V£ (e llmar < 1B — V2 £(2)llmag + po?
=4
1Y [ — Bl
(4 ) B B
0= 5) T

where 71, 7, 7'1“, Tzu , 4 and 7 are positive constants defined below.

We first consider the case of £ = 0.
(E1;0) The first and second results follow directly from the choice of the initial matrix. If
we choose § such that

(4.5) 2||V2f(24) 7|6 <

v
14’
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550 H Yabe & N. Yamaki

the first and second results of (E1;0) yield
v
V2 f(2) 7 1Bo = V2 f(z)ll < 206][V2f(2.) 7] < T3, <t

By the Banach perturbation lemma (see Theorem 3.1.4 in [4]), B, is nonsingular and
18571l < 1+ V)V f(z) 7]l = 7.
(E2;0) It follows easily from (3.3) and (4.2) that

llz1 =zl < WBGHI(IVf(2o) = Vf(za) = V2 f(2:) (20 — )]
+|Bo — V2 f(z.)llllzo ~ z.]|)
< (&P + 2n6) |lzo — z.l-
If we choose € and 6 such that
(4.6) T2(€e? 4 2n6) < v,
we have
llz1 = 2.l < vllzo — 2| < e

Thus T, € Nl.
(E3;0) The above result z; € Ny C D implies that the matrix C(z) is available, so B} is
well defined. It follows from assumption (A1) that

(4.7) |BE — Boll = [[(C(z1) + Ag) — (C(0) + Ao)|| = |C(z1) — C(zo)]|
< €(200)P < 2P€eP.
Then we see that
1BSII < |1 BS — Bol| + | Boll < 2P¢e” + 7

and

B3 (|[| BS — Boll < 2P€me?.

If we choose € such that
(4.8) PEme? < 1,

then by the Banach perturbation lemma, the matrix Bg is nonsingular and

- 185l
l(By) I < T— erger

Thus there exist positive constants 7% and 7 such that ||Bg|[ < 7} and “(Bg)—1” <7l
(E4;0) Recall that
| B — Bollrar < 2Pnée?.

If we choose € and § such that

(4.9) 2Pnée? < 6 and 36 < 1,

then
(4.10)  ||BS = V2 f(z)llrar < ||BS ~ Bollmas + |Bo — V2 f(2.)|lmar < 36 < 1.

Therefore, by setting
=36 and 7= ||M7YPA,
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Lemmas 2 and 3 yield

PN
120 — ByZol|?

(4.11) | B — v?f(x*)”F,M < ||B§ ~ V2 f(z)lrm — TENE

+ wol

and

(1-35) 12| [1Zoll
Recalling that, by (3.6), (4.10) and Lemma 1,

T 2
433 3. — B's 5. =
”ABO”F,M S ,82 182 (”20 OzOH + “Bg””ZO 30”)
1

b _ 10 e
120 — BoZoll < [IM7Y(BE = V?£(z.)) M| ||Z0]|
< 3||Zoll,
SO . C pia N _
120 — 30|l < Copll3o]| < EUSHZOH and  ||By|| < [[M7Y°H,
we have
~
40, 120 — BoZol|?
AB, < =
I8Bollesr < 2 —55) { ol
L b T St -
120 — BoZoll | || BollllZo —3oll \ | BollllZo — 3]
+ 12 — + — =
l|Zo]| [Zol| Zol|
~ 2 PO - ! - !
< - 40; |ES —ABo220|| + (66+ | M 1”27156;;) || M 1”2TICU§ '
51(1 - 35) ”Zo” ,31 51

For € and §, there exist positive constants 7 and v such that

444 | M~2|2ri¢ > | M~1)2ri¢
(1 — 30) 5 ) & =7

(4.12) <7 and (65+

Thus we have N
2o — ByZo

I?
< T S 4
|ABo||rae < 7 ( ENE + v00
Therefore, the update formula (2.4) for B, yields
1B1 = V2 f(e e < N1BYTF = V2 f(@2)llmae + [do — 1] |ABollrm

~ ~4..
120 — ByZol|?

