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Abstract We consider M/G/1 queueing systems with random order of service and Bernoulli feedback 
of output customers. These systems may model the aggregate queues of packets waiting for transmission 
in a contention-based multiaccess communication channel. We study the customer's response time defined 
as the time from its arrival to  final departure. The mean response time is equivalent to that in a batch 
arrival system in which the batch size is geometrically distributed. The second moment of the response 
time is newly obtained explicitly. Numerical comparison shows that the random order of service sometimes 
yields smaller values of the second moment of the response time than first-come first-served and last-come 
first-served disciplines in feedback systems. We deal with a system without server vacations as well as one 
with multiple server vacations. 

1. Introduction 
Single server queues with feedback of output customers can model many practical systems. 
Among them is a system in which each customer may be served repeatedly for a certain 
reason. When the service is unsuccessful, it may be retried over and again until success. 
For example, the retransmissions of packets occur when they are not acknowledged by the 
receiver before timeout in data communication systems. The unsuccessful transmission is 
inherent in contention-based multiaccess protocols such as ALOHA, carrier sense multiple 
access (CSMA), and their variations that are used in packet radio networks as well as in local 
area networks. If we assume that all users in a system with a contention-based multiaccess 
protocol are statistically identical, randomized chances of transmission are given to each user 
having a packet with equal probability. Thus the set of all packets waiting for transmission 
forms a queue that  is served in random order with a possibility of feedback. 

From this motivation, we consider an M/G/ l  queueing system with service in random 
order and Bernoulli feedback. The rate of a Poisson arrival process is denoted by A. The 
LST of the DF, the mean, and the i th moment of the generally distributed service times are 
denoted by B* (S), b, and b^ (i = 2,3 ,  . . .), respectively. The service discipline is service-in- 
random-order (SIRO), that is, every customer present in the queue at  the end of each service 
can be selected for the next service with equal probability. The customer whose service is 
completed immediately joins the queue with probability 1 - v ,  or departs from the system 
with probability v,  where 0 < U < 1 (Bernoulli feedback). The stability condition for this 
system is given by \b/v < 1. This system is different from the M/G/1 queue with first-come 
first-served (FCFS) discipline and Bernoulli feedback, which was analyzed first by TakAcs 
[g] and subsequently by others. The latter may model a system in which a segment of the 
whole required service is given at each service epoch, such as the time-sliced processing 
in multitasking computers and the segmented transfer of a large file over a multiplexed 
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communication line. 
Clearly the number of customers in the system (called the queue size hereafter) does 

not depend on the service discipline such that the selection of a customer for service is not 
affected by the service times of the waiting customers. Also, the queue size in a system 
with Bernoulli feedback is equivalent to the number of batches present in a batch arrival 
system without feedback in which the number of customers included in each arriving batch 
has geometric distribution starting at one with mean l / u .  We focus on the response time 
of an arbitrary customer, which is defined as the time from its first arrival to the final 
departure. The probability distribution of the response times depends on the service disci- 
pline. However, from Little's formula the mean response time is independent of the service 
discipline with the above-mentioned property. It  is also identical with the mean response 
time of each customer in a batch arrival system with geometrically distributed batch sizes. 
The second moment of the response time in the FCFS system is shown in the Takacs paper 
[g] as a laborious work of W. S. Brown. The primary objective of the present paper is to  
give the second moment of the response time in the SIRO system. (Treatment of SIRO 
M/G/ l  queues without feedback can be found in Cohen [l, sec. 111.3.31, Conolly [2, sec. 
5.3.51, Cooper [3, sec. 5.121, Fuhrmann [5], Kingman [6], Takacs [g], and Takagi [10, sec. 
1.31.) It provides a measure of variability and can be used to obtain the bounds in the 
distribution of the response time. Note that the distribution of the response time in the 
last-come first served (LCFS) system with Bernoulli feedback can be obtained immediately 
by modifying the service time distribution in the LCFS system without feedback. We can 
deal with a system without server vacations as well as a system with server vacations by 
the same approach. The vacation of the server usually represents a period during which the 
server is allocated to some other tasks. 

In the rest of this paper, we mainly present the analysis for a system without server 
vacations. The mean response time is known. In Section 2, we first express the Laplace- 
Stieltjes transform (LST) of the distribution function (DF) for the response time of an 
arriving customer in terms of the LST of the DF for the response time of an arbitrary 
customer in the system at  the epoch of service start, conditioned on the number of customers 
present in the system at  that time. We then calculate the second moment of the response 
time of the arriving customer. In Section 3, we show an outline and results of analysis for 
the similar system with multiple server vacations. In Section 4, we compare the numerical 
values of the second moments of the response time for the systems with FCFS, LCFS, and 
SIRO disciplines without vacations. We also display the effects of vacations on the second 
moment of the response time for SIRO systems. 

