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Abstract This paper is concerned with local and q-superlinear convergence of structured quasi-Newton 
methods for solving u n c o n ~ t r ~ i n e d  and constrained optimization problems. These methods have been devel- 
oped for solving optimization problems in which the Hessian matrix has a special structure. For example, 
Dennis, Gay and Welsch (1981) proposed the structured DFP update for nonlinear least squares problems 
and Tapia (1988) derived the structured BFGS update for equality constrained problems within the frame- 
work of the SQP method with the augmented Lagrangian function. Recently, Engels and Martinez (1991) 
unified tjhese methods and showed local and q-superlinear convergence of the convex class of the structured 
Broyden family. In this paper, we extend the results of Engels and Martinez to a wider class of the struc- 
tured Broyden family. We prove local a,nd q-superlinear convergence of the method in a way different from 
t,he proof by Engels and Martinez. Our proof for convergence is based on the result by Stachurski (1981). 
Finally, we apply the convergence results to unconstrained nonlinear least squares problems and equality 
constrained minimiza,tion problems. 

1. Introduction 
In this paper, we consider numerical methods for solving the minimization problem of a 
nonlinear function: 

(1.1) X E R ~  min f ( x ) ,  f :  R" + R .  

Assume that f  is twice continuously differentiable and that there exists a local minimum 
of the problem, say X * .  The problem of interest in this paper is the case where the Hessian 
matrix of the function f ( X )  has special structures given by 

where C ( x )  is a computed part, while it is expensive to calculate the part G ( x ) .  
For the problem (1 .1) ,  Newton's method constructs a sequence { X ^ }  such that 

where s k  satisfies the Newton equation 

where V f denotes the gradient vector of f .  
Standard quasi-Newton methods approximate the whole Hessian of f ( X )  and many kinds 

of updating formulae were proposed, and convergence of these methods were discussed. On 
the other hand, if the information of the Hessian matrix is partially known, it is desiable to 
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use the information to obtain more efficient methods. Quasi-Newton approximations to only 
the second part G ( x )  of the Hessian matrix (1.2) have been developed [5] .  These strategies 
are called structured quasi-Newton methods. In this case, the step sk can be computed by 
solving 

(1.5) (C(Xk) + Ak)s = - V / ( ^ ) ,  

where the matrix Ak is the k-th approximation to the second part G ( x k )  of V 2  f ( x k )  so that 

Thus, we have a condition a new matrix should satisfy as the form 

where 

(1.7) Sk  = X k + l  - Xk 

and z k  is imposed to be a good approximation to V 2  f (x*)sk (or v2 f ( X ~ + ~ ) S ~ ) .  In structured 
quasi-Newton methods, z k  is set to be as follows; 

where ZJ is a good approximation to G(x*)sk (or G ( X ~ + ~ ) S ~ ) .  Thus the matrix AI, is updated 
such that the new matrix Ak+l satisfies the secant condition 

Problems whose Hessian matrices have special structures like (1.2) arise in several opti- 
mization problems. The first example is an unconstrained nonlinear least squares problem 

where r ( x )  = ( r l ( x ) ,  ..., r , ( ~ ) ) ~ .  In this case, the Hessian matrix is of the form 

with 
l 

( 1 . 1 1 )  C ( x )  = ~ r ( x ) ~ r ( x ) ~  and G ( % )  = r i ( x ) v 2 r i ( x ) ,  
!'=l 

The second example is the equality constrained minimization problem 

(1.12) min F ( x )  subject to h(x)  = 0, F : Rn -+ R, h  : Rn -+ Rm, m < n. 
xGRn 

Within the framework of the sequential quadratic programming (SQP) method, Tapia [l11 
dealt with the augmented Lagrangian function 

where A G Rm is a Lagrange multiplier vector associated with the equality constraint and p 
is a positive penalty parameter. The Hessian matrix of this function is formed by 
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with 

For solving the problem (1.10), Dennis, Gay and Welsch [6] proposed the structured 
DFP update, and Dennis and Walker [5] showed local and q-superlinear convergence of this 
method. Dennis, Martinez and Tapia [7] later derived the structure principle, and proved 
local and q-superlinear convergence of the structured BFGS update, which was proposed 
by Al-Baali and Fletcher [l]. On the other hand, for solving the problem (1.12), Tapia [l l] 
derived the structured BFGS update and showed local and q-superlinear convergence of the 
SQP method. Recently, Engels and Martinez [8] unified these methods, and proposed the 
structured Broyden family and showed local and q-superlinear convergence for the convex 
class of the structured Broyden family. 

