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Abstract Suppose a hunter starts  hunting over t periods with i bullets. A distribution of the value of 
targets appearing and the hitting probability of a bullet are known. For shooting, he takes a strategy of a 
shoot-look-shoot scheme. The objective in this paper is to find an optimal policy which maximizes the total 
expected reward. In the case with no search cost, the optimal policy is monotone in the number of bullets 
remaining then, but not always monotone in the case with positive search cost. We show such examples of 
non-monotonicity and examine conditions for the monotonicity of the optimal policy. 

1. Introduction 
This paper presents a stochastic sequential allocation problem in which it is intended to  
maximize the tot a1 expected reward obtained from investment opportunities appearing at 
successive points in time by allocating available resources among them. A fixed costl, called 
a search cost, is incurred each time to find an investment opportunity. The value of each 
investment opportunity is a random sample from a known distribution. The resources are 
countable like person, machine, bullet, and so on. The allocation of resources follows a 
so-called shoot-look-shoot policy, implying that,  if unsuccessful after investing one unit, then 
it is decided whether or not to invest one more unit. This problem can be applied to the 
following examples. 

Hunting Problem Suppose a hunter sees a ta,rget of value w. Then, he must decide 
whether or not t,o shoot a bullet. If the vaSlue is ra,ther small, it is wise to decide not t,o shoot 
a,ny bullet expecting better chances to arrive later. Suppose the value is favorable a'nd he 
decides to shoot one bullet. The bullet will hit the target or miss. In the former, he gets the 
value w :  if bullets are still in hand, later chances are also available. I11 the h t t e r ,  two cases 
are further possible: the ta,rget disappea,rs immediately or stands still without any defense. 
If it does not escape, then he has to decide whether or not to shoot a,n adclitiona,l bullet. 

Advertising Problem Suppose a saleslady visits different stores with i. samples to 
advert,ise new  product,^. On coming across a st,ore, she can estima,t,e the long-run profit, 
w obtained from the store on condition that the manager of the store fortunately decides 
to deal with the products. Custonie,rs who come to the store will t,ry the sa,mples. Seeing 
t,he cust,omers' responses, the manager decides whether or not to sell them in the store. If 
lie decides to sell, then it may be rega,rded as a success, a,nd she ca,n obta,in w and begins 
searching for anot,lwr stlore. If he decides not to sell, then she cannot get a,ny profit from 
the store and must sea,rch for a,nother store. It may be possible t,lla,t lie still hesitjat,es to 
sell even aftjer some ~ust~omers have tried t,he samples. Then, she has to decide wl~et~ller t,o 
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cont,inue a,clvertising in the store or t,o quit ancl search for another store. 

Here, if an opportunity is always successfully achieved wit 11 certainty by investing only 
one unit of resources, then the problem can be reduced to an optimal stopping problem witli 
no recall where i opportunities can be obtained. 

Now different types of sequential allocation problems have been discussed by many au- 
thors so far. Mastran ancl Thomas [4] treat it as a target attacking problem where the 
decision policy of a ~ h ~ ~ t - l o ~ l i - ~ l ~ ~ ~ t  scheme is discussed. They show the computational 
method for obtaining the optimal decision rule, but don't mathematically verify its struc- 
ture. Kisi [3] considers a similar model to [A] ancl examines the relation between approximate 
solutions and exact ones. Saliaguclli [7] investigates the continuous-time version of [4]. He 
derives, for the ~ h ~ ~ t - l o ~ l i - ~ l ~ ~ ~ t  policy, the conclusion that t lie critical value. a t  which 
shooting ancl not shooting become indifferent in the optimal decision. is nonincreasing in 
the number of resources (torpedoes) remaining then. Nameliat,a, Tabata and Nishida 51 
also deal with a similar model where there exist two liincls of targets in a sense that tlie 
necessary number of resources (torpedoes) to get any of these targets are clifferent. Derman, 
Lieberman and Ross [l], and Prastacos [6] consider them as investment problems. In [I],  
the case is discussed that the reward from an opportunity is liondecreasing and concave in 
the amount of resources invested, and in [6], the case that the reward depends on both the 
value (quality) of an opportunity appearing and tlie amount of resources invested. In both 
papers, however. the ~ h ~ ~ t - l ~ ~ l i - ~ l l ~ ~ t  policy was not discussed. 

Now. it should be noted that,  in all of the models above, a search cost was not introduced, 
among wliich there exist ones where a search cost must be assumed from a practical view 
point. The objective of tlie present paper is to pose a general model in which a search cost 
is an essential factor ancl examine properties of its optimal decision policy. One of tlie most 
distinctive results obtained in this paper is that the critical value does no t  always becom,e 
nonincreasing zn the number of remaining units  of resources. 

In Section 2 we define our model, and in Section 3 its fundamental equat,ions are derived. 
In Section 4 that follows, the structure of the optimal decision policy is investigated. In 
Sections 5. 6 ancl 7, we consider cases with no searcli cost, witli positive search cost, and with 
large search cost, respectively. In Section 8 the case is examined that an infinite amount of 
resources is available, and in Section 9 some numerical examples are given. In Section 10 
the conclusions obtained are summarized. Finally, some limitat,ions of the present model 
are stated in Section 11. 

2. Model 
Throughout, this paper, we shall expla,in our model by using the following hunting problem. 
Suppose a hunter starts hunting over t periods with '/' bullets. His purpose is tjo ma,ximize 
t,he t,ot,al expected rewa'rcl from the ga,me tlmt will be ba,ggecl over a given pla,nning horizon, 
that is, t periods. In t,he woods, lie can find a target wit,ll appea'ring probability 6 G (0, 11, 
assuming tjhat more t,han one t8a'rget cannot be found at, the same t,ime. The value of ta,rget 
is a random va,riable having a known probability distribution function Fi (w ) , continuous or 
discrete, where Fi(w) = 0 for u! < 0, F i (w)  < 1 for w < 1 a,nd Fi (w)  = 1 for 21) > 1. The 
distribution does not concentrat,e on only a. point', t'hat is, Pr(w) < 1 for any w .  The d u e s  
of t8argetjs tlmt. are found at successive points are assumed to be stfocha,st~ically independent. 
Now let Fo{w) be a dist,ribut,ion function where Pr (w)  = 0 for any ,w # 0. Then, using 6, 
we can combined Pi (u1) a,nd Fo('w) into t,he following clist,ribut,ion function: 

F(t0) = (1 - 6 ) F 0 ( , ~ ~ ~ )  + 6F1(t/1). (2.1) 
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A Sequential Allocation Problem 

Below, we enumerate tlie parameters used in the paper: 

q : hit,t,ing probal~ilit~y, 9 (0,1] ,  
r : escaping probability, 7- [o, 11, 
c : search cost,. c > 0 , 
3 : discount, factor, /^ (O,l],  
,u : m e a i i o f F ( u l ) , p = f ~ F ( ( ) ,  p ~ ( O , l ) ,  
p : p = (1 - g)( l  - r ) ,  p â [O, 1). 

The strict meanings of these parameters are as follows. Assume that the hunter can observe 
the value of a target as soon as he finds it. Then he has to decide whether or not to shoot 
a bullet. If tlie value w is rather small, it is wise for him not to shoot. Suppose the value is 
favorable and he decides to shoot a bullet. The bullet will either hit the target with hitting 
probability q or miss it. In the former, lie gets the value w: if bullets are still in hand. later 
chances are also available. In the latter, two cases are further possible, either the target 
disappears immediately wit 11 escaping probability r or st ill remains without any defense. 
If it stands still there, then he has to decide whether or not to fire an additional bullet: 
assumiiig that repeated firings waste no time. If lie decides not to shoot any more,^ then he 
comes home. On his way home, he must decide whether or not to go hunting on the next 
point. If it is profitable for him to go hunting, then he consumes a search cost c to prepare 
for tlie next hunting. Figure 1 illustrates the structure of this decision process where the 
rhombuses with " fire " or " go " are related to ut(7, t u )  or ;&), respectively, which will be 
defined in the next section. 