2. Second Moment of the Response Time in a System without Server Vacations 
Let us consider a system without server vacations. The probability generating function 
(PGF) 11(2:) for the queue size L in this system at an arbitrary time is identical with that  
for the number of batches in a batch arrival system without feedback in which the number 
of customers included in each arriving batch has geometric distribution starting at  one with 
mean \/v. Therefore, using 
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as t,he LST of the DJ? for the service time in the Pollaczek-Khinchin transform equation for 
an M/G/ l  system without feedback, we get 

From Little's formula, the mean for the response time T of an arbitrary customer is given 
by 

E[L]  2(1 - Ab)b + AbW 
E[T] = - - - 

A 2(v - Ab) 

We note that the PGF II(z) in (2) also holds for the queue size immediately after a customer 
has left the system (a  departure epoch). These results for the queue size distribution and 
the mean response time do not depend on the service discipline that  does not use the service 
time for selecting the next customer to serve, including FCFS, LCFS, and SIRO disciplines. 

In order to study the distribution of the response time, we follow an approach by Takiics 
[8], who treated the LST of the DF for the waiting t ime of a customer, which is defined as 
the time from its arrival to the service start, for an SIRO M/G/1 system without feedback. 
Instead, we consider the response time that is more appropriate for a system with feedback. 
Let T*(s) be the LST of the DF for the response time T of an arriving customer. Since 
the arriving customer finds the system empty (idle) with probability 1 - \b/v, or finds it 
nonempty (busy) with probability \b/v, we have 

We will express E[e-^ lidle] and E[e-^ lbusy] in terms of the LST T; (S) of the DF for 
the time Tk from the instant of service start when there are k + 1 customers are present 
in the system to the instant when an arbitrary customer C among them leaves the system. 
Let us first derive the equations for {T,T(s); k = 0 ,1 ,2 , .  . .}. To do so, we use the joint LST 
of the DF for the service time and the probability that j customers arrive during the service 
time, defined by 

where B ( x )  the DF for the service time. Note that  

The set of equations for {T,* (S); k = 0,1 ,2 ,  . . .} can be derived from the following re- 
cursive arguments. When there are k customers in the system other than C a t  the time of 
service start, C is select.ed for the service with probability l / ( k  + 1). Its response time will 
then be exactly the service time in the case of no feedback which occurs with probability 
v. In the case of feedback which occurs with probability 1 - v, the LST of the DF for its 
response time will be a*j{s)T̂ ,.(s) if j customers arrive during its service time. When there 
are k customers in the system other than C at  the time of service start, C is not selected 
for service with probability k/(k + 1). If j customers arrive during the next service time, 
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the LST of the DF for C's response time is a*(s)T;*++,(s) if the served customer is not fed 
back, or it is a*(s)T&(s)  otherwise. Thus we get the relationship: 

which reduces to 

Ti ( S )  = v 

From (6) and ( 8 ) ,  we can get E[Tk] and E[(Tk}2}. To do so, we derive the recursive 
relations for the sets {E\Tj];J = 0,1,2,  . . .} and {E [ ( T , f ] ;  J = 0,1,2,  . . .} by evaluating 
the derivatives of ( 8 ) .  These relations can be solved by using the sums of the series in the 
derivatives of a z s )  obtained from (6). See Appendix for the detailed derivation. Thus we 

The LST ~ [ e ^ j i d l e ]  of the DF for the response time of a customer that arrives when 
the system is empty is clearly given by 

It follows from (9) and (10) that 
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2(1 - u ) [ 4 u ( l +  2u) + (1  - 7u - 8u2)Ab + 4uA2b2]b2 + 
u(2v - A b ) 2 ( l  + 2u - 2Ab) 

In order to express ~ [ e ^  Ibusy] in terms of {T,*(s); k = 0,1 ,2 ,  . . .}, we note that the 
PGF IIO(z) for the queue size immediately after a service is completed (an output epoch) is 
given by 

HO(z)  = uII(z)  + ( l  - u)zH(z )  

Let X' be the length of the service time during which customer C  arrives. By the analogy 
with (14),  the generating function for the probability Â ¥ ^ ( X  = X )  that there are k customers, 
excluding C ,  in the system at the end of X' = X is given by 

The distribution of X' is given by 

X d B ( x )  
P { x  < X' < X + dx}  = 

b  

Given that X' = X ,  the LST of the DF for the remaining service time X+ is given by 

The response time of customer C consists of X+ and Tk if there are k other customers in 
the system at the end of service. Unconditioning on the length X' of the service time and 
the number of other customers in the system at  the end of X ' ,  we obtain 

