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Abstract In this paper, we investigate a search-and-hide game played by a searcher and a mobile target 
with a conditionally deterministic motion. The target space consists of discrete cells and there are possible 
targets's paths which specify the target's position (cell number) a t  all times in future. The target selects one 
of pat,hs at t,he beginning of the game and moves along the path t,hereaft,er. The searcher knows all possible 
paths of the target but he cannot know which path is selected by the target. The searcher is restricted by 
his total searching effort at  each time, and allocating it among cells, he searches the target. We formulate 
this search situation as a two-person zero-sum game and derive the optimal solution. Several examples are 
examined a,nd t8he meaning of the optimal conditions are elucidated. 

1. Introduction 

Tn this paper, we deal with a two-sided search game played by a searcher and 
a mobile target with a rather simple type of motion called the conditionally 
deterministic motion (abbreviated as CDM, hereafter). The CDM target was dealt with 
by Stone [5,61 first in his study of the optimal distribution of searching effort in 
the one-sided search. The CDM target is defined generally as a moving target whose 
motion takes place in Eucl idean space and depends on an stochast ic parameter such as 
the target's velocity and so on. If this parameter were known, then the target's 
position would be known at all times in future. However, the CDM target dealt with 
in this paper is more restrictive than the general one in a sense that the stochastic 
parameters are defined by target's paths on the target space. The target space 
consists of discrete m cells and the time space also does discrete n time points. A 
path a> of the target is defined as a sequence of cell numbers which specifies the 
target's position at each time. Set of possible paths of the target is known to the 
searcher. The target selects one of paths at the beginning of the game and moves 
along the path thereafter. On the other hand, a searcher is restricted by his 
available total searching effort at each time, and allocating it among cells, he 
searches cells for the target. Here, we assume that the searcher wants to detect the 
target and the target does not. In this paper, we formulate this search situation as 
a two-person zero-sum game and derive optimal strategies. 

The two-sided search for a mobile target such as the well known problem of "the 
princess and monster game" posed by Isaacs and Its variations, the search games on 
a graph or tree, the ambush search games and so on, have been investigated by many 
authors [l1 and some results of them were compiled and pub1 ished by Gal RI. However, 
we cannot find any paper which gives the solution of the rather simple game dealt with 
here. As shown later, the payoff function of our game is presented by a strictly 
convex function of the searcher' s strategy for every target' s strategies. Hence, f i-om 
the viewpoint of theoretical study of the game theory, the existence of the optimal 
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solution and its properties have been known. However, from the standpoint of the two- 
sided search problems, our knowledge is very l it t le. Fur thermore, since the target' s 
movement may be restricted in several paths and the set of possible paths is known 
by the searcher in many cases of actual search, our game may be valuable to analyze 
and be useful for practical applications. 

In the next section, system parameters are defined and assumptions of the model 
are described in detail. In S 3, the problem is formulated and the optimal solution 
is presented. Several generalizations of our model are analyzed in S4 and numerical 
examples are examined in S 5. Finally in S 6, the implications of the optima! 
conditions and the results obtained here are discussed. 

2. Assumptions of the Model 

The definition of the system parameters and the assumptions of the model are 
presented as follows. 
(l). The target space consists of m discrete cells j = 1.2.---,m, and the target's 
movement and the search take place at discrete time points t = l,2, --, n. 

(2). The target' s path is defined as a sequence of cell numbers co = { j(0, t =l, 2, --, n} 
where j(t) is the cell in which the target exists at time t. The path is permitted 
to stay on the same cell, to skip the cells, and to appear or vanish from the target 
space. The number K of the possible paths is assumed to be finite. 

(3). The target selects one of K paths at the beginning of the game so as to avoid 
detection by the searcher and moves along the path thereafter. Let TiCco) be the 
cell of the target selecting the path co at time t. In each time t, first the target 
moves to cell L (co) from Li (W), and then the searcher searches cells for the 
target. We assume that if the target is not found in the time interval [l,n], he 
gains a score 1 from the searcher, and if he is detected, he gives a score 1 to the 
searcher. 