In this paper, we will extend the results of Engels and Martinez to a wider class of the 
structured Broyden family. We prove local and q-superlinear convergence of the method in 
a way different from the proof by them. Our proof for convergence is based on the result 
by Stachurski [10]. In Section 2, we briefly review the structured Broyden family that was 
originally given by Engels and Martinez, but we deal with a wider class of the family. In 
Section 3, we present some useful lemmas, and in Section 4, we show local and q-superlinear 
convergence. Finally, in Section 5, we apply our convergence results to the unconstrained 
nonlinear least squares problem (1.10) and the equality constrained minimization problem 
(1.12). 

~ h r o u ~ h o u t  this paper, 11 11  denotes the l2 norm for vectors or matrices, and 11 \\y and 
1 1  \\ M denote the Frobenius norm and the weighted Frobenius norm for some nonsingular 
matrix M ,  which are defined by 

respectively. 

2. Structured Broyden Family 
Based on the structure principle given by Dennis et al. [7], Engels and Martinez [8] derived 
the structured Broyden family: 

where c)k is a scalar parameter and 

(2.2) 
Zk Bk = C(xk)  + At,  B! = C ( X ~ + ~ )  + At and vk = - - @S,: 

s^zk S r n S k .  

From this, an A-update can be obtained as follows: 

They dealt with the convex class, i.e. 0 < < 1, of the family. 
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Recent researches on standard quasi-Newton methods pay attention to the Broyden 
family that allows for negative values of <pk. For example, Zhang and Tewarson [l21 studied 
the preconvex class of the Broyden family and presented encouraging numerical results. 
Hence, in structured quasi-Newton methods, it is interesting to consider a class of updates 
that is wider than the convex class of the structured Broyden family and it is desirable to 
discuss a convergence property of such a wider class of updates. In this paper, we will deal 
with a wider class of the family than that of Engels and Martinez. Specifically, we only 
impose a boundedness condition on the parameter <^. 

We should note that the family can be rewritten by 

where 

This is a useful form to analyse a convergence property in the following sections. 

3. Basic Preliminaries 
In this section, we give assumptions and useful lemmas to show a local convergence property. 
Since we use the form (2.4) in order to show local convergence of the structured Broyden 
family, most of the lemmas in [l01 can be applied to our proof. The significant difference 
between our proof and that in [l01 is that we must deal with an intermediate matrix B;. 

Let D be an open convex subset of Rn, which contains a local minimizer X,. We assume 
the following standard conditions. 
(Al)  There exist positive constants <f and p such that 

(3.2) IICtx) - C(x')II 5 ̂ IIx - x'\V 

for any X and X' in D. 
(A2) V2 f is symmetric positive definite at X,. 

It follows easily from assumption (Al)  that, for X ,  X' E D, 

5 ffmaxtllx - x.11, \\X' - X * I I ) ) ~ I I ~  - x'll 

(see Lemma 4.1.15 in [4]). 
In what follows, define 

(3.4) M = V' f (X,)+ 

and 

(3.5) 

Set 
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Note that by the equivalence of norms, for any n X n matrix Q,  there exists a positive 
constant such that 

1 
(3.7) - \ \ F , M  5 I I Q I I  5 v I I Q I I F , M -  

'n 
Now we have the following three lemmas. These lemmas will play a fundamental role in 

the analysis presented in Section 4. 

Lemma 1 Suppose that assumptions (Al)  and (A2) hold. Assume that x k ,  x k + l  6 D. If yi 
in (1.8) satisfies 

(3.8) \\y' - G(x*)skll 5 ~ ' ~ ? l l ~ k l l  

for some positive constant (1, then there exists a positive constant C such that 

Furthermore, assume that 

for e sufficiently small. Then there exist positive constants 6\ and ,& such that 

and 
(3.11) 

Proof. Assumption (Al)  and (1.8) yield 

Setting C = IIW1lW + Cl), we obtain the first result (3.9). 
Since expression (3.9) gives 

we have 

( l  - WIlskl12 srzk 5 (1 + m k l 1 2 .  

