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Abstract We consider a global minimization problem: min{cT-c+dT 1 -c E X, y G Y ĥ, ( X ,  Y) â 
F}, where X and Y are polytopes in Rnl and Rn2, respectively; F is a closed convex set in R"~'"~; and 
Gh (h = l , ,  . . , m2) is an open convex set in Rn2. We propose an alogorithm based on a combination of 
polyhedral outer approximation, branch-and-bound and cutting plane techniques. We also show that the 
out-of-roundness problem can be solved by the algorithm. 

1 Introduction 
In this paper we consider the following minimization problem: 

min cTx+dTy 
s.t. X â X, 

Y â ‚ ¬ ~ \ r j ~  

(X, y) â 

where X and Y are polytopes in Rnl and Rn2, respectively; F is a closed convex set in 
Rndn2; and Gh (h  = 1, .  . . , m2) is an open convex set in Rn2; the vectors c and d are in Rnl 
and Rn2, respectively. In many applications the constraints in (1.1) are usually given as a 
system of inequalities, then we assume in this paper that 

where Ao, B. and ao, bo are matrices and vectors of appropriate sizes; fi (i = l, . . . , mi) 
and gh (h  = 1,. . . , m2) are convex functions. Obviously, the constraint y $ uyzlGh can be 
rewritten as gh(y) >. 0 for h = l, ..., m2. The constraint gh(y) > 0 is often called reverse 
convex constraint (see, e.g., Horst and Tuy [g]). By setting 
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Multiple Reverse Con vex Constraints 

Problem (1.1) is equivalent to the following noncanonical d. c. problem: 

1 min cTx + dTy 

Note that /(-) is a convex function. 
Problem (1.3) includes several important classes of global optimization problems, such 

as a special d.c. programming problem, a class of problems with multiplicative terms [7]. 
Moreover it certainly contains the canonical d.c. programming (see, e.g. Horst and Pardalos 

[S]) - 
Recently several algorithms [4, 7, 101 are proposed for solving a special case of (1.3) in 

which only one additional reverse convex constraint is considered. Since a single reverse 
convex constraint is not available to represent the set defined by multiple reverse convex 
constraints, their algorithm is not directly applicable to Problem (1.3). The general branch- 
and-bound algorithm is a sole method for solving Problem (1.3) (section X.2 in [g]), which 
however does not make use of the structure of the problem. Since Problem (1.3) possesses 
a special structure that the reverse convex constraints are defined only on the y-space, we 
devise an algorithm which takes advantage of this specific structure. 

Our new algorithm is based mainly on a combination of polyhedral outer approximation 
method and conical branch-and-bound in which the partition is made only in the y-space. 
Since only linear programming problems are solved in each step, it should not be costly to 
determine a solution for subproblem even if adding a new cut changes the feasible region. 
Therefore we can incorporate the cutting plane method whenever a cut is available. The 
algorithm can be regarded as a generalization of the first algorithm proposed in [7]. 

To use polyhedral outer approximation and conical subdivision we assume that 
(Al) int ((X X Y) n F) # 0. 
(A2) nzl Gh # 0 and a point yO E nZl Gh is available. 
Furthermore we require that the reverse convex constraints are essential, i.e., 
(A3) there exists a point (X*, y*) such that (X*, y*) E (X X Y) n F, y* E G and cTx*+dT < 

cTx + dTy for any (X, y) E W. 
The remainder of this paper is organized as follows. Section 2 describes a partition of Rn^"2 
based on a conical partition of Rn2. We also show how to find the lower and upper bounds 
in Section 2. Section 3 gives the algorithm and proves its convergence. In Section 4 we show 
that the out-of-roundness problem [ l ,  111 can be formulated as Problem (1.3) and describe 
the details of the method for obtaining the lower and upper bounds for this specific problem. 

2 Branching and bounding operations 
We establish a subdivision underlying the branch-and-bound algorithm in this paper. Owing 
to the special structure of the problem we first subdivide the subspace Rn2 and then build 
the subdivision on the whole space We use a conical partition as the subdivision 
of the subspace Rn2. The bounding operations are carried out by solving a series of linear 
programming problems. 
2.1 Conical partition 
Let yO, z' (i = l, ..., n2) be n2 + 1 affinely independent points of Rn2. We call the convex 
polyhedral cone { y E Rn2 \ y = 2 (2' - yO) + yO, 2 > 0 } the cone generated by 
points yO, zl, ..., zn2. The cone has exactly n2 edges emanating from point yO. Without 
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358 Y. Dai, J. Shi & Y. Yamamoto 

loss of generality, we assume that all zz are on the surface of the unit ball B(yO) = { z E 
Rn2 I 1 1  2 - y0 1 1  1 l }  with center at go. 