(4). Total searching effort { C (  t), t =l, 2, --- ,  n} is available to the searcher, and the 
effort C(t) is assumed to be continuously divisible in allocating it among cells. 
The searching effort a1 located to cell j at time t is denoted by d> (j, f). 

(5). If the target exists in cell j at tine t, the conditional probability of detecting 
the target with unit searching effort is assumed to be a 0') 0 0) irrespective of 
the history of the past search. This assumption implies that the random search is 
conducted in each cell and the non-detection probability of the target with the 
searching effort 6 (j, f) is given by 

fU, $U, t)) = exp(-a(j)<̂ (j, t ) ) ,  (1) 

which is called as the exponential detection function. 
(6). The parameters: {C( t) 1 .  { a O) 1 and { co } are assumed to be known to both players 

in advance of the game. 
(7). The target' S payoff is defined by his score. Here, we assume that both the target 
and the searcher are opposing against each other completely in a sense that the 
target desires to maximize his score and the searcher wants to minimize it. The 
omniscient rationality of both players is assumed. 

3. Formulation of the Search Game and the Optimal Solution 

3. l. Formulation of the game 

The target' s pure strategy is defined by his selection of path co. On the other 
hand, the searcher's pure strategy is defined by the allocation of the searching 
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A Search Chime for a Mobile T x p  503 

ef for t  : <t> = { (P  (j, t) 1 ,  where constraints : S , (b (j, t) 5 C(t) fo r  a l l  t  and (& ( j  t) 2 0 
for a1 l j and t, are imposed on Q. 

Let g ( u ,  Q )  be the condi t ional  non-detection probabi l i ty  of the target  in the 
game when the s t ra tegies  a) and <  ̂ are employed by both players. We have 

~ ( c D ,  (D) = expt-S Q; ( L ( o ) ) )  (P ( T t ( c o ) ,  t )) .  (2) 

Then, the expected score of the target  i s  given by { 2 g ( u ,  <!>)-l} and in t h i s  value, 
the fac to r  (2) in the f i r s t  term and the second term (-1) have not any effect  on the 
optimization of the game. Therefore, we can define the payoff function of our game 
( the  condi t ional  expected score of the t a rge t )  by do), Q ) .  Since g (@,  Q )  i s  the 
exponential function of {(b (i, I)} for  any CD by Eq. (2),  the next lemma i s  obvious. 
Lemma 1. g(w,^>)  i s  s t r i c t l y  convex in  Q f o r  any CD. L l  

Since our search game i s  a s t r i c t l y  convex game by Lemma 1, there  e x i s t s  a unique 
optimal solution. Here, we quote the basic theorem of the s t r i c t l y  convex game from a 
text book [71 without proof. 
Lemma 2. In a s t r i c t l y  convex game, the minimizer ( t he  searcher) possesses a unique 
optimal s t ra tegy ;  moreover, th i s  s t ra tegy is pure. D 

We def ine  the mixed s t ra tegy  of the t a rge t  by P = {pu,, &)=l, 2, - - , K } ,  where pc, i s  
the probabi l i ty  that  the target  s e l ec t s  path a). The expected payoff G(P, Q )  of the 
target i s  given by 

G(P, <I)) = S(J).~(CD, Q) = SWpft,exp{-S i U ( T t  (CD))  6 ( T ~ ( c D ) ,  t) 1. (3) 

Therefore,  our problem i s  formulated a s  the game t o  ob ta in  the optimal s t r a t egy  
( P *  <  ̂*) and the value of the game G sa t is fying 

subject to  constraints:  
S , @ ( j ,  t) 2 C O )  for  a l l  t  and @(j ,  t) 2 0 fo r  a l l  t  and j, (4) 

S o p u  = 1 and p. 2 0 fo r  a l l  CD. (5) 