^ ~ x a c t l y  speaking. it means that  lie decides not to shoot any more a t  the present target, need not shoot 
(get i t) ,  or cannot shoot (it escapes or i = 0). Below, we also employ this expression for simplicity. 

t-'2 t-1 t 
points in time 

Figure 1. Graphic expression of the decision process 
In the figure, (3.2) and (3.3) are the equation numbers of ut (2, w ) and zf ( i ) .  
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Finally we assume, except, for Section 7, that 

c 5 Dqu, 

which implies tha,t. it is favorable to go hunting even when one period rema,ins and he has 
only one bullet in ha.11~1. 

3. Fundament a1 Equations 
Let points of time be numbered backwa,rd from the film1 point of the planning horizon as 
0, 1, ancl so on; an interval between time t ancl time t - 1 is called period t .  Now we define 
,tlmf(i, t u )  as the ma,ximum of the total expected present discountred reward sta'rt'ing from time 
f when the hunter is seeing a target of value w with i bullets in hand. Furthermore, let the 
expecta,tion of ,q i ,  zu ) in terms of w be designa,tmecl by 

Then, we have the following recursive relation: 
ut{i^u) = inax{%(?"), q[w + $(i - 1)) + (1 - q)(r+(i - 1) + (1 - r)ut( i  - l ,w) )}  

= inax{,q(i), p u t ( i - l , w ) + q w + ( l - p ) ^ ( i - I ) } ,  t > 1, i >  1. (3-2) 
Here, the first (second) term insicle the braces represents the maximum of the tot a1 expected 
reward when there remain t periods and i bullets and it is decided not to shoot ( to shoot 
one bullet) at the present target. Now, if he decides not to shoot any more, he must decide 
whether or not to go hunting on the next point. Therefore, zt(i)  can be expressed by 

In the right side of above, tjhe first (second) term inside the braces represents the maximum 
of the total expected reward when it is decided tto go (not t80 go) hunting on  the next point. 
Furt,hermore, from the clefinit,ion of t,he model, we have the following final conditions: 

~ ~ ( 0 ,  w) = vt(0) = 4 0 )  = zo(i) = 0, t > 0 , i  > 0, (3.4) 
~ , ~ ( i , z u )  = qw+puo( i -  l,zu), i > 1. (3.5) 

Here, 71,0(< w) ca,n be expressed as 
1 -pz  

uo{i, w )  = - 
" 1 - p  

qw7 

which holds for i > 0. Thus, we also get 

Hereaft~er in this section, we clarify the properties of zit(i, zu) and z+(i). 

Lemma 1. 

a )  Both ut ( 2 ,  w) and zlf ( i)  are nondecreasing in t for any i and any w . 
(b) I f t >  1 and z > 1, then %(i) = / ? ~ ~ _ ~ ( i )  - c. 
(c) Both ut( i ,  u;) and ut(i) are nondecreasing in i for t 0. In particular for p > 0, they 

are strictly increasing in i for t > 0 (and w > 0. 
c 1 )  Ifw < 1, t h e n ~ t ( i , w ) - ~ ~ ( i - l , t u )  < q fo r t  > 0 andi > 1. In addition, vt(i}-ut(i-1) < 

q also holds for t >0 and i 2 1. 
(e) uf(i ,  zu) is nondecreasing in u) for any t and any i. 
( f)  F o r t  > 0 and -t> 1, lit(i, 1) = pzlt(i - 1 , l )  + q + (1 - p)zf ( i  - 1) > q ( i ) .  

Proof: (a)  From (3.4), we have for any i 
zi(i)  = max{,3vo(i) - c, ;?zo(i)} > pzo(i) = 0 = zo(i) ,  
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A Sequcn tial Allocation Problem 

hence we get for any i 

1 -p1 
2- qw = u , ~ ( / ,  w). 1 -11  

Immediately from above, it follows that ul(i) > vo(i). Now, assuming ^ ( i )  > ~ ~ _ ~ ( i )  and 
, ( i )  2 Â¥--'?- ( i )  for all i 2 0 as inductive assumption in tlerms of t ,  we have 

= i~ iax{f i -~( i )  - c ,  J q ( i ) }  

> m a x { ~ ? ~ ~ _ ~ ( ? )  - c, , ? L ~ _ ~ ( / ) }  = q ( i ) ,  (3.10) 

accordingly, we get 
~ i + ~ ( l ,  w )  = i ~ l a x { q + ~ ( l ) .  qw} 

2 i~lax{.:~(l). qÃ§l = u t ( l ,  in). (3.11) 

Furtliermore, suppose - 1. i u )  > ut(i  - 1. ul) for any 211 as the second inductive as- 

sumption in terms of i. Then the following can be obtained: 
~ , + ~ ( i ,  ir) = ina~{.: ,+~(i).  ptit+i(i - 1,w) + qw + (1 - p)zt+1(i - l)} 

2 i~lax{;~(i) ,  put( i  - 1, tr)  + qiu + (1 - p)zt(i  - 1)) = ut( i ,  iu). (3.12) 

Thus, it follows by double induction that ut (i .  w}  is nonclecreasing in t for any i and any Ã § l  

so also are uf ( i )  and 4 i )  for ally i. 

(1)) It is clear from (2.2), (3.4) and (3.7) t,liat /3vo(i) -c  = /3(l -pf)q/ / / ( l  - p )  -c > 0 = ,J-:o(~) 
for i > 1. Assume ; 3 i ~ , _ ~ ( i )  - c > d ~ ~ _ ~ ( i )  for i > 1, hence q ( i )  = / 3 ~ ; _ ~ ( i )  - c from (3.3). 
Then, we have for i > 1 

13tjt(i) - c - ilzt(i) = w) - c - f3($~7~.~(i) - c) 

> I?*) - c - - c) 

= ,3Wi) - t ~ ~ _ ~ ( i ) )  > 0 (3.13) 

from Lemma l ( a ) .  Therefore, we get >+i{i) = &(i)  - c. Thus. it follows by induction that 
: , ( i )  = ;3vt_[{i) - c for t > 1 and i > 1. Consequently, it follows for t 2 1 that 

(c )  We shall only prove the case of 11 > 0. The proof for p = 0 is almost same as below. 
Now for p > 0, it is obvious from (3.6) and (3.7) that both uo(il  (11) and tlo(i) are strictly 
increasing in i. Let tit_l(/) be strictly increasing in i. Then, clearly u t ( l ,  w )  > ~f (0. w) = 0 
for tc > 0. Furthermore, suppose that ut( i ,  w) > ut(i - 1, w) for zu > 0. Then we have for 
w > o  

Ã § t (  + 1 , ~ )  = max{/-(z~~-~(i + 1) - c. ptit(i, ir) + qw + (1 - p ) ( J q - i ( i )  - c)} 

> m a ~ { ; i t + _ ~ ( i )  - c, ptii(i - 1, w )  + qw + (1 - p)(3i;t-l(i - 1) - r ) }  

By integrating the equation in terms of 211, we have ut{i + 1) > ut(i). Thus, it is proven by 
double induction that Ã§,(i  u')  and 7+(i) are strictly increasing in i for t > 0 and w > 0. 