For a subset Y' & Rn2 a collection C of finitely many cones { Cl, ..., Ct } defined above is 
called a conical partition (see figure 1) of Y' if u & ~ C ~  = Y' and int Ci n int Cj = 0 for i # j .  
We also call a collection V = { Dl,  . . . , Dt }, where D j  = Rnl X C,, a conical partition of 
Rnl X Y'. 

Let C and C' be conical partitions of Rn2. Conical partition C' is said to be a refinement 
of C if for any C' G C' there exists a cone C G C such that C" C. 

In our algorithm we repeatedly refine the conical partition of Rn2 to yield a sequence 
{Ck }k=1,2, of conical partitions. The refinement process is called exhaustive if for every 
strictly nested sequence { C"k }k=1,2,... satisfying Ck G Ck and Ck+i C Ck for every k ,  there 
exists a vector 2 on B(yO) such that 

lim z\ = z for all i = 1, ..., n2. 
k+oo 

Figure 1: Conical Partition 

2.2 Lower and upper bounds 
Let P be a polytope containing all optimal solutions of (1.3), e.g., one can take X X Y 
as P. Then we can assume without loss of generality that P is contained in X X Y. Let 
V = { Dl, . . . , Dt } be a conical partition of R"'+"'. We consider how to compute a lower 
bound Lj of cTx + dTy over ( P  n W) n Dj  = ( P n  W) n (Rnl X C'.) for j = 1,. . . ,t. For the 
sake of brevity, we omit the subscript j and let D = Rnl X C denote a cone of the conical 
partition V = { Di, . . . , Dt } throughout this and next subsections. 

Assume that the polytope P is defined by the following system of inequalities: 

where A, B, and b are matrices and a vector of appropriate sizes. Note that P does not 
necessarily contain the whole set (X X Y) F. We propose a procedure for calculating the 
lower bound L of cTx + dTy over the set P n W n D. 

For the cone C determined by go, zl, ..., zn2 , let 6 = 2 max{9 1 y0 + 9(z - yO) G Y, z c 
B(gO) } and let 

(2.1) e h  = min{ 9, sup{@ I y0 + 9(z' - yO) G Gh }} 

for i = 1, ..., n ~ .  And define for every Gh (h = 1,. . . , m^) a set of n2 points 
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Multiple Reverse Convex Constraints 359 

We denote by Oh the ^-dimensional vector ( O l h ,  ..., en2h)T, Uh the n2 X n2-matrix (vlh - 
yO, . . , vnzh - {Y'). Define a half space Hh in Rn2 as 

Hh = { { Y E  Rn2 l y =  yO+uhAh,eT\'Â¥ l}, 

where e = (1, ..., l) T. From the choices of y0 and v lh ,  .. ., Uh is a nonsingular matrix, 
then Hh can be written as 

Then the intersection of and the cone C is written as 

and for every point (X, y) E P n (Rn1 X nzl Hh) f l  D ,  there exist nonnegative vectors 
Ah = (A1*, ...,v for h = 1, ..., mi, such that eTAh > 1 and 

Lemma 2.1 For every (X, y) E P n (Rn1 X nzlHh)  n D, Ah in (2.4) is bounded for 
h = 1, ..., 7722. 

Proof. Let h be an arbitrary index of {l, ..., m2}. From (2.4) point y with (X, y) E P n 
(Rn1 X n',"zlHh) n D is written as 

that is 
Ah = (u~)-'({Y - yO). 

Then we obtain 

l Ah l l  ^ l l  (^'Â¥)- l l l l  Y - {YO 1 1 ,  
which is bounded since y is in the polytope Y. 

Let 

The following lemma shows that L is a lower bound of cTx + dTy over the set P n W n D. 
Lemma 2.2 

(i) If P n (Rn1 X nzlHh)  n D is empty, then the optimal solution of (1.3) is not zn 
P n W n D .  

(it) If P n (Rn1 X n ; " ~ ~ )  n D is not empty, then 

~ < , m i n { c ~ x + d ~ y \ ( x , ~ )  E P n W n D } .  