3.2. Optimal solution of the game 

Let P* = {pu*} and <I>* = { @ * ( L  t)] be the optimal s t r a t eg i e s  of the t a rge t  and 
the  sea rcher ,  r espec t ive ly .  The optimal so lu t ion  of our game i s  presented by the  
next theorem. 
Theorem 1. Under the cons t-rain t (4), we define by 

Then, the optimal s t ra tegy  {pw* of the target is given by 

if pu* > 0, e x p ( - S i ~ ( T t ( ~ ) ) ( & * ( T f ( a ) ) , t ) )  = n o ,  (7) 

if P"' = 0, exp(-S Q! ( T ? ( c D ) )  6 * ( T t  (a)), t)) h o ,  

f o r  a l l  CD and Eq. (5) . On the o t h e r  hand, the optimal s t r a t e g y  { @ * (j, t) } of  the 
searcher  is given by &. (4) and 

f o r  a l l  t and j, where Q ( j ,  t) is the s e t  of the t a r g e t ' s  path such that  Q ( j ,  t) = 

C D  T t ( @ ) = j } ,  and A i s  a non-negative Lagrange multiplier .  
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The value of the game is given by 
G = 1.1 0. 

Proof. As is well known in the game theory, P* = {pu*} and Q* = {(f̂ (j,t)\ are 
optimal if and only if 

G(?, a*? 5 G 5 GP*, G) for any P and Q. (10) 

Theorem is proved by showing the above. The f i 1-s t inequal i ty of Eq. (10) : G(P, <  ̂*) 5 G 
is rewritten as max? G(P, <E>*) 5 G. As seen in Eq. (3). G(?, G? is the l inear function 
of pu, and therefore, maxp UP, Q*)  is given by 

for Z = maxu {expi-S, a ( T \ ( c L > ) )  V(Tt(co), t)\} under the constraint (5). Since 0 < Z 
5 1 obviously, we have Z =D then Eqs. (6) and (7) are derived from the above. Eq. (9) 
is easily confirmed by substituting Eq. (7) into Eq. (3). 

The second inequality of Eq. (10): G 2 G(?*, G) is the same problem that 
min+ G(P*,@) 2 G subject to Eq.(4). As easily seen from E Q . ( ~ ) ,  G(P\Q) is strictly 
convex in <I> and the constraint is a l inear function from Eq. (4). Therefore, the 
necessary and sufficient condition for mina G(?*, <!>) is obtained from the Kuhn-Tucker 
Theorem as : 

for a Lagrange multiplier A ( 2  0) with A t(C(t)-Zj@(j, t)) = 0. W, <E>)/d(T(j, t) 
is calculated from Eq. (3 ) .  Substituting it and Eq. (7) into the above equation (111, 
we have Eq. (8). Eq. (9) is derived by substituting Eqs. (7) and (8) into Eq. (3). 

(q. e. d. ) 
The searcher's optimal strategy {(f)"(j, t)} and no are obtained from Eqs. (4) and 

(6). The equation (6) is rewritten by another expression: 

subject to the constraints (4). Since the problem given by the above equations can be 
converted to a linear programming problem, we can solve it by using the simplex method 
easily. Then, the optimal strategy {po)*} of the target is obtained from Eq. (8) and the 
value of the game is given by tin. 

4. Generalization of the Model 

In this section, we discuss several generalization of our game. 

4.1. The model with the regular detection function 

In the model described in the previous sect ion, we assume an exponential detection 
function given by Eq. (l). Without any difficulty, Theorem 1 can be generalized 
to more general detection function fU, (b (j, t)) so called the regular detection 
function having the next properties. 