By expanding the integrand in (18) in Taylor series with respect to S ,  we get 

From the expansion of (15) in power series of z  - 1, we get 

00 A2b12) + 2 4 1  - U )  
~ k v , , ( X 1 = x ) = A x +  
k=0 2(v - Ab) 
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00 [A2bW + %(l - u)}\x A3 b(3) 
Y, k ( k  - l)r^(X' = X )  = A2x2 + 

v - \ h  
+ 

k=2 3 ( u  - Ab) 

Using ( 9 )  and ( 2 1 )  in ( 1 9 ) ,  we get 

v b(2) ( 2  - Ab)b u ( l  - v ) b  
E[Tlbusy] = + + 

2 b ( ~  - Ab) 2~ - \b ( 2 ~  - M ) ( u  - Ab) 

Using also ( 1 0 )  and ( 2 2 )  in ( 2 0 ) ,  we get 

2 [ ~ ~ ( 1 + 2 ~ ) - 2 1 ^ b - ( l - v ) \ ~ b ~ ]  b(3) 
E[T21busy] = 

b ( v  - Ab)(2v - A b ) ( l  + 2 v  - 2Ab) {y 2 ( v  - Ab) 

Hence we obtain the unconditional mean response time 

Ab 2 ( 1  - \b}b + 
E[Tlidle] + -E[Tlbusy] = 

v 2 ( v  - Xb) 

which agrees with (3), and the unconditional second moment of the response time 

which is a new result 
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3. Second Moment of the Response Time in a System with Multiple Server 
Vacat ions 

We consider the same SIR0 M/G/1 system with Bernoulli feedback as described in Section 2, 
except that the server now takes vacations if the system is empty at the end of service. If the 
server returns from a vacation to find the system not empty, it starts to work immediately 
and continues service until the system becomes empty again (exhaustive service). If the 
server returns from a vacation to find no customers waiting, it begins another vacation 
immediately, and continues in this manner until it finds at  least one customer waiting upon 
returning from a vacation (multiple vacations). The lengths of successive vacations are 
assumed to  be independent and identically distributed, and also independent of the arrival 
and service processes. 

Let V*(s) be the LST of the DF for the length V of each vacation. We first discuss the 
queue size. For a system without feedback, the PGF for the queue size L at an arbitrary 
time is given by 

(1 - Ab)[1 - V*(\ - \s)]B*(\ - h) 
~ ( ~ ) I v = l  = AE[V}[B*(\ - \z) - X] 

For a system with feedback, we replace B*(s) with Bi(s )  given in (1) as well as b with b/v 
to get 

The last expression exhibits the stochastic decomposition property studied by Fuhrmann 
and Cooper [4]. The mean response time is then given by 

E[L] 2(1 - Ab)b + E [ V ~ ]  
E[T\ 1 - - 

A 
+- 

2(v - Ab) 2E[Vl 

As in (4), the LST T*(s) of the DF for the response time T of an arbitrary customer 
can be expressed as 

where E [ e s T  [vacation] is the LST of the DF for the response time of a customer that arrives 
when the server is on vacation. We can obtain both E [ e s T  lvacation] and E [ e s T  1 busy] in 
terms of {TL(s); k = 0 ,1 ,2 , .  . .} given in Section 2. 

We first consider E [ e s T  lvacation]. Let V be the length of the vacation during which 
customer C arrives, and let qk(V1 = X) be the probability that there are k customers, 
excluding C, in the system at the end of V' = X. The generating function for {qk(V = 
X ) ;  k = 0 ,1 ,2 . .  . .} is simply given by 

By the same arguments that let to (B), we obtain 

00 1 - e-sx xdV(x) 
E [e-sT 1 vacation] = = x)T:(s) 

E[Vl 
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where V(x) is the DF for V. From (32), we get 

E[Tlvacation] = E[To\ + (2v + Ab)E[V2] 

2(2v - Ab)E[V] 

2 [v ( l+  2v) + A b +  A2b2]E[V3] 
E[T2 Ivacation] - - 

+ 3(2v - *(l + 2v - 2Ab)E[V] 

where EFTo] and are given in (12) and (13), respectively. 
We can express E [ e s T  jbusy] exactly as in (18) with { d X 1  = X); k == 0,1 ,2 ,  . . .} now 

given by 

Thus we get 

v ( 3  + l l v  - $v2) - (3 + 14v - 4v2)Ab + (5 + 4v)A2b2 - 2 \ W W E [ V 2 ]  + 
(v - Ab)(2v - Ab)2(1 + 2v - 2Ab)E[V] 

(37) 
where E [T 1 busy] 1 and E [T' l busy] l v=o are those given in (23) and (24), respectively, for 
the corresponding system without server vacations. 