< BT = V2 f(@a)llpa + (¢ + D7 (W + 706’) :

We also see by (4.7) that

|BS = Bollras + 1|1Bo — V2 f ()| rna
2°nEaf + ||Bo — V2 f(z.)|| pae-

1B — V2 £ (z)||pme

IA A
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Finally, a straightforward calculation using the preceding expression and (4.11) gives
~ Y PN
1 |20 — BoZoll”
M~ 2715
66 |1Zl”

=~}
30 — B3 2
+wob + (¢ + 1) (uz—"———ﬂ”—ﬂag)

120l

|B: — V2 f(z)llre < 1B = V2 (2)llF,

120 — Bizoll?
[|Z0]|?

= 1B = V*f(2)llraa + ((¢'+ = 65)
+Hw+ (¢ + Dry)od

< 1Bo =V f(@)llmae + (¢ + D7 — o

=
B 5 112
66) ”zO 020” + ’ua,g’

[1Z0]?

where p = 2?1 + w + (¢’ + 1)7. Therefore the case of £ = 0 is proved.
We assume as an induction hypotheses that expressions (E1;k) through (E4;k) hold for
k=0,...,t —1. Then we have

12: — Byal?

[EA

for k =0,...,t — 1, and by summing both sides from £ = 0 to ¢t — 1, it follows that

1B = 92 f(@llmae < 1B = V2 ()l + pof + (6 + 17 - =)

~f_.
- Bkzk”2

|2 l1?

-1
1B. = V* (2.l < I1Bo — V. )||FM+uZo—k +(6 4 r- ). Z I |

Noting that ,
o = max(||zes1 — z.ll, llox — zl)) = llox — 2.l < vhe

and choosing ¢ and 6 such that

(4.13) L <5 amd  (#+D)r- 61—6 <0,
we have
t—1
|B: = V2 f(e)llre < |1Bo— V2 f(z)llras + pe? Yo (v7)*
k=0
, 2 12k = Bz Bzl
(i 0m-g) L
(4.14) < |1Bo = V2 f(2)lrs + 7 “V,,ep
1|2 — Bizal?
)7 Hek  ZkORI
(o) BB

< 11Bo— V(e llswe + £ _f‘ypgp
< 2.

This implies B, € N,. We can prove (E1;t) through (E4;t) in the same way as the case of
k = 0. This concludes the induction, and the proof. y
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Note that conditions (4.5), (4.6), (4.8), (4.9) and (4.13) are compatible. Also note that
1€e? < v /2 and 2mné < v/2 implies (4.6). Specifically speaking, we first choose § such
that

0 < § < min (1 , Y Y ! ) .
20|V2f(z.) Y (1+v) " 4’ 6(¢' + 1)7
Next, for this §, we can choose a positive € such that Ny C D and
1 v ) 1—vP 5)
ey’ 2 2mE T p .
The following theorem shows g-superlinear convergence of our method.

5P<min(

Theorem 2 Suppose that all conditions of Theorem 1 hold. Then the sequence {zx} gener-
ated by the scheme (4.2) with the structured Broyden family (2.3) converges g-superlinearly
to z..

Proof. Tt follows directly from (4.14) that, for all ¢ > 0,

—e” + ((¢ +1)7 ) Z I — By

IEA G

1B = V2 f(z)lrae < ||1Bo— V2 f(z)lrae +

1-
Then, by (4.13), we have

1 < 126 — Baza|? Byl 2 B
< ||Bo—=V . + P
(65 ) ZO “anz = ” 0 f(:l: )“F,M 1— l/p€

< 26,

which guarantees the convergence of the infinite series

Z [12x — Bi2sll* A
k=0 “zk”2

Thus ,

(4.15) lim 2= Bzl _

k=oo |2l
Since Lemma 1, (E3;k) in the proof of Theorem 1 and (4.15) yield

S S AP
1Bz —5ll = lI(Bi — By)3i + By - Zk) + (BiZk — Zi) + (2 — )|
I PR
< 11Bi = Billlsell + (1 + BRI IIze — 3ell + 1 Bhzi — 24
= afO(|[3&[]) + of||Zx[])

= ol
we have
I(Be = V2 )sll MM BM~ — DM | M)
el = M o2l
< plBE =Sl
el

Therefore, this relation implies

i N(Br = V£ (z.))si|

= 0.
k—oo (EA!

This is the necessary and sufficient condition that the sequence {zx} converges g-superlinearly
to z. [3]. a
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5. Applications
The previous section presented a local and g-superlinear convergence property of a wider
class of the structured Broyden family than that of Engels and Martinez [8]. They applied
the convex class of the structured Broyden family to the problems (1.10) and (1.12), and
obtained local and g-superlinear convergence of their method. In this section, we apply our
convergence results to these problems in the same way as Engels and Martinez. Specifically,
we define a vector y! for each problem and we only investigate that the conditon (4.1) is
satisfied.