f(j70) = 1, f(j, a) = a ( 2  O), 

for all j. The above properties mean that the searching effort is subject to the law 
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of diminishing marginal return. Furthermore, we assume that the detection in any j and 
t i s  independent. In t h i s  case, the payoff g and the expected payoff G of the target  
are given by 

g(@, <D) = n W, @ ( T : ( ~ J ) ,  t ~ ,  (13) 

ins tead  of EQS. (2) and ( 3 ) ,  r e spec t i ve ly .  In t h i s  case ,  g e n e r a l l y  the  payoff g 
given by E q .  (13) i s  not  convex any more, except f o r  the  spec i a l  f such a s  the  
exponent ia l  de t ec t  ion funct ion.  And t he r e fo r e ,  the  game i s  not the convex game. 
However, we can prove tha t  the search game has an optimal s t r a t egy  (P*, Q *) given 
by the next theorem. 
Theorem 2. The optimal solution of the game with the regular detection function i s  
stated as follows. Under the constraint (4). we define sin by 

Then, the optimal strategy {po*} of the target i s  given by Eq. (5) and 

for a l l  a). The optimal strategy { 4) * ( j, 0 } of the searcher i s  given by Eq. (4) and 

f ( j ,  d) t?? * - L if  ( T O , t )  > 0, f{j, @ * ( T t W ,  t))  S u c ~  ( j ,  t1 PW - 
11 0' 

for all t and j, where f 9 ( j ,  4 )  i s  the derivative f with respect to d > ,  and A ,  is a 
non-nega t ive Lagrange m u l t  ip  l i er. The va l ue of the w e  i s gi ven by 

G = 110. (18) 5 

Proof. By the s imilar  manner to  the proof of Theorem 1, Theorem 2 i s  also proved by 
confirming Eq. (10). Since G(?, <  ̂*)  given by Eq. (14) i s  a l inear function of pu, Eqs. 
(15) and (16) are derived from the f i r s t  inequality of (10). The second inequality of 
Eq. (10), equivalent ly ,  mim G(?*, @ 2 G subject  to  Eq. (41, i s  proved by using the 
Kuhn-Tucker Theorem and Eq. (17) i s  derived fo r  a necessary condition since f(1. 6 )  
i s  s t r i c t l y  convex of d> by the assumption of Eq. (12). Eq. (18) is easi ly  obtained by 
subs t i tu t ing  Eqs. (15), (16) and (17) into Eq. (14). (a. e. d. ) 

By s e t t i n g  f( j, 4>) = exp (- a ( j )  4 (j, t ) ? ,  we can e a s i l y  der ive  Theorem 1 from 
Theorem 2. 

4.2. The model with generalized searching e f fo r t  constraints 

I n  Theorem 1,  we cons ide r  the  problem in  which the  t o t a l  searching e f f o r t  
avai lable  to  the searcher i s  l imi ted by C( 0 in each time t, t = l, 2, - - S ,  n. However, 
in search problems for  a moving target ,  generally the next three types of constraints 
for the searching e f fo r t  can be considered. 

V i  : (b ( j ,  t) 2 B ( j  t) for  a l l  t and j. (19) 

Condition V i  i s  the constra int  of the e f fo r t  in c e l l  j a t  time t and Condition !F2 
i s  the constraint of the e f fo r t  applied to  the whole search space a t  t, and Condition 
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is the constraint of the total searching effort during the search. For convenience 
of notation, let KTi, %,"M be the problem imposed by these constraints and if the 
constraint Y is not imposed, we denote it  by T , = a. Then, the problems analyzed 
in the previous sections are denoted by M(@, ?V2,@). In this section, we consider the 
problem M(%, T2, TA). Assuming the exponential detection function, we obtain the 
optimal solution of the game M(Y17 Y 2 ,  V.3) as follows. 
Theorem 3. The optimal solution of the game with the cons t ra in  t of searching e f fo r t  
Y 1 ,  Y2,Y.3) and with the exponential detection function is given by the following 
Eqs. (22) through (26). Under the cons t ra in  t (4), we define f l  by 

where ~(cD,@) is defined by Eq.(2). Then, the optimal s t ra tegy {p6,? of the target is 
obtained by Eq. (5) and 

for  a l l CD. The optima l s t ra tegy { ( j, t) 1 of the searcher i S given by Eq. (4) and 

f o r  a l l  t and j, where A .; t ,  A and A a r e  non-nega t i v e  Lagrange m u l t i p l i e r s  
corresponding to  the  searching e f f o r t  cons t r a in t s  V Y a and Y :%, respect ively .  
The value of these mu1 t i p l i e r s  a r e  

The value of the game i s  given by 
G =  no. 