Since expression (3.9) yields 

we have 

(l - C^p)llskII < ll2k11 5 ( l  + Cep)llskll- 

Thus, for e sufficiently small, the second results (3.10) and (3.11) are proved. Therefore the 
proof is complete. 
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Lemma 2 Assume that, for some positive constants 6' and r l ,  

O < \ \ B - ~ ~ f ( : t . ) l l ~ , ~  < @ a n d  ~ l ~ L l l < r ~ .  

Suppose that the assumptions of Lemma 1 hold. Then 

where 

Proof. We use the same estimate as Lemma 3.5 in [ l O ] .  It follows from (2.5) and (3.6) 
that 

where 

Tk = 

Since Lemma 1 yields 
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we have 

where 

Denoting 

we have 

= T ~ U C ~ ( D ~ D ' ~ }  

Since 

and 
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we have 

Then 

Therefore we obtain the result. 1 

Lemma 3 Suppose that the assumptions of Lemma 2 hold and that 6̂  < 1. Then 

Proof. We use the same estimate as Lemma 3.4 in [10]. Using the inequality 

we have 
1 1 

..TA# SkBksk (l -'WkIl2' 

Inequalities (3.10) and (3.11) yield 

Since 

we obtain 
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4. Local and Q-super linear Convergence 
This section is devoted to the study of the convergence property of our method. We first 
prove local and linear convergence of our method. 

Theorem 1 Suppose that the standard assumptions ( A l )  and ( A 2 )  are satisfied and that 
there exists a positive constant Q such that 

for each k .  Let the matrix Ak be updated b y  (2.3). Assume that there exist positive constants 
$min and 4>max such that -4>rntn < $k < ̂ max. Let the sequence { x k }  be generated b y  

(4 .2 )  xk+l = xk + s k  and ( C ( x k )  + Ak)sk = - V f ( x k ) .  

Then, for any v E (0 ,  l ) ,  there exist positive constants E and 8 such that if 

the sequence { X ^ }  is well defined and converges linearly to the local minimizer X , ,  i.e. 

\\xk+l - x*Il < v \ \Xk  - x*Il- 

Proof. Set 

(4 .3)  Nl = { X  E Rn\\\x - X.\\ 5 E}, 

(4 .4)  N2 = { B  E Rnxnl IIB - v2f(x*)1IF,M 5 2b} .  

Since D is an open set, we can choose e such that N I  C D. The boundedness condition on 
q5k implies that there exists a positive constant (f)' such that [<^J < </)'. 

Now we prove, by mathematical induction, that the following expressions ( E l ; ^ )  through 
( E 4 ; k )  hold for all k > 0 : 

where rl, r2, r!, ri, p and r are positive constants defined below. 
We first consider the case of k = 0. 

( E l ; 0 )  The first and second results follow directly from the choice of the initial matrix. If 
we choose 8 such that 

(4 .5)  
v 

2 m 2 f  (x*)-lIl\fÂ < m 
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the first and second results of (E1;O) yield 

By the Banach perturbation lemma (see Theorem 3.1.4 in [4]), B. is nonsingular and 

(E2;O) It follows easily from (3.3) and (4.2) that 

If we choose E and 6 such that 

(4.6) r2([eP + 276) 9, 
we have 

1x1 - x*ll 5 41x0 - x*ll 5 
Thus X I  C NI. 
(E3;O) The above result X I  E N1 C D implies that the matrix C(xl) is available, so B: is 
well defined. It follows from assumption (AI) that 

then by the Banach perturbation lemma, the matrix B! is nonsingular and 

-1 t Thus there exist positive constants r[ and ri such that 1 1 ~ ~ 1 1  $ r! and [[(Bo) 1 1  $ 72. 

(E4;O) Recall that 
\W - B o l l ~ , ~  < 2 p ~ & p .  