Proof. From the definitions of Hh ,  C and G, we see that { y 1 y @ G }  n C C (nrzlHh) n C ,  
then 
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Therefore we obtain (ii). Moreover if P n (Rn1 X n;";,Hh) n D = 0, then P n W n D = 0. 
It implies (2). 

From the above lemma, it seems that we have to solve a linear program with a lot of linear 
constraints when m2 is large. However from Lemma 2.3 below, it is likely that we can 
remove many of such constraints of Hh ft C in computing (2.5). 
Lemma 2.3 For h,, h, E {l,. . . ,m2} if Shl > Sh2) then H^ ft C C H^ n C. 
Proof. Let y be a point of Hhl n C, then there exists a vector X  ̂> 0 such that  eTX^ > 1 
and 

Let tz = Szh1/@h2, which is well defined by Sih2 > 0, then ti > 1 and we obtain 

Note that tiAzhl > 0 for all i and E tiAihl > l. This means y ? Hh2 Cl C. 

The following lemma is derived from Assumption (A3). 
Lemma 2.4 Let (X*, y*) be a global optimal solution of (1.3)) then y* is on the bound- 
ary of G. 
Proof. Suppose that the optimal solution (X*, y*) of (1.3) is not on the boundary of G. 
Then gh(y*) > 0 for any h E {l, . . . , m,}. Let (X(\), y(A)) = (A(x*, y*) + (1 - \)(X*, y*)) for 
(X*, g*) of Assumption (A3). Then for any A E (0, l] 

cTx(A) + dT y(A) < cTx* + dT y*. 

Therefore cTx(A) + dT y(\)'< cTx* + dT y* for some A E (0, l] and gh (y(A)) > 0 for all h. By 
the convexity of X, Y and F, we also see that X('\) E X, y(\) E Y and (x(A), y(A)) c F. I t  
implies that (X(\}, y(X}} is a feasible solution of (1.3). This is a contradiction. 

After solving the linear programming problem of (2.5) we obtain an optimal solution (3, g) 
and the corresponding objective function value L. If the point (3, g) lies in P fl W ,  it is an  
optimal solution of min{ cTx + dTy \{X, y) E P n W n D }. Then the currently considered 
D need not be subdivided further. Moreover, L serves as an upper bound of the optimal 
value of Problem (1.3). 

If (3, y} 4 P n W ,  then we possibly find a feasible point of (1.3) by moving from (3, jj) 
along some specific direction. A possible choice of the direction is (c, d). Let 

and define a point (X, y) by 

(2.7) (X, y) = (X,  jj) + +(C, d) .  

If (X, y) E W,  then the value cTX + dT is an upper bound of the optimal value of (1.3). If 
(X, y) 9 W ,  then it is difficult in general to  find a feasible point of (1.3) by moving ( 2 ,  y). The 
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following technique, however, works well, for example, for the case of the out-of-roundness 
problem in Section 4. Namely we fix y and search a test point. Let 

and let A = sup{-\ 1 [(it, y), (it + \ (X - it), y)] n (X X Y) n F = 0}, where [ S ,  -1 stands for a 
closed line segment. If A < +m, then we let the test point (2, 6) be determined by 

Lemma 2.5 If A < +m, then (5,g 6 (X X Y) n F .  
Proof. Suppose (2, y) 4. ( X  X Y) F. Then we have 

By virtue of compactness of (X X Y) f1 F, there exists E > 0 such that 

It contradicts the definition of A. 

2.3 Polyhedral outer approximation and cutting plane 
At the beginning of the algorithm, we take the polytope X X Y as an initial polytope Pi 
containing ( X  X Y) n F. The algorithm generates a sequence of polytopes { Pk 1 fc = 1,2, ...} 
such that Pi 2 Pa and each Pk contains an optimal solution of (1.3). 

At the kth iteration, we construct a conical partition over some cone D chosen in the (k- 
1)st iteration. By solving linear programming problem (2.5) for all cones in the partition, 
we obtain several lower bounds. We also obtain several, possibly no, feasible points of 
(1.3), which are generated by solving (2.5) or by (2.7)-(2.9). After bounding operations (see 
Section 3 for the details) we choose a point with minimal lower bound to  obtain a point 
(zk,  yk), which is an optimal solution of (2.5) for some cone of D. If we find some feasible 
points, then choose one of them, say (X, y} having the smallest objective function value. We 
can take the inequality 
(2.10) cTx + dTy < cTx + dTiJ 

as a cutting plane if the value cTx + dT iJ is less than the current upper bound. Adding 
(2.10) to  the constraints of PI: will not cut off the optimal solution of (1.3). Moreover, if 
(zk, gk) f F ,  compute a subgradient S(zk ,  yk) of f at  (zk ,  tt,) and let 