From (30), we finally get the unconditional mean response time 

Ab 
E [T lvacation] + - E[T 1 busy] = 

2(1 - Ab)b + AbW E[V2] +- 
v 2(v - Ab) 2E[VI (38) 

which agrees with (29), and the unconditional second moment of the response time 

Xb 
E [T2 lvacation] + -E [T2 1 busy] 

v 

- 2 [ v 2 ( l + 2 v ) - 2 v 2 A b - ( 1 - v ) A 2 b 2 ]  + [ ~ b ( ~ ) ] ~  
v(2v - A b ) ( l  + 2v - 2Ab) 3(v - Ab) 2(v - Ab)2 
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which is also a new result. 
If we let v = 1 in the above, we get the results for the SIRO M/G/1 system with multiple 

server vacations without feedback, which was studied by Scholl [7, Appendix B]. 

4. Numerical Comparison 
As noted in Section 2, the mean response time E[T] is identical for the FCFS, LCFS, and 
SIRO systems. We first compare the second moment E[T2] of the response time for these 
systems without server vacations. 

The second moment E[T2IFcFS of the response time in the FCFS system is given in the 
appendix of Takacs [g]: 

v2 - 2v 
E[T2]F'~FS = 6(v - A b ) W  - v(2 + Ab) + Ab] 

From the analysis of the LCFS system (see, e.g., Cohen [l, sec. 111.3.21, Cooper [3, prob. 
5.201, TakAcs [8], and Takagi [10, sec. 1.31) with the LST of the DF for the service time 
given by Bi(s)  in ( l ) ,  we have 

For systems with no feedback (v = l ) ,  we know [g] that the second moment E[w~]  of 
the waiting time satisfies the relation 

Since 
E[T2] = E[w~]  + 2E[W]b + b2 

and E[W] is the same for the FCFS, LCFS, and SIRO systems, it follows that we have 
uniformly 

E [ T ~ ] ~ ~ ~ ~  < E[T2Ismo 5 E [T2ILCFS for v = 1 (no feedback) (44) 
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as shown in Figure l ( a )  for the systems with constant service time b = 1. However, the 
inequalities in (44) do not always hold for systems with feedback (v < 1). In fact, Figure 
l (b )  for v = 0.5 displays the case in which 

Figure l (c )  for v = 0.2 shows that there is a wide range of \b in which 

and a narrow range of Ab in which 

These disorders result from the various degree of variability in the time from the start of 
service to  the departure in these systems. However it is noteworthy that SIRO discipline 
sometimes yields smaller values of the second moment of the response time than FCFS (and 
LCFS) disciplines. 

We also show the second moment E[T2] of the response time in SIRO systems with 
multiple server vacations in Figures 2(a)-(c) for different values of constant vacation length 
V (the service time is again assumed to  be a constant b = 1). The effects of vacations vanish 
at high loads generally, and appear more evidently for systems with large values of v (low 
probability of feedback). 

Figure l (a ) .  Effects of service discipline (v = 1, b = 1, V = 0). 
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Figure l (b )  . Effects of service discipline (U = 0.5,b = 1, V = 0). 

Figure l (c). Effect S of service discipline (v = 0.2,b = 1, V = 0). 
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Figure 2(a). Effects of vacations (SIRO, v = 1, b = 1). 

Figure 2(b). Effects of vacations (SIRO, v = 0.5,b = 1). 
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Figure 2(c). Effects of vacations (SIRO, v = 0.2, b = 1). 

Appendix: Derivation ofE [Tk] and E [ ( T C ]  
We derive the expressions for E[Tk] and E[(Tk)2] in (9) and (10), respectively. Taking the 
first derivative of (8) a t  s = 0, we get 

where a * , ( s )  := diaÂ¥{s)/ds (i = 1,2 ,  . . .). By differentiating (6) with respect t o  s and then 
letting s = 0, z = 1, we have 

Thus, (A.1) can be written as 

This recursive relation for {E[Tk]; k = 0, l, 2 , .  . .} can be solved by assuming the form 
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where c and d are constants. We substitute (A.4) into (A.3), and use 

which ca,n also be obtained from (6). The result is given by 

Comparing the coefficients of k and constant terms, we determine that 

Substituting (A.7) into (A.4) leads to (9). 
Similarly, taking the second derivative of (8) at  S = 0 and using (A.2)) we get the 

following recursive relation for {E[(Tk)2];  k = 0,1 ,2 ,  . . .}: 

We now assume the form 
E [ ( T ~ } ~ ]  = e@ + f k + g 

where e,  f, and g are constants. Substituting (A.4) and (A.9) into (A.$), and using 

(A.  10) 

we get 

( k  + 2 - Ab)b2 + AbbW 
+ ( l - v ) ( k + l )  + e { k 2  + (2k  + 1)Ab + A2b(2)}  + f ( k  + Ab) + g 

2v - Ab I 
Comparing the coefficients of kO, k1, and k2, we determine e ,  f, and g ,  which are substituted 

into (A.9) to derive (10). 
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