If we choose and 6 such that 
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Lemmas 2 and 3 yield 

and 

l1 ABo IIF,M 5 + llgl, 1120 - 3011 

^( l  - 35) Poll 
Recalling that ,  by (3.6), (4.10) and Lemma 1, 

we have 

l20 - ~;2011 + 1 l ~ ; l l l l ~ o  - :oil l l ~ ; l l l l ~ o  - sol1 
11.11 Poll ) 11~011 l 

For e and 8, there exist positive constants r and y such that 

(4.12) < T  and 
/??(l - 36) - P1 

5 7- 

Thus we have 

Therefore, the update formula (2.4) for Bl yields 

We also see by (4.7) that  
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Finally, a straightforward calculation using the preceding expression and (4.11) gives 

where p = 2P77(,  + W + (6' + 1)ry. Therefore the case of k = 0 is proved. 
We assume as an induction hypotheses that expressions (E1;k) through (E4;k) hold for 

k = 0, .. . , t  - 1. Then we have 

for k = 0, . . . , t - 1, and by summing both sides from k = 0 to t - 1, it follows that 

and choosing e and 8 such that 

1 ^ E' <6 and ($I+ I)r - < 0, 1 - v p  

we have 

This implies B, E N2.  We can prove (El;<) through (E4;t) in the same way as the case of 
k = 0. This concludes the induction, and the proof. 1 
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Note that conditions (4.5), (4.6), (4.8), (4.9) and (4.13) are compatible. Also note that 
r2[9 <! v12 and 2 r 2 4  <  ̂ v/2 implies (4.6). Specifically speaking, we first choose 8 such 
that 

Next, for this 6, we can choose a positive such that NI C D and 

The following theorem shows q-superlinear convergence of our method. 

Theorem 2 Suppose that all conditions of Theorem 1 hold. Then the sequence {xk} gener- 
ated b y  the scheme (4.2) with the structured Broyden family (2.3) converges g-superlinearly 
to X*. 

Proof. It follows directly from (4.14) that, for all t > 0, 

Then, by (4.13), we have 

which guarantees the convergence of the infinite series 

Thus 

(4.15) 

Since Lemma 1, (E3;k) in the proof of Theorem 1 and (4.15) yield 

we have 

Therefore, this relation implies 

This is the necessary and sufficient condition that the sequence {xk} converges q-superlinearly 
to X* [3]. I 
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5. Applications 
The previous section presented a local and q-superlinear convergence property of a wider 
class of the structured Broyden family than that of Engels and Martinez [8]. They applied 
the convex class of the structured Broyden family to the problems (1.10) and (1.12), and 
obtained local and q-superlinear convergence of their method. In this section, we apply our 
convergence results to these problems in the same way as Engels and Martinez. Specifically, 
we define a vector for each problem and we only investigate that the conditon (4.1) is 
satisfied. 

First we consider the unconstrained nonlinear least squares problem (1.10). Following 
Dennis [2], the vector y s s  defined by 

Then Dennis, Martinez and Tapia showed the following lemma (see Lemma 4.1 in [7]). 

Lemma 4 L e t  D be a n  open  convex  subset  of R" t h a t  con ta ins  a local minimizer X*. Le t  
G(x) a n d  be defined by  (1.11) a n d  (5.1), respectively. S u p p o s e  t h a t  t h e  f u n c t i o n s  rG = 
l ,  ..., l are tw ice  con t inuous ly  dif ferentiable a n d  t h a t  there  ex i s t  posit ive c o n s t a n t s  {- a n d  p 
s u c h  t h a t  

for X ,  X' E D. A s s u m e  t h a t  V2 f (X,) i s  s y m m e t r i c  posit ive def in i te .  L e t  xk a n d  xk+l be v e r y  
close t o  X*. T h e n  there  exis ts  a positive cons tan t  C* s u c h  t h a t  t h e  cond i t ion  (4.1) i s  satisf ied.  

By using Theorems 1 and 2, and Lemma 4, the following theorem is a straightforward result. 

Theorem 3 S u p p o s e  t h a t  t h e  a s s u m p t i o n s  of L e m m a  4 hold.  L e t  t h e  m a t r i x  Ak be updated 
by (2.3). A s s u m e  t h a t  there  exis t  posit ive cons tan t s  kin a n d  q5max s u c h  t h a t  -bin 5 4k <  ̂
q5max. L e t  t h e  sequence {xk} be generated by  

( 5 . 2 )  xt+i = xk + sk and ( ~ r ( x k ) v r ( x k ) ~  + Ak)sk = -Vr(xk)r(xk). 