Then the inequality 
(2.12) l k ( ~ ,  Y) 5 0 

will cut off the point (zk, yk) but no feasible points of (1.3) in Pk. Therefore we can define 
the polytope Pk+i for the next iteration by 

However, on the situation that only one of the cutting planes (2.10) and (2.12) or no cutting 
planes can be constructed, Pk+i is defined by adding the corresponding cutting plane t o  Pk 
or by Pk+i = Pk,  respectively. The latter occurs if (zk ,  yk) E F n G. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



362 Y. Dai, J. Shi & Y. Yamamoto 

3 Algorithm 

Based on the above discussion we propose an algorithm for solving Problem (1.3) as follows. 

Algorithm 
begin 

Construct a polytope Pi : Pi 2 W and a conical partition C of Rn2; 
M\ := C ; 7 := +m; k := 1; 
while M k  # 0 do 

begin 
for each C E M k  do 

begin 
Solve linear program (2.5) ; 
(x(C))  g(C)) := the optimal solution; L(C) := cT3(C) + dTg(C); 
if ( z (C))  @(C)) E W and 7 > Â£(C then 

begin 
7 := L(C); (0) := ( ~ ( c ) )  y(C)) 

end 
else 

begin 
Compute ( 2 ,  y) by (2.7); 
if ( i 7 y )  E W and 7 > cTit+dTy then 

begin 
7 := cTit+dTy; ( X ,  y )  := (it, y )  

end 
else 

begin 
Compute (5)  y )  by (2.8) with (2.9); 
if (5, y )  E W and 7 > cT5 + d T y  then 
begin 

7 := cT5 + dTY;  ( X )  y )  := (5) y) 
end. 

end 
end 

end; 
if { C e M k 1 L ( C ) < 7 } # 0 t h e n  M k + l : = { C â ‚ ¬ M k l L ( ( ? ) <  
else goto Out-of- while ; 
Choose a set C E Mk+i satisfying cTx(C) + dTy(C) = min{ L(C) 1 C E Mini }; 
Ck := C; ( x k )  y k )  := @(Ck), ~ ( c k ) ) ;  

if 7 is updated then Pk+1 := Pk n { ( X )  y )  \ cTx + d T y  5 7 }  
else Pk+1 := Pk; 
if ( zk ,  ok) <i F then 

begin 
l k  := [ ( X )  Y )  - ( x k ,  ~ k )  ]s(xk  7 y k )  + f ( x k )  %) 5 0; 
Pk+1 := Pk+l n { ( X ,  Y )  I zk(x, Y )  5 0 } 

end 
Construct a conical partition Ck of Ck; 
Mk+1 := Mk+l \ { Ck } U C k ;  k := k + l 

end 
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Out- of- while ; 
if 7 := +m then writeln( '  The problem is infeasible ') 
else writeln(' The solution is ', ( X ,  y)) 

end.  

3.1 Proof  of the validity of t h e  algori thm 
If the algorithm terminates within a finite number of iterations and 7 < +m, then clearly 
we obtain an optimal solution of Problem (1.3). If it terminates with 7 = +m, we see that 
the problem has no feasible solution. 
Theorem 3.1 If y = +m when the algorithm terminates, the problem (1.3) has n o  
feasible solution. 
Proof. Note that the algorithm terminates only if Mk+l becomes vacant and that it has 
two steps where Mk is updated: 

and 

(3.2) 

Since Mk+l does not become vacant at Step (3.2), we conclude that 

meaning (2.5) is infeasible for any C E M t .  Suppose (1.3) has a feasible solution, say (X, y). 
Then it is feasible for (2.5), and hence L(C) is finite if and only if the corresponding cone 
C contains y. Since 7 = +m throughout the execution of the algorithm, Mk keeps a cone, 
say C' containing (X, y). This implies that L(C1) is finite, which contradicts (3.3). 

Suppose that an infinite sequence { (G, jjk) }k=1,2,... is generated by the algorithm. Since the 
sequence is in compact set X X Y, and hence bounded, it has a cluster point (X*, g*) E X X Y. 
We see that the conical partition Ck consists of finitely many cones, therefore there exists 
at  least one cone of Ck containing infinitely many points of (G yk). Consequently, we can 
choose a subsequence { ( 3 k q ,  gkq) }q^i,2,... of the above sequence and a sequence {Ckq}q=1,2,.. 
of nested cones such that ( z k ,  j j k )  E Ckq . 