(cl) If i = 1, t,heii Ã§o(l 1 ~ 1 )  - l lo (O,  w) = qul - 0 < q for w < 1, so ~ ~ ( 1 )  - uo(0) < q. Suppose 
~ ~ _ ~ ( l , , u . i )  - 11,_1(0. w )  < q for w < 1. so ~ / _ ~ ( l )  - U ~ - ~ ( O )  < q. Then. we have for w < 1 

~ ~ ( 1 ,  Ã ˆ T  - ~ ~ ( 0 ,  a') = m a x { J ~ ~ _ ~ ( l )  - r ,  q w }  - 0 < max{f.)q - c, q} = q, (3.16) 
from which we obtain ( I )  - r t (0)  = i t t  ( I )  < q. 
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If i = 2, then Ã§o(2 w) - Ã § o ( l  U J )  = (1 +p)qw - qu7 = pqw < q, hence tvo(2) - ~ ( 1 )  < q. 
Let ~ ~ ~ ~ ( 2 ,  Ã§7 - ~ ~ - ~ ( l ,  u ? )  < q, so ~ ~ - ~ ( 2 )  - ~ - ~ ( l )  < q. Then we get 

~ ~ ( 2 .  (17) - u , ( l ,  w )  <: ma~{;J(c , -~(2)  - i+-~( l ) ) ,  pui ( l ,  KT) + (1 - i))(()t1,-l(l) - c)} 

< max{Jq, pq + (1 - p)(/-iq - c)} < q, (3.17) 

from which we obtain ~ ~ ( 2 )  - ~ ~ ( 1 )  < q. 
If i 2 3, then llO(i. (17) - ~ 1 ~ ( 1  - 1, (17) = ((1 - 11') - (1 - l~'-l))gltl /(l  - 11) = l ) ' - l q t ~ l  < q. 

accordingly ? l o ( / ' )  - vo(i - 1) < q. Assume ~ ~ - ~ ( i ,  Ã§i - u t - ~ ( i  - 1, ul )  < q, so tlt-l(i) - ~ t - i ( i  - 
1) < q. Then we have 

ut(i ,  7u)  - u f{i - 1, w) 5 i ~ ~ a x { , J ( q - ~ ( i )  - ~ t - ~ ( i  - I ) ) ,  

~ ( Ã § , (  - 1, w) - ut( i  - 2, w)) + $(I - ~ ) ( q - ~ ( i  - 1) - ̂ -I(/ - 2))}. (3.18) 

Because ut(i  - 1. w) - uAi - 2, w) < q for ?' = 3, we get 
~ ~ ( 3 ,  1 1 1 )  - 1it(2, Ã§1 < max{Jq. pq + /?(I - p)q} < q (3.19) 

from (3.17). Furthermore, suppose u^j - 1, w) - ut( i  - 2, w }  < q as the second inductive 
assumption, then it yields Ã§t( i  w }  - Ui{i - 1, w) < q. Accordingly, it. follows by double 
induction that u t ( i ,  w) - ut(i  - 1, i u )  < q for i > 3. Thus. we obtain ut(i, w )  - Ã§t (  - 1, 111) < g 
f o r t  > 0, i > 1 ancl w < 1, so that ilt(i) - vt(i - 1) < qfor t > 0 ancl i > 1. 

(e) It is easily proven by induction. 

( f )  The statement is obvious for t = 0. Now we get ut-i ( i )  < q + 4-fi - 1) for t > 1 and 
i > - 1 from Lemma l ( d ) ,  and ut(i  - 1 , l )  > /37v t -1  ( i  - 1) - c from (3.14). Hence we have for 
t > 1 and i > 1 

Ã § f ( i  1) = ptit(i - 1 , l )  + q + (1 - 11)(/3z~f-l(t - 1) - c) 

> q + , 3 1 ~ ~ - ~ ( i  - 1) - c 

> 1̂ q + u t - f i  - 1)) - c 

> - c = > ( / I .  (3.20) 
T1ms.wegetthestatement.  U 

Lemmas l ( b )  ancl ( f )  mean, respectively, that if f3'mq > c and i > 1, then it is always 
optimal t'o go hunting ancl that if w = 1 ancl i > 1 t,hen it is always optimal to shoot at, 
the target. Using (3.1) ancl (3.14) recursively, we can calculate i\[i) ~ t a r t ~ i n g  wit,h the final 
conditions (3.4), (3.6) and(3.7) .  

4. Structure of Optimal Policy 
For t > 1,  define gt ( i ,  zu) as follows: 

p u , t { i - l , w ) + q u i + ( l - p ) ( f 3 v t - ~ ( i - l ) - ~ ) - ( / 3 ~ - i ( i ) - c ) ,  i > %  
Qt{i, z u )  = 

qw - ( @ & d l )  - c), i = 1. 
(4.1) 

Then the lemma below holds t,rue. 

Lemma 2. For t > 1 and i > 1, &(i ,  UJ)  = 0 lias a unique solution w = lzt(z) 6 [O, 1 ) .  

Proof: First, using induction and Lemma l ( c ) ,  we gt(i .  0) < 0 for t > 1 and i > 1. Next,, 
it is also obtained that g t ( i ,  1) > 0 for t > 1 and i > 1 from Lemma I f f ) .  Furthermore, 
gt(i. w ) is a continuous function of w and strictly increasing in ni from Lemma 1 (e). Thus, 
from above, it is proven that gt(i ,  w) = 0 has a unique solution w = l l t(i)  E [O, 1) .  1 

Remark: We call the lzt(i) a critical value when the hunter has i bullets and t periods 
remain. From Lemma 2, the optimal decision policy becomes as follows. If w > then 

^Here. we use the relat,ion max{u;} - max{&;} < max{ui - bi}, which is oftmen used in the proofs of this 
paper. 
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A Sequential Allocation Problem 44-1 

fire, or else don't fire. When Ã§. = for given t and i ,  sllooting a ~ c l  not shooting become 
indifferent; that is, r 

t i , ( ( ,  l i , ( i ) )  = ; j o t - l ( i )  - c = pti t( i  - 1,  / I , ( ; ) )  + ql i , ( i )  + ( 1  - ~ ) ( P ~ t - i ( i  - 1 )  - C) ( 4 . 2 ) '  
for f >,! and i  2 2. Now, since u i ( i  - 1 ,  w )  > - , ^~ t - l ( i  - 1 )  - c ,  we have for t > 1  qncl i  > 2  

0  = e / / ( ? , l l t ( ? ) )  > q l i t ( i )  + - 1 )  - 1 1 , - I ( ? ) )  (4.3) 
due to ( 4 . 1 ) ,  from which we obtain 

h i ( / )  < - - l ) ) / q .  (4 .4 )  
Furthermore, we get for f > 1  and i  = 1 

~ ~ ( 1 ,  / ? / ( I ) )  = ̂ _ i ( l )  - C = ̂ ( I )  (4 .5 )  
from (4 .1 ) .  and since c > 0  and t l t (0)  = 0 ,  it follows that 

l l t ( l )  = ( , J l ' t - i ( l )  - c) /q  < 3'1Jt- ,( l) /q = J ( ^ - l ( l )  - ~ f - l ( O ) ) / q .  (4.6 
Thus, (4 .4 )  holds for f > 1  and i  > 1, 

Now we detail relations betlween 11 t ( i )  and t l t - 1  (. j  ) in Lemmas 3 , 4 , 5  and 6 and Corollary 1. 

Lemma 3. If p  > 0 .  then the following hold for i  > 1  and t > 1: 

( a )  h t ( i )  > h f ( i  + 1 )  e h t ( i  + 1 )  = / ? ( ~ t - l ( ?  + 1 )  - v t - i ( ? ) ) / q ,  

(11) 1l t( i)  < l l t ( i  + 1 )  e I ^ ( ?  + 1 )  < d(vt - l ( i  + 1 )  - ~ t - i ( i ) ) / q .  
When p  = 0 ,  it always holds true that h f ( i  + 1 )  = 3 ( u t - I ( ?  + 1) - 4 - l ( i ) ) / q  for i  > 1  ( ~ 7 d  

f > 1.  