Proof. Since the strictly convexity of g in ^> for all CD is not affected by the 
constraints 1̂,̂  and Y 3, our game is still the convex game and Theorem is proved 
by similar manner to Theorem 1. However, since the Lagrangian function is defined 
including three constraints Y l, % and V 3, the right-hand side of Eq. (11) given by 
Kuhn-Tucker' S Theorem contains three Lagrange multipliers A j, A and A instead 
of A in Eq. (11) and Eq. (24) is derived. Eq. (25) is obtained from the equations 
of the complementary slackness. (q. e. d. 

Theorem 3 is easily generalized to the model with the regular detection function 
defined by Eq. (12). 

5. Numerical Examples 

In this section, to see the properties of the solution of the search game, several 
numerical examples are analyzed varying the searching effort constraint. 
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Case 1. We consider a simple game with 3 cells (m = 3), 3 time points (II = 3) and 4 
paths ( K =  4): o)i = (1,1,1), us = (1,2,2), os = (2,2,1), c04 = (3,2,2). Fig. 1 
shows the four possible paths in 0' t) space. The exponential detection function with 
a ( j )  = 1 for all j is assumed. The searcher's total searching effort is assumed to be 
limited by CCl) = 0.9, C(2) = 0.3 and C(3) = 0.6. From these system parameters, the 
constraint (4) and Eq. (6) are written down to a linear programming problem as stated 
before. This LP problem is solved by the simplex method and we have a o = 0.427 and 
the searcher's optimal strategy 4>*(j, t ) .  Then, the simultaneous linear equations 
for pa,* given by Eq. (8) are solved. The optimal solution is shown in Table 1. 

j \  t time t = 1 t = 2  t = 3  

path2: CD.' 
I 

l 

cell 2 ; path 3: ô  *-- 

l l 

cell 3 ' path 4 :  u4 l l 

, 
l l l 

Fig. 1 Paths in ( j ,  t) space 

Table 1 The optimal solution of Case 1 

From Table 1, we can see the distinctive feature of the searcher's optimal strategy 
(b * (H) : he concent rates his searching effort to the cross points of the target 
paths, and furthermore, he keeps the balance of allocation of the searching effort 
to each target's path. As seen in Fig.1, the paths 002, os and C D ~  intersect on cell 
2 at time 2, and therefore, the searcher a1 locates a1 l his searching effort C(2) = 0.3 
to this cell at time 2. On the other hand, we can confirm that g(@, W is balanced to 
0.427 for all CD and the searching effort allocated to each possible paths during 
the search is balanced to 0.85. (It should be noted that 0.427 = exp (-0.85). ) As 
for the target's optimal strategy p(*, since the searcher searches all paths with 
same searching effort 0.85, the target does not have any preferable path to avoid 
the detection. However, by selecting his path with {pa,*}, the target does not give 
any efficient cells to the searcher. 
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Case 2. Case 2 is  s e t  by in terchanging the t o t a l  searching e f f o r t  C(t) ' S  a t  t = 1 
and 2 in Case 1, namely, C ( l )  = 0.3, C(2) = 0.9, C(3) = 0.6. Since the target '  S paths 
have many i n t e r s e c t  ion i n  order  of t = 2 ,3 ,1 ,  and therefore ,  the sequence of C( t )  is 
reasonable in t h i s  case. Other parameters remain the same a s  Case 1. 