The following two cases can happen. 
Case(1) there exists a such that for all q > q, (Â£kq ykq) 6 F ;  
Case(2) for any q there exists q > q such that ( z k ,  j j k )  6 F .  
In order to prove the convergence of the algorithm we first prove (X*, y*) C F. If case (1) 
happens, then clearly (X*, y*) E F. Therefore we only consider case (2). For simplicity we 
assume that the points ( x k ,  y k )  does not belong to F  for every q by taking a suitable subse- 
quence of { (x i , ,  f&) } if necessary. For a positive E let us introduce a closed E-neighborhood 
P(&) of Pi, i.e., 

Then Pi W(&). 
Lemma 3.2 The  cutting plane functions { Lkq }o=l,2,... are uniformly equicontinuous o n  
p1 
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Proof. From the compactness of P(&)  we see that the convex function f ( X ,  y) is bounded 
on P(&) ,  i.e., f ( X ,  y) < M for some M .  By the definition of subgradient 

and consequently 

holds for all ( X ,  y) E P ( & )  and for all k .  Suppose that { S ( z k q ,  f i q )  1 q  = 1,2, ... } is 
unbounded, then there exists a t  least one unbounded component of S (xkq ,  y k ) .  We as- 
sume without loss of generality that the first component of S(Zkq ,  v i e )  is unbounded. By 
( zkq ,  j j k q )  E Pi, we can take a point ( X ,  y) E P ( & )  such that ( X ,  y) - (ikq, ykq) = ( h e ,  0, ..., 0) .  
By choosing an appropriate sign of E ,  we have [ ( X ,  y) - (x i , ,  t /kq)]S(?kq, yic} > M for a suf- 
ficiently large q, a contradiction to (3.4). Therefore { S(xkq7  % )  1  q = 1,2, . . . } is bounded. 

Let M17 M2 and Ms be sufficiently large numbers such that  1 1  ( X ,  y) - ( G  aq) 1 1  < Mi,  
1 1  S(Zkq,  ykq) 1 1  5 M2 and 1 f ( X ,  y)l 5 M3 hold for all ( X ,  y) E Pi and for all q. Then 
llkq(x, y)l is bounded by M1M2 + M3 for all ( X ,  y) E Pi and for all q. Therefore, both 
sup{ lkq ( X ,  y) \ { X ,  y) E Pi, q = 1,2, ... } and inf{ L { x ,  y) \ { X ,  y) E Pi, q = 1,2, ... } are finite. 
The desired result follows from Theorem 10.6 of [13]. 0 

Since { lkq ( X ,  y) \  (X, y) E Pi, q = 1,2, ... } is bounded, by Theorem 10.8 of [ I s ] ,  lk, , lk,, ... 
converge uniformly to a continuous function l ,  i.e., 

lim sup \lkq ( X ,  y) - l ( x ,  y) \ = 0. 
(X,Y)â‚¬ 

We have 
Lemma 3.3 lim l tq(z iq7 i ~ ~ )  = l(x\ Y * ) .  

9- 

Proof. Since l k  converges uniformly to  l ,  we have that for every e > 0 there exists qi such 
that 

From lim ( x i , ,  gkq)  = ( X * ,  y*) and the continuity of l ,  we have lim l(Zkq , j j k )  = l (x* ,  y*), i.e., 
9+rn 9 - + ~  

for every E > 0 there exists q2 such that 

Then we have for all q > max{ ql, q2 }, 

Lemma 3.4 If l (x* ,  g*)  0 then ( X * ,  y*) G F .  
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By the boundedness of S ( x k q ,  ykq) ,  we can find a subsequence of S ( x k q ,  gkq)  converging to  a 
vector S. Therefore 

l ( x ,  Y )  = [ ( x , y )  - ( X * ,  Y* ) IS  + f{x*> Y * ) ,  

implying f ( X * ,  y*) = l ( X * ,  y*). By the definition of F, we have the lemma. 