Proof: I?, we shall verify the case of p  > 0. If / x i ( / )  > l i t ( i  + I ) ,  then ~ ~ ( i , l ~ ~ ( ?  + 1 ) )  = 
,3t i t_l( i)  - c according to the optimal decision policy, hence we have for i  > 1  

0 = gt{i + l , h t ( i  + 1 ) )  = ~ u ~ ( i , l ~ ~ ( i  + 1 ) )  + qhAi + 1 )  

+ ( 1  - l ~ ) ( J t ~ t - i ( i )  - c )  - ( / ^ - I ( /  + 1 )  - c )  

= qll t( i  + 1 )  + - ̂- I ( ?  + 1 ) ) .  ( 4 . 7 )  
Thus. it follows that h f ( i +  1 )  = ,3{Vt^[i+ 1 )  - ~ ~ _ ~ ( i ) ) / q  for i > 1. Conversely, if h t ( i  + 1 )  = 

/3( t* i_ l ( i  + 1 )  - ̂ - l ( i ) ) / q ,  t,hen we get 
0  = g t ( i  + 1,  b i ( i  + 1 ) )  = p f ( i ,  h t ( i  + 1 ) )  - p ( / ^ - I ( / )  - c ) ,  ( 4 . 8 )  

from which we have u t ( i ,  h t ( i  + 1 ) )  = ( i )  - c ,  so h i (? ' )  > 1 t t ( z  + 1 ) .  It is immediate from 
above and (4 .4 )  that h t ( i )  < h t ( i  + 1 )  e h t ( i  + 1 )  < , ! ? ( z ~ ~ - ~ ( i  + 1 )  - ~ ~ - l ( i ) ) / q .  

When p  = 0, t,he assertion is easily verified because 
0 = g^i + l , l l t ( i  + 1 ) )  = qh t ( i  + 1 )  + / ^ - I ( ? )  - + 1 ) )  ( 4 . 9 )  

f o r ? > l a n d t > l .  B 

Lemma 4. For t  > 1  a n d p > O ,  

Proof: Using (4 .5 ) ,  we have 
g t (2 ,  / ? / ( I ) )  = p v t ( l , l x t ( l ) )  + qlzt(1) + ( 1  - p)(f3vt-1(1) - c) - ( f i t - l ( 2 )  - c )  

= 8 3 ( 2 ~ J t - l ( l )  - ~ ? ~ _ ~ ( 2 ) )  - C, (4 .10)  
from which we get the statement in the lemma. B 

Lemma 5. For a given i > 1  and t 2 1 ,  
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from (4.2) ancl (4.4).  B 

Corollary 1. For a given i  >: 1 and t > 1. 
2 ~ 4 )  - u , _ ~ ( ?  - 1 )  - v ~ _ ~ ( <  + 1 )  < 0 =+ h t ( i )  < I t t ( ?  + 1 ) .  

Proof: The statement is the cont~rap~sit~ion of Lemma 5. 1 

Lemma 6. If 1lt(i) = ,3( i l l_ i ( i )  - - I ) ) / ?  for a given i  >: 2 ,  t l~en  

Proof: From the assumption ancl (4.4),  we immediately have 

0 < (=) !l(213t.1(i) - z+-l(i + 1 )  - ut-,(? - 1 ) )  
= qht( i )  - /3(vt-l( i  + 1 )  - ̂ - I ( / ) )  5 ^ ( i )  - h t ( i  + 1 ) ) .  (4.12) 

Hence. it follows that h t ( ? )  > (2) l t t (?  + 1 ) .  1 

I11 the next theorem, a condition for Ill ( i )  being decreasing in i  for a given t is revealed. 

Theorem 1. The critical value lz t ( i )  is strictly decreasing (nonincreasing) in  i  for a given f 
i f  and only if 

, ^ ( 2 , ~ ~ t - ~ ( l )  - t j f - l (2 ) )  - c > (2) 0 (4.13) 
and for all i  > 2 

2 ~ + _ ~ ( i )  - ut-i{i - 1 )  - ut-l(i + 1 )  > ( 2 )  0.  (4.14) 

Proof: If / I ( ( / ' )  is st,rict,ly decreasing in i ,  then ( 1 )  - ~ ~ . _ ~ ( 2 ) )  - c > 0 from Lemma 4 ,  
and 2z+_l ( i )  - u l _ l  ( i  - 1 )  - ( i  + 1 )  > 0 for i > 1 from Lemma 5. The sufficient condition 
ca,n be proven as follows. From Lemma 4, 11,<(1) > 11,((2) holds t'rue, hence we have 

1 ~ . ~ ( 2 )  = /3(tlt-i{2) - ~t., ( l ) ) / q  (4 .15)  
from Lemma, 3 ( a ) .  Accordingly, we get 11ft(2) > 11.((3) using Lemma 6 ,  so 

h t ( 3 )  = ,^(rt~t.l(3) - , t ~ ~ - ~  ( 2 ) ) / q .  (4 .16)  
Repeat,ing the same procedure, we ol~t~ain 11,((i) > / I , / ( ? '  + 1 )  for a,ll i 2 1. 

In a similar way, we can prove the case t,llat l t t ( i )  is nonincreasing in i .  B 

So far we have considered the relations between l l t ( i )  and z + _ ~ ( . / ) .  I11 the following 
lemma, let us show a relation between h 1 ( i )  ancl z+( j ) .  

Lemma 7. If 1lt( i)  is strictly decreasing (nonincreasing) in i for a given t > 1. then 
2 v t ( i ) - v f ( i - 1 ) - u t ( i + l ) > ( > ) O ,  i >  1. (4.17) 

Proof: See Appendix. M 

In t,he lemma below, we describe a condition for which l t t ( i )  is decreasing in i for any t .  

Lemma 8. A necessary and sufficient condition for which lz l ( i )  is nonincreasing in i  for 
a n y f > l i s  

3 ( 2 v t ( l )  - ( 2 ) )  - c > 0 (4.18) 

for all f > 0 .  Particularly for p > 0 ,  / I ( ( ? ' )  is strictly decreasing in  i for any t > 1 if and 
only if @ d l )  - ~ ( 2 ) )  - c > 0 for all f > 0 .  

Proof: The necessary condition is obvious from Theorem 1. The sufficient condition is 
verified as follows. We have. for i > 1. 2uu(i )  - uo(i - 1 )  - uo(? + 1 ) = ( 1  - p } l ~ z l q f J  2 0 from 
(3 .7 )  ancl 3(2uo{ l )  - ~ ( 2 ) )  - c > 0 from the assumption. Hence, it follows from Theorem 1 
that h i d )  is nonincreasing in i for all i  2 1,  so 217,(i) - v1 ( i  - 1 )  - u i ( ? '  + 1 )  > 0 for ?' > 1 
from Lemma 7.  Repeatedly applying t lie above procedure, we obtain 1; ( i )  is nonincreasing 
in i  for all t > 1. For p > 0, it can be proven by replacing > 0 by > 0 in the above. B 
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5 .  Case with No Search Cost ( c  = 0) 
The theorem below and Corollary 2 that follows hold for c = 0. 

Theorem 2. For t > 1, is nonincreusing in i. In particular, if p > 0, then hf (i) is 
strictly decreasing in i. 

Proof: Because c = 0. substituting i = 1 into (4.17) produces 
,^(2^(1) - Vt{2) - ~ ~ ( 0 ) )  = /3(2vt(l) - ~ 4 2 ) )  - c > (2)  0, 0 < p < 1 ( p  < I ) ,  (5.1) 

which is the same as (4.18) in Lemma 8. The remaining is similar to the proof of the 
sufficient, condition for Lemma 8. B 

Corollary 2. For t 2 0, Vf{i) is concave in i ,  Particularly if 11 > 0, then it is strictly 
concave 'in i .  

Proof: It is from the fact t,liat the difference of vf(i) as to i is nonincreasing in i (strictly 
decreasing in i for p > 0) from Lemma 7 and Theorem 2. 1 

Corollary 3 t,ells a property of 1lt ( i )  in terms of t for Q = 1 and c = 0. 