Table 2 shows an optimal so lu t ion  of Case 2. In t h i s  case,  the  LP problem given 
by Eqs. (4) and (6) h a s  the  optimal va lue  no = 0.407 and the  sea rch ing  e f f o r t  is 
concen t ra t ed  t o  a c e l l  a t  each time, and the  e f f o r t  t o  each t a r g e t ' s  pa th  is  no t  
ba lanced  : 0 . 9  f o r  CO 1 . 2  f o r  CD 2 ,  1 . 5  f o r  CO 3 and 0 . 9  f o r  CO 4, where 0.407 = 

exp(-0.9). Therefore, the target  should not s e l e c t  and cos. 

Table 2 An optimal so lu t ion  of Case 2 

In Case 2, the LP problem has another extremal point  a s  the optimal so lu t ion  with 
the  same value /L  = 0.407 a s  shown in  Table 3. In Table 3, the searching e f f o r t  t o  
each path  i s  balanced t o  0.90. All 4) 0' t) given by the  l i n e a r  combination of those 
(&*(j, 0 ' s  given by Tables 2 and 3 a r e  a l s o  optimal, and since the searching e f f o r t  t o  
co2 and i s  l a rge r  than 0.9 in t h i s  case, the t a rge t  should not s e l e c t  and 
too. I t  should be noted tha t  the value of the game G ( the non-detection probabi l i ty  of 
the  t a r g e t )  of Case 2 decreases  compare with the  va lue  of Case 1, i n  s p i t e  of the  
t o t a l  searching e f f o r t  during the search being constant 1.8. The reason is tha t  s ince  
the t a rge t '  S paths a t  t = 2 has more in tersec t ions  than tha t  a t  1 = 1, the increase of 
e f f o r t  a t  t = 2 brings on the decrease of the non-detect ion probabi l i ty  of the target .  
I t  suggests the optimal d i s t r ibu t ion  of {at)}. 

Table 3 Another optimal so lu t ion  of Case 2 
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Case 3. Case 3 is an example of Theorem 3. In this case, we consider a game with 
constraints : M^, V 2 ,  V 3 ) .  Suppose that the searching effort is not limited in each 
cell ( Y 1  = a), the total searching effort at each time is constrained by ?F2 : 
{ C(1) =O. 9, C(2) =O. 3, C(3) =O. 61 (same as Case l), and furthermore, the total searching 
effort during the search is limited by T : D = 1. b. Since Y 3  is severer than ?F2 
( S  tC(t) = l .@, the searcher cannot exhaust all C(t). The other parameters of the 
game are assumed to be the same as Case 1. The optimal solution of this case is 
obtained as Table 4. In this table, the properties of <  ̂ * ( j  0 stated about Case 1 
are also seen, since the arrangement of C ( t )  is same as Case 1. However, since V.-?: 
D = a in Case 1, Case 3 is constrained by the total searching effort severer than 
Case 3 ,  and the effect appears on the value 1.1 a : n is increased from 0.427 in 
Case 1 to 0.472 in Case 3. It should be noted that the optimal distribution of total 
searching effort at each t under the constraints V 2  and Y.3 is (0.6, 0.3, 0.6) as 
shown in Table 4. The searching effort at t = 1 is smaller than the limit CO). This 
result seems to be reasonable since the concentrat ion of the target' S paths is fewest 
at t = 1 as mentioned before. As for the optimal strategy {pi/] of the target, {pi.*} 
is not determined uniquely in this case, because Eqs. (8) and (5) has only three 
equations and two inequalities for four unknown po,*'s. It is interesting that the 
feature of pu* in Cases 1 and 2 is also seen in Case 3. 

Table 4 The optimal solution of Case 3 

6.  Discussions 

In this section, we give the interpretation of the optimal conditions and discuss 
the results obtained in this paper and open problems to be studied in future. 
1. Meaning of the optimal conditions 