Lemma 3.5 lkq ( x k q + ~  9 k q + ~ )  = l ( x *  Y * )  
q-+* 

Proof. By lim lkq (Zkq ,  ykq) = l ( X * ,  y*)  and lim ( g k q ,  j j k )  = ( X * ,  y* ) ,  we see that for every oÃ‘fo q-+w 
E > 0 there exists q1 such that 

and for every 8 > 0 there exists q2 such that 

From Lemma 3.2, we see that  { l k q ( x ,  y )  } is equicontinuous a t  ( X * ,  y*) ,  i.e., for every E > 0 
there exists 8 > 0 such that 

Therefore for every e > 0 we have that for q > m a x { q i ,  q2 } 

Theorem 3.6 ( X * ,  y*)  E F .  

Proof. Note that kq+l 2 kq+l .  Then by the definition of (a;kq+l,  & + ) ,  we see ( z k ,  ykq+i) 
^tq+l c Pkq+i, meaning 4, (Â¥ftq+l 2/iq+l) 5 0. Therefore l ( X * ,  y*)  <_ 0 by Lemma 3.5. Then 
Lemma 3.4 proves the assertion. D 

We have proved that every cluster point of the sequence { Z k ,  yk} generated by the 
algorithm belongs to F. Moreover, from Pk C X X Y for k = 1 ,2  ... we have ( X * ,  y*)  E 
( X  X Y )  H F.  
Theorem 3.7 Suppose the conical partitions generated by the algorithm are exhaustive. 
If 7 < +m then every cluster point of the sequence { (& y k ) }  i s  a n  optimal solution of 
Problem (1.3). 
Proof. Let ( X * ,  y*) be a cluster point of { (G ijk) }. Assume that  { ( x k ,  i j k )  } is a sub- 
sequence of { ( x k ,  &) } converging to ( X * ,  y*) such that ( g k q ,  ykq) E Dkq = Rnl X C k  for a 
nested sequence { C k  } of cones, i.e., C k 1  C Ckq for all g. 
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First we show y* i f .  G .  From the assumption that { C k q  } is exhaustive, there exists a 
vector Z 6 Rn2 such that y* is on the ray { y \ y = y0 + 9 ( ~  - yO) ,  9 2 O}. On the other 
hand, by the definitions of ( z k ,  i j k  ) and C k  , 

where eT\^  >, 1 and \^ > 0. From the definition of u p  in (2.2) ( where index kg is omitted 
) we see that 

By Lemma 2.1, we have that { A ;  \ h = l ,  ..., m2, q = 1,2, ... } is also bounded. Taking a 
subsequence if necessary, we obtain that 

lim @h = P h ,  lim ~ i h  = >Â¥ 
q+m kq q+m ^1 for i = 1, ..., n2 and Aih 2 1,  A"' > 0. 

Hence 

nz 

(3.6) 
-ih i h  = y O + ( z -  y 0 ) E 9  A for all h .  

1=1 

Suppose y* E G, then there exists a t  least one h. such that y* G Gho. We will show that  

(3.7) y0 + Pho(2 - yO) G 3Gho for some i. 

Suppose that y0 + phO ( 2  - yO) i f .  3Gh0 for all 2 .  Note that 9 9  is taken either as 0 in (2.1) 

or such that yO + Q ( z ;  - yO) E 9Gh0. Then for sufficiently large q 

which implies 
P = C for all i. 

Therefore from (3.6) we obtain 

From the definition of e, (3.8) contradicts the fact that y* G Y. Therefore (3.7) holds true. 
Moreover, it follows that from the compactness of 3Gho 

(3.9) y0 + e""'(Z - yO) G 3Gh0 while PhO # C for all i. 

Taking fth0 = rnin PhO, by virtue of (3.7) and (3.9), we see that  y0 + fth0 ( Z  - yO) E 9Gho. 

From y* E Gho therefore x9'h0xh < f thO = mjnmhO. On the other hand, ~ f f ' h O ~ i h O  
?. 

E fthOiihO > f f h O ,  a contradiction. It implies that y* if. G. 
Combining the above result with Theorem 3.6 we see that  (X*, y*) is a feasible solution 

of Problem (1.3), i.e., ( X * ,  y*) E W .  
Let V* be the optimal value of (1.3). Note that c T z k  + dTfjkq is a lower bound of V*, 

therefore we see that 

It implies that ( X * ,  y*) is an optimal solution of Problem (1.3). 
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4 Out-of-roundness problem 
Let P be a set of finitely many points pl,  . . . , p"1 in R". The out-of-roundness problem is 
formulated as follows. 

min R - r 
s.t. [ Ip-ph 1 1  $ R ,  h =  1 , . . . , m ,  

p - p h  1 1  >.r, h = l ,  ..., m, 
P E C ( P ) ,  

where C ( P )  is the convex hull of the set P. 