Corollary 3. If ,6 = 1 and c = 0 ,  then h i  ( i )  is nondecreasing in t for any i > 1 . 

Proof: Due to the assumption of 0 = 1 and c = 0, we have ut(i, w }  = max{ut-1 ( i ) ,  ptlt ( i  - 
1, ir) + qw + (1 - p)ut-\{i - I ) }  for i > 2 and ~ ~ ( 1 ,  at) = m a x { ~ ~ ~ - ~ ( l ) ,  q w } .  Now we get 
~ ( ( 1 ,  t u )  - z i t ( O ,  211) = u f ( l ,  w )  2 ; ~ ~ - ~ ( l )  = ~ ~ ~ ( 1 )  - Z + - ~ ( O ) .  Suppose 

d i  - 1 , w )  - ut(i - 2 , w )  2 u ? - ~ ( / '  - 1) - zlt-l(i -2) .  (5.2) 
Then, we obtain for 0 < w < ht( i)  

ut(i, w )  - ut(i  - 1, w )  = ut-^(i) - - l ) ,  (5.3) 
for /I!(?') < u1 < ht( i  - 1) 

q ( i ,  w) - Ut{i - 1, w)  = ~ ( ( 7 ,  w )  - - 1) > ut-1(i) - ~ ~ - i { i  - l ) ,  5 . 4 )  
and for h f ( i  - 1) < w < 1 

tif(). w] - ut(i - 1, w) = p{z(!(i - 1 , z u )  - ut( i  - 2 . 2 ~ ) )  

+(1 - p)(ct-,[i - 1) - vtYl(i - 2)) 

> - ̂ - I ( ?  - 1) - - 2) > - 1'/-1(? - 1) (5.5) 
using C:orollary 2. From (5.3). (5.4) and (5.5), it follows for t > 1 and i 2 1 that 

ut(i) - ut(i - 1) > ~ + - ~ ( i )  - L + - ~ ( ? "  - 1). (5.6) 
Since lt t(i)  is nonincreasing in i for any t > 1 from Theorem 2. it is always equal to 
, 5 ( ~ _ ~ ( ? )  - z ~ ~ - ~ ( i  - l ) ) /q  from Lemma 3. Therefore, ht( i )  is nondecreasirig in t for any 
i > 1 .  B 

6. Case with Positive Search Cost (0 < c < h i )  
We can conjecture that the more bullets the hunter has, the smaller the value of target 
he may decide to shoot at;  that is, 1lt(i) is decreasing in i. However, llt(/) is not always 
decreasing in 1 if c > 0. Below let us show such a simple example. 

Using (3.7). (4.2) and (4.6), we have 

gd2,  / % d l ) )  = P W ,  /!dl)) + 0111(1) + (1 - Y ) ( / ~ V O ( ~ )  - c)  - (13t1o(2) - c) 
= '3(2v0(l) - vo{2)) - c = ̂ l - p)qp - c. (6.1) 

If $(l - p)qp < c < 3qu, then g1(2, /zi(l)) < 0. implying that there may exist a certain 
interval of 1 in which li,(i) becomes increasing in i as being depicted in Figure 2 s which 
illustrates the following structure in terms of the optimal decision policy. 

^This is a conceptual figure illustrating that l l t ( i )  may become partially increasing in i :  ones for certain 
specified parameters are denionstrated in Section 9. 
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(a) Suppose a present, target value is ulÃˆ If lie lias more tjhan eleven bullets, tjhen he should 
cont,inue t,o fire until at least one of the following t,liree event]s occurs: lie gets t,he target,, 
the remaining number of  bullet,^ becomes less than t,welve or it esca-pes. If he starts with 
less t'llaii t'welve, tlien lie should not fire and search for the next target. 

(b )  Suppose a present target value is ,tub.  If he has more than six bullets, t8hen lie should 
continue t'o fire until a t  least one of t,he following t,l~ree event,s occurs: he gets it,, the 
number of bullets in hand becomes less tlia,n seven or it runs away. If he starts with more 
tha,n two and less than seven, t,hen he should not fire and sea,rch for the next tsarget. If 
he ha's one or t,wo l~ullet~s, t'hen he should fire unt'il a,t least one of t'lie following t,hree 
event,s occurs: he gets t,he target,, spends all t,he b~illet~s or it escapes. We have defined 
llt(i)  as a critical point in terms of the targets of the va,lue w a,nd called a critical value. 
Iii a similar way, we can also define a critica,l point in terms of i .  The above explanatlion 
for wi, t,ells us the existence of double critical points i Ã  ancl i* (i* < i"} in terms of i in 
a sense t,hat if i < i^ or i > i * ,  then fire, or else don't, fire. It goes wit,liout, saying t,hat, 
such a t,lling never occurs if /I,((?') is iionincreasiiig in /'. 

( c )  Suppose 111 = u l c .  I11 this case, lie should coi~t~inue to fire until a t  least one of the following 
three event,s occurs: he gets the tsarget, spends all t,he bullet,s or it runs away. 

Now t'he following lemma says a. prope,rt,y of Mi) for c > 0. 

Lemma 9. If Jit(ia) < hf(ia + 1 )  for  a certain i Ã £  then there exists a certain & such that 
ib > iÃ and //,t(/b) > hi(& + 1 ) .  

Proof: It is obvious from the fact that l i ~ n ~ _ ~  lh(i) = 0 because j3(vf -fi) - - I)) /</  
converges to zero as i + oo. I 

Regarding ~ t { i )  as a funct,ion of c, we shall use the symbol tit(?, c) ii~st~ead of ut(?). In the 
same way, lxf(i, c) will be also used. Let 

Dt (c )  = gt+1(2, l ~ , ~ + ~ ( l ) )  = /^(l, C) - ~ ~ ( 2 ,  c)) - C, t 2 0. (6.2) 

0 5 i* 
i* 10 

Figure 2. Existence of iÃ ancl i* 
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Because tlie number of tlie game that lie will get over the whole planning horizon starting 
with finite i bullets is at most i ,  there exists the limit of d i ,  c) as t --+ oo, hence the limits 
of h t ( l .  c) and Dt{c) as t -+ oo also exist. We designate them by their symbols without the 
subscript f ,  i.e., v(i, r ) ,  li(1. c) and D ( c ) .  Now. we shall verify the existence of c for which 
llt ( i ,  c )  is lionincreasing in t and for which 1?J t , r)  is not monotone in i. 

Theorem 3. If 3 < 1. then there exists a positive n76n1ber cx for which hf(i .  c )  is nonin- 
creasing in i for any t and c G [0, cJ. In  addition, if IJ < 1 and p > 0. then there exists 
c"' G k*. Dqp) for which /^(l)  < 11t(2) for any t and c G [c", /3qp]. 

Proof: See Appendix. 1 

Remark: When J = 1, since u ( l ,  0 )  = Jmax{r(l ,  0 ) ,  d } d F ( < )  and F ( [ )  < 1 for < < 1. we 
have u ( 1 , O )  > qÂ for all c, hence ~ ( 1 , 0 )  = q. Similarly we have v(2,O) = 2q. Thus we get 
D(0) = 0 for 3 = 1. 