First we consider the unconstrained nonlinear least squares problem (1.10). Following
Dennis [2], the vector y! is defined by

(5.1) yi = (Vr(zes1) = Vr(@a))r(zee)-

Then Dennis, Martinez and Tapia showed the following lemma (see Lemma 4.1 in [7]).

Lemma 4 Let D be an open convex subset of R* that contains a local minimizer z.. Let
G(z) and y! be defined by (1.11) and (5.1), respectively. Suppose that the functions r;,i =
1,...,1 are twice continuously differentiable and that there exist positive constants € and p
such that

IV2£(2) = VEf (@l < €lle —aullP - and  [|Vr(2) = Vr(@)]| < €llz — 2|

for z,z' € D. Assume that V2f(z.) is symmetric positive definite. Let zx and Txy1 be very
close to z,. Then there exists a positive constant (! such that the condition (4.1) is satisfied.

By using Theorems 1 and 2, and Lemma 4, the following theorem is a straightforward result.

Theorem 3 Suppose that the assumptions of Lemma 4 hold. Let the matriz Ay be updated
by (2.8). Assume that there exist positive constants Gumin and Pz such that —Ppin < ¢r <
Pmaz- Let the sequence {zi} be generated by

(5.2) The1 = Tk + 8 and (Vr(zx)Vr(zi)T + Ar)se = —Vr(zi)r(zk).

Then the sequence {zi} converges locally and q-superlinearly to the local minimizer z,.

Next we consider the equality constrained minimization problem (1.12). The SQP
method based on Tapia’s idea generates (zx41, \e+1) = (Zx + Sk, Ak + A)x) by choosing
sk and A)y to be the solution and the associated multiplier of the quadratic programming
problem

. 1
min Q—STBks + Vo L(zx, Ms; p)7 s

subject to  Vh(zx)Ts + h(zx) = 0,
where L(z, ); p) is an augmented Lagrangian function given in (1.13) and B is intended to
be an approximation to the Hessian matrix of the augmented Lagrangian function (see [11]).

By applying the first-order necessary conditions to the preceding quadratic programming
problem, we have the linear system of equations:

(wnteyr 6 ) () == (TR T ),
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Then this system of equations yields the new iterate (zx41, Ax4+1) as follows:

(5.3) Mevr = (VA(er)T Bi ' Vh(zi)) 7 (h(zi) — VR(z:) T By H(VF (z4)
+pVh(zk)h(zx)))

and

(5.4) Tr41 — Tk -+ Sk, BkSk = -—VxL(l‘k, >\k+l;,0)-

Note that the multiplier (5.3) is equivalent to the Newton multiplier update of the diagonal-
ized multiplier method (see [9]). The Lagrangian function of the problem (1.12) is defined
by

(5.5) I(z, ) = F(z) + ATh(z).

Since, at the solution (z., A.), the matrix G(z, A) in (1.14) becomes

G(z., A) = Vil(a:,.., A,

Tapia [11] proposed that a matrix Ay should approximate the Hessian matrix of the La-
grangian function (5.5). Then the vector y} is defined by

(5-6) ylnc = Vzl($k+1; )\k+1) - Vzl(JJk, )\k+1)

and we have the lemma.

Lemma 5 Let D be an open conver subset of R™ that contains a local minimizer z,. Let A,
be a multiplier associated with z,. Let G(z,)) and y} be defined by (1.14) and (5.6), respec-
tively. Suppose that the functions F' and hyy ¢ = 1,...,m are twice continuously differentiable
and that there exist positive constants & and p such that

IV2F(z) = V2F(z.)|| < €]z — z.|PP
and
IVhi(z) = Vh(a)| < €llz — 2P, i =1, .., m

for z,2'" € D. Assume that the matriz Vh(z.) has full rank and that the Hesstan matriz
V21(z4, M) is positive definite on the subspace {v € R™ |Vh(z.)Tv = 0}. If z4,z441 are
very close to z., then there exist positive constants vy and (' such that