To consider the meaning of the optimal conditions, we examine Theorem 2. The 
interpretat ions of the conditions of Theorem 2 from the view point of the searcher are 
described as follows. First, we consider the meaning of Eqs. (15) and (16). The term 
ntf(Tt(o)), <& ( T t ( o ) ) ,  0) in these equations is the conditional non-detection proba- 
bil ity of the target during the search given the target' S path U .  Hence, Eqs. (15) and 
(16) mean that the searcher should allocate his searching effort so as to balance 
this non-detection probability as small as possible to ,U 0 .  By this allocation, the 
searcher does not give any advantageous path to the target. Secondly, to explain the 
meaning of Eq. (17). let P ( j ,  L a>) be the detect ion probability of the target selecting 
path o) in cell j at time t during the search. Then, we have the next equation. 
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By using the above, Eq. (17) is rewritten as 

Since the term S w e o  (,, t )  pw*3P(j, t, CO)/~(& (j, t) means the marginal detection proba- 
bil ity of the target at (j, t), Eq. (17) is described as follows. If the searcher 
searches cell j at time t, he should determine the searching effort so as to balance 
the marginal detection probability to A. among cells searched at t, and if the the 
marginal detection probability at <b ( j ,  t) = 0 is not larger than A i ,  cell j must 
not be searched at t. By the theorem of the optimal search in the one-sided search for 
a moving target given by Iida [31. this allocation maximizes the overall detection 
probabi l i ty of the target during the search. 

On the other hand, from the viewpoint of the target, the optimal conditions of 
Theorem 2 are interpreted as follows. Eq.06) means that the target should not select 
the path having smaller non-detection probability than P O .  Since these paths are 
dangerous for the target, this selection rule is reasonable. However, as stated above, 
the non-detection probabil i ty of the target on each path are minimized as small as 
possible by the searcher, the target does not have any preferable path. But by 
setting his path probability by Ea. (171, the target can avoid to give the searcher 
any efficient cell having the high marginal detection probability, and this strategy 
is effective for the target to maximize his payoff. The meaning of Theorem 2 
mentioned above is completely valid to Theorems 1 and 3, too. 
2. Discussions on the Results 
(1). In our model, if each path is defined by the same cell : co = {Kt) = i for 
all tl, it implies that the target is stationary and then fpwl is the probability 
distribution of the target on the target space. Theorems 1, 2 and 3 are also valid 
for this case. In this case. Theorem 1 is completely identical with the optimal 
solution of the search-and-hide game studied by Nakai E41 for an immobile target. 
(2). In our model, the target's path is permitted in defect of terms in some time 
interval. Therefore, we can deal with the search game for the appearing and/or the 
disappearing target and Theorems 1, 2 and 3 are all valid for these cases. 
(3). As stated in Â 1, we limit our CDM target to the case in which the parameter 
of the target's motion is defined by his path on the search space. In this case, we 
need not transform the searching on the search space into the parameter space. Our 
model may be easily generalized to the general CDM target defined by Stone [6] and 
the similar theorems as derived here may be also obtained. However, as stated by 
Stone, to derive clear results, we must assume that the absolute value of the Jacobian 
of the transformation is factorable in the parameter factor and the time factor. This 
assumption may limit the applicability of the model to the complex actual search 
situations. Since our search model of the mobile target defined by path is not 
troubled by the transformat ion, we can apply Theorems to considerably complex cases 
such that the target' S paths having many cross points, the search for the appearing 
and/or the disappearing target, the case of time dependent constraints of the 
searching effort, etc. The generalization of our model to the general CDM target may 
have little merit from the viewpoint of applications. 
(4). Several problems are remained to be investigated in future. In our search model, 
assuming the continuous searching effort, we define the searcher's strategy by the 
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distribution of his searching effort. In this formulation, the kinematics of the 
searcher' S movement is neglected. However, for the vehicular searcher, we must 
consider searcher' S paths. Moreover, other general izat ions of the model with respect 
to the following factors must be investigated. 
(a). The model with other criterion such as the expected risk or the cost, 
(b). ,he model of continuous target space, 
(c). the model of continuous time space, 
(d). the discrete searching effort case, 
(e) . the multi target case, 
(f). the mu1 t istage search game : the search-and-evasion game, etc. 

Some of the above are easy, however, most of them may be very difficult. They are 
problems to be investigated in future. 
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