7. Case with Large Search Cost 
Here, using (3.1), (3.3) and (3.2), we examine the case of c > ftqu. First, suppose c 2 
,j(l - pl)q/ i / ( l  -11). Then we get , Â ¥ ) ~ l ~ ( j  - ( *  = J(l - ;?)qÃ§/( -1)) - c < 0 for j < i, hence 

,:L(j) = i n a x { J i ~ ~ ( j )  - c, ;3:o(.j)} = max{/3t~~(.j) - c, O} = 0, ,;' 5 i. (7.1) 
Therefore, we ol~t~ain for 1 < j 5 i 

Ã§i{j to )  = max{.:i(.j),piil(,j - 1, u1) + qul + (1  - p):i(j - l ) }  

= p u l ( j  - 1, w )  + qw 

= p i i ~ x { : ~ ( j  - l ) . p ~ ~ ( . j  - 2, t o )  + (;ti) + (1 - p ) q ( j  - 2)} + q u ~  

- 1 -19 
- qw. (7.2) 

1 - P  
The above also holds for j = 0. Accordingly, it follows for j < i tliat 

u i ( j ,  [)c lF(<) - r ,  hi(/) 

Repeat'edly applying the same procedure yields 4.j) = fit-i ( j )  = 0 for t > 1 and j < i ,  
that is, i?t,lt(j) - c < /3q( j) for all t and j < i. As a result, in this case, the optimal policy 
is not to go sl~ooting at all. 

Next. suppose 3qu < c < /J(l -p7)qp/ ( l  - p ) .  Let c = /J(l  - f lC) ) ( ; / t / ( l  -p) ,  from which 
we have 

Then, for i 2 h-(c), we get ; i(i)  = max{Jtto(i) - c, dzo(i)} = $tlo(i) - c, hence 
z-^i} = max{,Jui(i) - c, ^zl( i )} = max{3tll(i) - c ,  3(0vo(i) - c)} = ,Jtjl(i) - c (7.5) 

because v^i) is nonclecreasing in i. Repeating the same procedure, we get > ( I )  = / l u t _ i  ( i )  - c 
for t > 1 and 2 > h-(c), i.e., ,Out(?') - c> ( 3 ~ f ( i )  for all t and i 2 ~ ( c ) .  If the number of bullets 
reimining decreases less tlian ~ ( c )  during huntling, t,hen it follows from tthe same reason as 
ill the case of c 2 /?(I - pi)q~i , / ( l  - p )  t , l~at .:,(i) = 0 for all t .  

Hence, in this case, the optimal decision policy becomes identical to the case of c < {3qu 
until the number of bullets remaining, i, decreases less tlian ~ ( c )  during shooting. If the 
number i becomes less than ~ ( c ) ,  then it is optimal not to go shooting from the next time 
point on. However, if he has not got the present target yet and it stsill remains. then he 
should continue to fire until at least one of the three events stated in Section 6(c) occurs. 
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s1101vn for t 2 l 

If' c = 0, t llcn t llc critical \-alue /lt ( i )  is always ~io~~incrcasing ill i for all t 2 l (Tlleorenl 2. 
Figure 3(a,cl)). 
If c > 0, then /lt (L) is not always clecreasing in z (Figure 3(l1.c,e)). Itre see that the 
positio~l of the i l ~ ~ ~ x i i ~ i a l  \ r d i l ~ , Y  if it exists, shifts to  the right as the planning horizon 
beco~nes longer. The nlasi~iial value cloes not always exist; in fact, a seen in Figure 
3(~:) ,  it doesn't appear if tllc l~laniiiilg l~orizoi~ is less tllaii or equal to five. 
Figure 3( f )  sllo~vs that / l t  ( i )  is  onin increasing ill L eve11 if c is positive. Yow \tic provccl 
in Lenl~ila 8 that h t ( i )  is no~ii~lcreasi~ig ill 1 for all t 2 l if allcl only if D t ( c )  2 0 for all 
t (sec (6.2)).  Tlic r~s t l l t s  of the calc~llation of D t  (c) for t = 0. l. . . . ,5000 are as sllowi 
ill Table l 1 1 ,  i l l~~strat ing that D t  (c)  seeins to  coilverge to  a positive n1111111cr 0.104 . - - 
for (9 = 0.9 ancl c = 10-~. Ho\wv~r ,  it 11econi~s negative for large t ~vllcn /l = l slid 
= 10-~. Even if (1 = l ancl c = 10-~. D:3joo(c) is iiegativc. 
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(d )  If q = 1, then I ? ; ( ; )  becomes a nonincreasing function of i for each case in Figure 4; 
however, it is not proven that the property always holds. 

(e) Regarding 1it(i) as a function of /3, q, r ,  ancl c, let li,(i, /3, q, r ,  c) = h f i ) .  The critical 
value ht( i ,  13, q, r ,  c) is nonclecreasing in J ancl nonincreasiiig in r and c in Figures A l ,  
A3, and A4. These properties don't conflict with our intuit ion: however, they are not 
also verified. 

( f )  Figure A2 shows that l t t( i ,  ,3, q ,  1 . .  c) is not always monotone in q. In fact, in Fig- 
ure A2(b),  if t = 5, i  = 3, $ = 1 ancl c -  = 0.1. then we have 11,(i, Â¥j 0.3, r ,  c) = 0.419 - + - .  

(a) fi = l,q=O.3,1=0.1 ,c=0 

(d) fi=O.9,q=0.3,r=O. 1 ,c=O 

n . - w 

s- 

o.: 

( 

(b) fi =l,q=0.3,r=OA,c=O.l 

(e) fi =0.9,q=0.3,r=O. 1 ,c=0.1 

Figure 3. Rela,tions between I?,<(?') a,nd i 

(f) fi =0.9,q=0.3,r=O. 1 ,c=0.005 

(a) f i  = l ,q= l ,c=0 (b) fi =0.9,q= 1 ,c=O. 1 (c) f i  = l  ,q=l ,c=0.4 

Figure 4. Relations between hi( i )  and i for q = 1 
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/ I . , ( ; ' ,  9.0.6,  r ,  c )  = 0.470. . and lit(i,  3.0.9, r ,  c) = 0.437 - - - .  Such property lea'ds us to  
t,he existence of two crit,ical values in terms of t'he l~it~ting pr~babil i t~y in t,he following 
sense. Suppose t,here exist several hiint,ers whose a,bilities for hunting, e d u a t e d  by each 
liit,t'ing probability q, are different,, a,nd a target of value w appears. Let q* a,nd f 11e 
the t,wo hitt,ing pr~babilit~ies corresponcliiig to t,he target. value w as been indicat,ecl in 
Figure 5. Then, the optimal decision policy is to shoot for l~unt~ers with q <: q., and not, 
t,o shoot for hunters w.it.11 q, < q < q*, a,nd aga,in tlo shoot for hunt,ers wit,h q* 5 q. 

Table 1. Values of Df (c )  (q = 0.9. 1% = 0.1) 

Figure 5 .  Exist,ence of (L and qx 

t 
0 
1 
2 
3 
4 
5 

10 
50 

100 
500 

1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 
5000 

; ? = 0 . 9 , ~ = 1 0 - 2  

0.36755000 
0.19188098 
0.15190272 
0.13178598 
0.12041073 
0.11373292 
0.10474813 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 
0.10410564 

, ^ = l , r = 1 0 - ~  

0.40850000 
0.21291981 
0.16463288 
0.13661378 
0.11747495 
0.10330834 
0.06461562 
0.00998829 
0.00015102 
-0.00194995 
-0.00 194995 
-0.00194995 
-0.00194995 
-0.00194995 
-0.001 94995 
-0.00194995 
-0.00 194995 
-0.00194995 
-0.00194995 

; : ( = l , c = 1 0 - ~  

0.40949000 
0.21395330 
0.16586718 
0.13805264 
0.11911669 
0.10515039 
0.06742139 
0.01818530 
0.00946883 
0.00126448 
0.00007398 
-0.00015226 
-0.00018908 
-0.00019427 
-0.000 19494 
-0.00019502 
-0.00019503 
-0.00019503 
-0.00019503 

3 = 1 , ~ = 1 0 - ~  

0.40949900 
0.21396271 
0.16587843 
0.13806577 
0.11913169 
0.10516724 
0.06744734 
0.01828057 
0.00964782 
0.00194734 
0.00085488 
0.00045219 
0.00024057 
0.00011673 
0.00004239 
-0.00000193 
-0.00002805 
-0.00004304 
-0.00005149 
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( 8 )  The critical value / I ( ( ? )  can be guessed to be always iionclecreasing in t for all i > 1 
as scon in Figures 3 and 4. This can be proven in tlie case of 13 = 1 and c = 0, but 
unfortunately, cannot be verified in other cases. 