(5.7) | As1 = Al < yllzx — 24|
and .
(5.8) vk — V2I(z4, M)si]] < Coflsill-

In this lemma, the results (5.7) and (5.8) followed from Proposition 4.2 in [9] and from
Lemma 11 in [8], respectively. Note that the assumptions of Lemma 5 guarantees that there
exists a penalty parameter p > 0 such that V2L(z., \,; p) is positive definite. By using
Theorems 1 and 2, and Lemma 5 and by the same discussion as the proof of Theorem 12 in
[8], we obtain the following theorem.
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Theorem 4 Suppose that the assumptions of Lemma 5 hold and that the penalty parameter
p > 0 is chosen so that V2L(z., \.;p) is positive definite. Let the matriz Ay be updated by
(2.8). Assume that there exist positive constants ¢pin and Pmaz such that —@min < ¢ <
Pmaz- Let the sequence {(zx, Ax)} be generated by (5.8) and (5.4) with

B = pVh(zx)VA(zx)T + Ay

Then the sequence {zy} generated by the SQP method based on Tapia’s idea converges locally
and g-superlinearly to the local minimizer z,.

6. Conclusions

This paper has presented local and g-superlinear convergence of the quasi-Newton method
with the structured Broyden family. We have extended the results of Engels and Martinez
[8] and have shown the convergence in a way different from their proof. The family we have
dealt with is wider than that dealt by Engels and Martinez. Note that, in the boundedness
condition on ¢g, ¢, must satisfy

-1

(st Bise)(f (B 2) )
(st 26)?
to guarantee the nonsingularity of the matrix By4;. Finally we have applied our conver-

gence theory to the unconstrained nonlinear least squares problem (1.10) and the equality
constrained minimization problem (1.12).

¢min < (

References

[1] Al-Baali, M. and Fletcher, R.: Variational methods for non-linear least squares, Journal
of the Operational Research Society, Vol.36 (1985), pp.405-421.

[2] Dennis, Jr., J.E.: A brief survey of convergence results for quasi-Newton methods, in
Nonlinear Programming, SIAM-AMS Proceedings, R.Cottle and C.Lemke, eds., 1976.

[3] Dennis, Jr., J.E. and Moré, J.J.: A characterization of superlinear convergence and
its application to quasi-Newton methods, Mathematics of Computation, Vol.28 (1974),
pp-549-560.

[4] Dennis, Jr., J.E. and Schnabel, R.B.: Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations , Prentice-Hall, New Jersey, 1983.

[5] Dennis, Jr., J.E. and Walker, H.F.: Convergence theorems for least-change secant
update methods, SIAM Journal on Numerical Analysis, Vol.18 (1981), pp.949-987.

[6] Dennis, Jr., J.E., Gay, D.M. and Welsch, R.E.: An adaptive nonlinear least-squares
algorithm, ACM Transactions on Mathematical Software, Vol.7 (1981), pp.348-368.

[7] Dennis, Jr., J.E., Martinez, H.J. and Tapia, R.A.: Convergence theory for the struc-
tured BFGS secant method with an application to nonlinear least squares, Journal of
Optimization Theory and Applications, Vol.61 (1989), pp.161-178.

[8] Engels, J.R. and Martinez, H.J.: Local and superlinear convergence for partially known
quasi-Newton methods, SIAM Journal on Optimization, Vol.1 (1991), pp.42-56.

[9] Fontecilla, R., Steihaug, T. and Tapia, R.A.: A convergence theory for a class of quasi-
Newton methods for constrained optimization, SIAM Journal on Numerical Analysis,
Vol.24 (1987), pp.1133-1151.

[10] Stachurski, A.: Superlinear convergence of Broyden’s bounded #-class of methods,
Mathematical Programming, Vol.20 (1981), pp.196-212.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Structured Quasi-Newton Methods 557

[11] Tapia, R.A.: On secant updates for use in general constrained optimization, Mathe-
matics of Computation, Vol.51 (1988), pp.181-202.

[12] Zhang, Y. and Tewarson, R.P.: Quasi-Newton algorithms with updates from the pre-
convex part of Broyden’s family, IMA Journal of Numerical Analysis, Vol.8 (1988),
pp-487-509.

Hiroshi YABE

Department of Industrial Management and Engineering,
Faculty of Engineering,

Science University of Tokyo,

1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162, Japan
e-mail: yabe@ms.kagu.sut.ac.jp

Naokazu YAMAKI

Research Institute of Systems Planning, Inc.,

2-9, Sakuragaoka-cho, Shibuya-ku, Tokyo, 150, Japan
e-mail: yamaki@isp.co.jp

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.