T h e n  t h e  sequence {xk} converges locally a n d  q-superlinearly t o  t h e  local m i n i m i z e r  X * .  

Next we consider the equality constrained minimization problem (1.12). The SQP 
method based on Tapia's idea generates ( x ~ + ~ ,  = (xk + sk, Ak + AA/,;) by choosing 
sk and AAk to be the solution and the associated multiplier of the quadratic programming 
problem 

1 
rnin - s T ~ k s  + VXL(xk, \is; p ) s  
sâ‚¬ 2 

subject to ~ h ( x ~ ) ' s  + h(xk) = 0, 

where L(x, A ;  p) is an augmented Lagrangian function given in (1.13) and Bk is intended to 
be an approximation to the Hessian matrix of the augmented Lagrangian function (see [Ill). 
By applying the first-order necessary conditions to the preceding quadratic programming 
problem, we have the linear system of equations: 
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Then this system of equations yields the new iterate ( x ~ + ~ ,  Ak+1) as follows: 

Note that the multiplier (5.3) is equivalent to the Newton multiplier update of the diagonal- 
ized multiplier method (see [g]). The Lagrangian function of the problem (1.12) is defined 

by 
(5.5) l ( x ,  A )  = qx) + A ~ ~ ( x ) .  

Since, at the solution ( X , ,  A*), the matrix G ( x ,  A )  in (1.14) becomes 

Tapia [l11 proposed that a matrix Ak should approximate the Hessian matrix of the La- 
grangian function (5.5). Then the vector y! is defined by 

(5 .6)  = V z l ( x k + l ,  Ak+l) - V x l ( ~ k ,  > l f n )  

and we have the lemma. 

Lemma 5 Let D be an open convex subset of Rn that contains a local minimizer X * .  Let \sc 
be a multiplier associated with X * .  Let G ( x ,  A) and yi be defined b y  (1.14) and (5.6), respec- 
tively. Suppose that the functions F and h;, i = 1, ..., m are twice continuously differentiable 
and that there exist positive constants $ and p such that 

and 
l1v2h i (x )  - V 2 h d x y  <, - x'llp, i = 1,  ..., rn 

for X ,  X' E D. Assume that the matrix V h ( x * )  has full rank and that the Hessian matrix 
V ; l ( x * ,  A,) is positive definite on the subspace { v  E Rn { V ~ ( X * ) ~ U  = O}. If  x k ,  X k + l  are 
very close to X * ,  then there exist positive constants 7 and Q such that 

and 

(5.8)  

In this lemma, the results (5.7) and (5.8) followed from Proposition 4.2 in [ g ]  and from 
Lemma 11 in [8],  respectively. Note that the assumptions of Lemma 5 guarantees that there 
exists a penalty parameter p >, 0 such that V ;  ~ ( x * ,  \v; p) is positive definite. By using 
Theorems 1 and 2, and Lemma 5 and by the same discussion as the proof of Theorem 12 in 
[8], we obtain the following theorem. 
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Theorem 4 Suppose that the assumptions of Lemma 5 hold and that the penalty parameter 
p > 0 is chosen so that V;L(x,, AÃˆ;p is positive definite. Let the matrix Ak be updated by 
(2.3). Assume that there exist positive constants $mIn and $max such that -hin < $k < - 
$max- Let the sequence {(xk, Ak)} be generated by (5.3) and (5.4) with 

Then the sequence {xk} generated by the SQP method based on Tapia's idea converges locally 
and q-superlinearly to the local minimizer X,. 

6. C onclusions 
This paper has presented local and q-superlinear convergence of the quasi-Newton method 
with the structured Broyden family. We have extended the results of Engels and Martinez 
[8] and have shown the convergence in a way different from their proof. The family we have 
dealt with is wider than that dealt by Engels and Martinez. Note that, in the boundedness 
condition on <^, must satisfy 

to guarantee the nonsingularity of the matrix Finally we have applied our conver- 
gence theory to the unconstrained nonlinear least squares problem (1.10) and the equality 
constrained minimization problem (1.12). 
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