10. Conclusions 
a Optimal Decision Policy 

First, we outline the case of c < ;3q/1. If the hunter has at least one bullet,, then it is optimal 
to  go hunting. Suppose he sees a target of value w when he has i bullets and t periods 
remain. Then, the following can be said: 

( a )  If w < hf( i ) ,  then it is optimal not to shoot and to search for tlie next target by paying 
a search cost c. 

(11) If Ã§ > h t ( i ) .  2 I ; ( ( /"  - l ) ,  . . . . w 2 h t ( i  - k )  and w < Itt(?' - k - 1) for a certain k such 
as 0 5 A- < i - 1, then it is optimal to continue to fire until at least one of the following 
three events occurs: he gets the target, the number of remaining bullets becomes less 
than i - k (i.e., up to at most k bullets) or it runs away. 

( c )  If w > hf (k )  for all k = 1.2. .  . . . i .  then it is optimal to  continue to fire until at least one 
of the tliree events stated in Section 6(c) occurs. 

Next, we summarize t,he policy in t,he case for c > Bqp. When there remain f periods 
and i bullets, the optimal policy is as follows: 

( a )  If < ~ ( c ) ,  then it is optimal not to go hunting over the whole planning horizon. 
( 1 ) )  If 1 > ~ ( c ) ,  then it is optimal to go hunting until the number of bullets in hand becomes 

less than ~ ( c ) ,  and the optimal decision policy for firing is the same as tlie case of 
c < / ^ / 1 .  Suppose the number becomes less than ~ ( c )  during hunting. Then, he should 
not go shooting from the next time point on. However, if he has not got the present 
target yet and it still remains. then it is optimal to continue to fire until at  least one of 
the three events stated in Section 6(c) occurs. 

Properties of the Critical Value l;/(i) 

We have obtained the conclusion that,  if c = 0, then hf(i) is nonincreasing in i for all t 2 1. 
and if c > 0, tjhen we get the following results: 

a )  If lzf(i~,) < I t f (& + 1) for a certain iÃ£ tjhen there exists 4 > icL such that 1) t{i6) > + 1).  
(11) If i3 < 1, then there exists c\ > 0 for which b i ( i ,  c) is nonincreasing in i for all t ancl 

c â [o, c*]. 
(c) If S < 1 and p > 0, then t,here exist c* G [c,, j^qu} ancl iÃ 2 2 for which 1lt(i, c) strictply 

increases on 1 < i < ia for all t > 1 and cx < c < Pqp. 

11. Some Limitations 
We have discussed a ~ t~oc l~as t i c  sequential allocation problem wit'll search cost where a slioot- 
look-shoot policy is employed. However, it is sure t , l~at  some of the assun~ptions restrict the 
problem. We will suggest the following provisions to relax these restrictions: (a,) Hitting 
prol~abilit~y q and esca,ping prol~abilit~y r depend on the tot,al number of bullets he has shot, 
so far a,t a present target,. (b) In this paper, the action of shooting result,s in only one of two 
outcomes; "get the target" or "don't get the ta,rgetV . As a va,riation of t,llis problem, we can 
consider t,he case where part of t2he target va,lue w can be got in firing a bullet. Then, t,l~ere 
still rema,ins a decision whet,her to continue t,o shoot, in order t,o gain the rest of the target, 
value or not. (c) It may happen t>lmt more t , l~an two targets appear a t  the same time. (cl) 
He ca,n replenish some bullets by paying a cost,. 
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Appendix 
Proof of Lemma 7: We only prove the case that ht( i}  is st,rictly decreasing in i .  For the case 
that h f ( i )  is nonincreasing in i .  it can be proven by replacing > with > in the proof below. 

From the l~ypot~hesis of the lemma. Lemma 3, and Theorem 1, the following ~elat~ions hold for 
a given f 

h t ( i )  = ( ~ ( V ~ - ~ ( Z )  - vt[z - l ) ) / q ,  i > 2, ( A . 1 )  

, 0 ( 2 ~ t - l ( l )  - vt-1(2)) - c  > 0, ( A . 2 )  

2Vt-i(?:) - v f - i ( i  - 1 )  - u t - ] ( i  + 1 )  > 0,  i > 1. ( A . 3 )  
First, we examine the case of i = 1. Since v t ( i )  is the expectation of ti,&, w )  and / l t ( l )  > h f ( 2 )  
from the assumption. we get 

04.4) 

Then they yield 

& ( I ,  <) = 2 d  - ( 1  + p)q< - ( 1  - p ) ( / ^ - i ( l )  - c )  = ( 1  - p)(q< - ( ( h - i ( l )  - c)).  (A.8)  
From (A .2 )  and h t ( l )  = ( / ? ~ ~ - ~ ( l )  - c ) / q ,  we have At ( l ,<)  > 0 for 0 5 < < ht(1) and & ( I , < )  > 0  
for h t ( l )  < !-<!. Furthermore, we easily obtain A t ( l ,  ht ( 1 ) )  = Bt (1 ,  h t ( l ) )  = 0. Because F ( w )  
does not concentrate on only w = h t ( l ) ,  we get 2 v t ( l )  - ut ( 0 )  - vt(2)  > 0. 

Next, we consider the case of i > 2. In this case, dividing t,he interval of integration, [0, 11, int,o 
three subintervals, we can express v t ( i  - I ) ,  v f ( i )  and v t ( i  + 1 )  as, respectively, 

vt(2 - 1 )  = 
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where 
At(i ,<) = 2 ( , ! ? ~ ~ - ~ ( i }  - c )  - ( f i - i ( i  - 1 )  - c )  - ~ n a x { / ^ - ~ ( i  + 1 )  - c. + ( / ? v t - ~ ( i )  - c ) }  

-((I  +p)q^  + ( 1  -p) f tv t -1(2)  + f i v t - l ( i  - 1 )  - c )  

= ( 1  - P}(d + f tvt-l(i  - 1 )  - / ^ - i ( i ) ) ,  (A .14 )  

Ct(i,O = 2 ( q ( + p ~ t ( i - l . ( ) + ( l - p ) ( / ^ - l ( i - l ) - c ) ) - q ( i - l , ( )  

- ( ( l+p)q(  + P2ut(i - 1 . 0  + ( 1  - p ) p / 3 ~ ~ - ~  (i  - 1 )  + ( 1  - ~ ) P V , - ~  ( i )  - ( 1  - p2 )c )  

= ( 1  -p )q(  - ( 1  - p ) " u t ( i -  I , [ )  

+(2  - p ) ( 1  - ~ ) P v ~ - ~ ( i  - 1 )  - ( 1  - p ) / 3 ~ ~ - ~ ( i )  - ( 1  - p)'-c. (A .  15 )  
Immediately we get At (G) > 0 for 0 < < < ht ( i )  and Bt (Q) > 0 for ht ( i )  < < <: ht ( i  - 1 )  from 
(A .1 )  and ( A . 3 ) .  