Figure 2: Out-of-Roundness Problem 

The problem is to find a pair of concentric balls one of which contains all the points 
$, . . . ,p- and the other contains none of them such that the difference of two radii is 
minimized. If the objective function R - r is small enough, we can conclude that  the given 
points p', . . . lie on the surface of a ball. 

There are several algorithms [l, 111 dealing with the problem. The proposed algorithms 
[l, 111 can solve 2-dimensional out-of-roundness problems in 0 ( m 2 )  time. To the authors' 
knowledge there are no algorithms developed for solving problems with dimensions higher 
than two. The algorithms in [l, 111 are based on constructing the nearest and furthest 
neighbor Voronoi diagrams. However, constructing the nearest neighbor Voronoi diagrams 
alone needs 0 ( m w 1 )  time, which increases exponentially with the dimension n (see 121). 
Moreover, whether the approaches in [l, 111 can be generalized to solve problems with n > 2 
is not clear. In the remaining part of this section we show that the out-of-roundness problem 
can be formulated as Problem (1.3), where the structures of X, Y, F and G of constraint 
sets are rather simple. By taking advantages of the structures, we show that  the algorithm 
proposed in the previous section can be applied efficiently to  the problem. 

We consider the problem (4.1) with the last constraint p E C ( P )  dropped, i.e., 

min R - r 
. t .  lip-ph 1 1  5 R,  h = !  , . . . ,  m, 

1 1  > r ,  h =  1 , . . . , m .  

In practice the given points p ,  . . . ,p represent the location of sample points on the surface 
of an almost round object. Therefore it is very likely that the solution of (4.2) lies somewhere 
in the convex hull of P. Let us set an assumption as follows: 
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Assumption 4.1 The optimal solution of (4.2) is in  the convex hull C ( P ) .  
The out-of-roundness problem is equivalent to Problem (4.2) under Assumption (4.1). Let 

where ei is a j th  unit vector in R". Further we define 

and consider 

min R - r 
s.t. R e X ,  ( r , p )  E Y ,  

( R , r , p )  6 F, (7- ,P)  P+' \G. 

is an open convex set. The polytope X is just an interval and the polytope Y is a hypercube 
of dimension n + 1. From the nature of this problem the ratio of m/n is usually very large. 

Theorem 4.2 Under Assumption 4.1 the problems (4.2) and (4.3) are equivalent. 

Proof. Let (R* ( 2 ) ,  r* (2 ) ,  p* ( 2 ) )  and (R* ( 3 ) ,  r* ( 3 ) ,  p* ( 3 ) )  be optimal solutions of Problem 
(4.2) and Problem (4.3), respectively. Since (R* ( 3 ) ,  r* ( 3 ) ,  p* ( 3 ) )  is a feasible point of the 
problem (4.2), 

(4.4) R'(2) - r*(2)  5 R*(3)  - ~ ' ( 3 ) .  

On the other hand, we obtain p*(2) = E;" A l p h  for some nonnegative A; such that 
S=, A; = 1 from Assumption 4.1 and R* ( 2 )  = 1 1  p* ( 2 )  - phl 1 1  for some hi E { l ,  . . . , m}. 
Therefore 
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Furthermore, p* (2) E C(P) implies a,Â 5 p,'(2) 5 8 for j = l, . . . , n. Therefore (R* (2)) r* (2)) p* (2)) 
is a feasible point of Problem (4.3). Then we have 

(4.5) R*(3) - r'(3) 5 R*(2) - r*(2). 

From Assumption 4.1 and Theorem 4.2, the out-of-roundness problem is equivalent to  
Problem (4.3)) which is solvable by the algorithm proposed in Section 3. 

To start the algorithm we choose X X Y as an initial polytope Pi containing (X X Y) nF, 
where (X X Y) n F is defined as before. Take rO to be any value greater than pO = 
max l ]  p0 - jih 1 1 .  Then the point (rO,pO) belongs to n;",,Gh, and can serve as point y0 of 

h 
the algorithm. 