Below, using induction, we shall deduce Ct(i ,  [ )  > 0 for i > 2 and hf ( i  - 1 )  < < < 1. If i = 2. 
then we get for h t ( l )  < ( < 1 

C' t (2 ,O = ( 1  - p ) q t  - ( 1  - p ) " t ^ t ( l , o  + ( 2  - p H 1  - l ) ) f l v t - l ( l )  - ( 1  - p)P^lt-1(2) - ( 1  - pI2c 

= ( 1  - P)O< - ( 1  - p12q< + ( 2  - p ) ( l  - p )Pv t - l ( l )  - ( 1  - p)Pvt-1(2) - ( 1  - 24% 
= (1 - p)p{q< - b t - i ( l )  + c )  + ( 1  - 1?)(/5(2vt-i(l)  - v t - i ( 2 ) )  - c )  > 0 (A .16 )  

owing to  (A .2 ) ,  h t ( l )  = ( / ? ~ ~ - ~ ( l )  - c ) / q ,  and ~ f ( 1 . C )  = q^, for ( > h f { i ) .  Assume C f ( i  - 1,C) > 0 
for h t ( i  - 2 )  < < 1. Noting that, uf{ i  - I , < )  = p t ( i  - 2,<) + q( + ( 1  - p ) ( / ? ~ ~ - ~ ( i  - 2 )  - c )  for 

> 1zt(i - I ) ,  we get, for i>, 3 

C t ( i , O  = ( 1  - p)q< - ( 1  - p)"(put( i  - 2,<)  + q< + ( 1  - p ) ( f l v t - 1 (~  - 2 )  - 4 )  
+(2 - p ) ( l  - p)(?vt-l(i - 1 )  - ( 1  - p),9vt-l(i)  - ( 1  - p)2c 

= p C f ( i  - I , ( )  + ( 1  -p )0(2v f - i { i  - 1 )  - v t - l ( i  - 2 )  - v t - ~ ( i ) ) .  ( A . 1 8 )  
From the inductive assumption and (A .3 ) .  it follows that Ct (G) > 0 for ht{i - 2 )  < < < 1. If 
hdi  - 1 )  < [ < h f ( i  - 2 ) ,  then rearranging (A .17)  by substitating uf{i - 2, <) = / ? ~ ~ - ~ ( i  - 2 )  - c 
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yields 
C f ( i . ( )  = (1-p)p(^  - ( l -p}2p{f3ut- l ( i -2)  - c )  

3 - ( I - p )  / fc , -1( i -2)  + ( 2 - p ) ( l - p ) / 3 ~ , - ~  ( i - 1 )  - ( l - p ) / ? - ~ , - ~  ( i )  - ( l - p ) ^ c  
Â¥" > (1-p)p/3(,ot_i(z-1) - v t - i { i -2) )  - ( l - p } - p ( f t , ( 1 ~ - ~ ( i - 2 )  - c )  

3 - ( 1  - p )  /37),-, (2-2) + ( 2 - p ) ( l - p ) Q ~ , - ~  ( i - 1 )  - (1 -  p ) / ? ? ~ , - ~ ( i )  - (1-?))'^c 

= ( 1  - p ) / 3 ( 2 ~ ~ - ~ ( i  - 1 )  - ut-1(i - 2)  - ~ ~ - ~ ( i ) )  > 0  (A .19 )  
from ( A . 1 )  and ( A . 3 ) .  Accordingly, we obtain by induction that C ( ( i ,  6 )  > 0  for all t > 0.  i > 2  
and h t ( i  - 1 )  <, f- < 1. In addition, it follows that A t ( i ,  l i t ( ^ ) )  = Bt(i ,  1 t J t ( i ) )  = 0.  From above, we 
have 2vf ( i )  - v f  ( i  - 1 )  - u t ( i  + 1 )  > 0  for i > 2  since F ( w )  does not concentrate on only ui = h t ( i ) .  
Eventually, it. follows that 2 v t ( i )  - ut ( i  - 1 )  - q ( i  + 1 )  > 0  for i > 1  if h t ( i )  is ~t~r ic t ly  decreasing 
i n i .  D 

Proof of Theorem 3: I t  is clear that u i ( l ,  c )  and u t (2 ,  c )  are continuous functions of c ? [0,  ftqp-] 
for any t .  Now, since u  ( 1 ,  c )  < q  <: 1  from Lemma 1  (d),  we have 

<, J m a x { Q ( u ( l .  c )  - ~ ~ - ~ ( l ,  c ) ) .  0 } d F ( { )  

= / ? ( u ( l .  c )  - ~ ~ _ ~ ( l .  c ) )  

<, ^ ( u ( l .  c )  - u o ( l ,  c ) )  < ̂ u ( l ,  c )  < ̂ . 
Because [? < 1, vt ( 1 ,  c )  uniformly converges to v (1 ,  c )  as t -+ oo, hence v ( 1 ,  c )  is also a continuous 
function of c. Similarly. also u ( 2 ,  c )  can be sliown to be a continuous function of c. E~ent~ually, it 
follows that D t ( c )  for any t and D ( c )  are both continuous functions of c. 

Now we obtain 0  < h f ( 2 ,  0 )  <, hf{l,  0 )  < 1  from Lemma 2  and Theorem 2. Hence. we can 
express D t ( 0 ) / Q  as the sum of three integrals similar to (A .12 ) ,  

Dt(O)//? = 2ut ( 1 - 0 )  - ̂ ( 2 , 0 )  - 0 /Q  
ht (2.0) 

Since the first and second terms of the above expression are nonnegative and the third term is 
positive, we get D t ( 0 )  > 0 for t > 0. Furthermore, (A .21)  also holds for t -+ oo because of 
h(1,O) = ,Ou(l.O)/q < /3 < 1 ,  so is also obtained D ( 0 )  > 0.  

On the other hand, it  can be easily shown for any t and any p 

vt(1, f tqu)  = qu  (A .22)  
by induction, hence u ( l , / ? q p )  = q p .  If p > 0, tvhen we get, 

v(2,ftqu) > v^ftw) 
(A .23)  

From (A .22)  and (A .23 ) .  it follows that 

D ( @ Y P )  < Dt(/3qu) < 2f3qu - 6{1 + P ) ~ P ,  - h < 0.  (A.  24)  
If p  = 0 ,  then we can inductively verify q ( 2 ,  Qqp)  = qu, for all t > 1  using u0(2. ffqp) = qu, as a 
final ~ondit~ion,  so v ( 2 ,  ftqp) = qu,. Con~equent~ly. we obtain for any t 

D ( [ j q j ~ )  = D f  ( P q p )  = 2,Oqp - Qqp - 0q[i = 0.  (A .25 )  
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Accordingly, we come to: 

(a) Let, cVt = min{c 1 Df(c)  = 0, c E [O. /-Sqpr]}.  Then, c*t > 0 for all t .  
(b)  Let c; = rnax{c 1 Dt(c)  = 0, c G [0,/^]}. Then, c: G [cXt,ftqp) for all t and p > 0, and 

c", @qp- for all t and p = 0. 
, 

Furthermore, define cÃ = cÃˆ and c" = supoo c. Then. it follows for p > (=) 0 that 
0 < c. - < c* < (=)/3qp due 6 D ( 0 )  > 0 and D([jqp-) < (=) 0. Therefore, the length of the 
interval [0, c*] is not zero for any p and /3 < 1, and the length of the interval [c*, ftqp-] is not zero 
for p > 0 and 13 < 1. With this, the proof is complete. 1 

., * 
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(a) q=0.3,r=O. 1 ,c=O.l,t= l 
5 10 i 

(b) q=0.3,r=0.1 ,c=O.l,t= 10 

Figure Al .  Sen~it~ivity of Q 

(a) j8 =l ,r=O. 1 ,c=O,t=5 (b) f i  = l ,PO. 1 ,c=0.1 ,t=5 

Figure A2. Sensitivity of q 

(a) j8 = I  ,q=0.3,c=O,t=2 (b) f i l  ,q=0.3,c=O.l,t=5 

Figure A3. Sensitivity of r 

(a) f l  =l,q=0.9,1=0.1,t=l (b) f l  =l  ,q=0.9,r=0.1 ,t=10 

Figure A4. Sensitivity of c 

(c) q=0.9,r=0.1 ,c=0.1 ,t= 10 

(c) j8 =0.9,r=O. 1 ,c=0.1 ,t=10 

(c) f i  =0.9,q=0.9,r=0.1,t=lO 
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