Suppose that we are a t  the Ath iteration of the algorithm, let the polytope Pk be defined 

by 
Pk = { ( R , r , p )  l a t ~ + a ; r  + ~ i p  < bk}, 

where a*, a: and bk are m"-dimensional vectors, and B* is an mk X n-matrix. To obtain 
a lower bound over a set Pk n W n D, let ( r l ,  p'), . . . , (rn+l,  p"+') be points generating the 
cone C .  Since each constraint gh(r,p) < 0 defining the set Gh is very simple, a solution of 
the equation 

1 1  p0 + Oih(p2 - pO) - ph 1 1  - (rO + $"'(ri - To)) = 0, 

if any yields the value of 9th, for which (r2h, pih) = (rO,  pO) + $^(r2 - rO,  pi - p') lies on the 
intersection of 9Gh and the zth ray of the cone C. After computing the set of n + 1 points 
(rih)pih)).  . . , (rn+lyh,pn+lyh) for every h (h = 1 , .  . . ,m) ,  we have to solve a linear program 
(2.5) to obtain a lower bound and possibly an upper bound. The linear program (2.5) can 
be written as 

(4.6) 

min 
s.t. 

Recall Uh = [(rlh - rO,pl" - p'), 

then 

r =r0++Y, Vh, 

p=p0++* Vh. 

Take an arbitrary number of { 1 , .  . . , m}, for instance 1 and substitute (4.7) and (4.8) with 
h = 1 for r and p of (4.6)) respectively. Then the problem (4.6) reduces to  

(4.9) 

min R -  U i P  - rO  
~ . t .  a k ~ +  B k \ l ^  P, 

(/"A* - U ' A ~  = 0, A = 2 , .  . . , m ,  
eTAh > 1, h = 1, ..., m, 
* R  > 0, h =  1 , . . . , m ,  
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The above problem has mk + (n + l ) (m  - 1) + m constraints and (n + 1)m + 1 variables, 
and the number mk grows a t  each iteration as cutting planes are introduced. Therefore it 
is time consuming to solve this problem directly. We deal with this shortcoming as follows. 

There are lots of redundant constraints in (4.9). Using Lemma 2.3 we can remove h from 
the set { 1, .., m }  if there exists an h' such that Oh' < Oh. Let I be the remaining subset of 
{ 1, .., m } after removing all those h, relabel the elements in I as 1, . . . ,111, and relabel also 
correspondingly Uh and Xh. We consider the dual problem of (4.9). Let C, $, . . . , t?lI1-l, [ 
be dual variables of the reduced and relabeled problem (4.9), where C is a vector of mk- 
dimension, f l ,  . . . , n ^ l l  are vectors of (n + l)-dimension, and $ is a vector of (11-dimension. 
The dual problem is 

max 1 s.t. 

Note that the above problem has (n + 1)lIl+ 1 constraints. It is obvious that solving (4.10) 
is less time consuming in comparison with solving (4.9) directly. 

The other thing worth mentioning is that the methods of finding possible feasible points 
in (2.7) and (2.8)-(2.9) are extremely simple. By solving (4.10) we obtain a point (R, f ,  p). 
Suppose (R, f,p) 6 ( X  X Y )  F. Then 

1 p - p h  1 1  - F <  0 for h =  l , . . . , m .  

The value of f = sup{ T 1 r d  + y E G } in (2.7), where d = (- 1, O), y = (f, p), can be 
determined by 

f = max{f - 1 1  p - ph 1 1  \ h = 1,. . . ,m}.  

In fact the point ( fd  + g) = (f - F, p) belongs to G ,  since 

and at  least one equation holds. Then the point (?,c) = (R, F, p) in (2.7) can be determined 
by ?(c, d) + (3,  y} = ?(l, - 1 , O )  + (R, F ,  p) .  

If the point (?,c) = (h,?,?) in (2.8) is necessary, we have to determine first X = R 
satisfying (2.9), i.e., to solve the following maximization problem 

Note that (R,r ,p)  E Pk satisfies 0 5 R < 2p0. Therefore (4.11) has an optimal solution. 
The optimal solution is simply given by 

where a, and bi are the ith components of the vectors at and bk - a:? - ~ ^ p .  
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5 Conclusions 
We have proposed an algorithm for solving the global optimization problem with a set 
of reverse convex constraints by means of cutting plane techniques and branch-and-bound 
method. The out-of-roundness problem has been discussed as a special case of the problem 
considered in this paper. The techniques proposed to find a feasible point in (2.7)-(2.9) 
become very simple when applied to the out-of-roundness problem. The proposed method 
formulating a computational geometry problem as a global optimization problem is also suc- 
cessful for the largest e m p t y  sphere problem (see Shi and Yamamoto [3]). This is a concrete 
example using continuous approaches to discrete optimization problems (see Pardalos [12]). 
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