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Abstract We consider the so-called secretary problem, in which an offer may be declined by each applicant 
with a fixed known probability q (= 1 - p 0 < q < 1) and the number of offering chances are at most 
m (> 1). The optimal strategy of this problem is derived and some asymptotic results are presented. 
Furthermore we briefly consider the case in which the acceptance probability depends on the number m of 
offering chances. 

1. Introduction 
We consider a variation of the sequential observation and selection problem, often referred to 

as secretary problem and studied extensively by Gilbert and Mosteller[3]. The basic framework 
of the classical secretary problem can be described as follows. N applicants appear one by 
one in random order with all N! orderings equally likely. We are able, at any time, to rank 
the applicants that have so far appeared according to some order of preference. As each 
applicant appears, we must decide whether or not to make an offer t o  that applicant with 
the objective of maximizing the probability of choosing the best over all. It is assumed that 
each applicant accepts an offer of employment with certainty and that previously passed over 
applicants cannot be recalled later. 

Smith[6] generalized the classical secretary problem to allow the applicant the right to refuse 
an offer of employment with a known fixed probability q (0 < q < l), independent of his/her 
rank and the arrangement of the other applicants. In other words, each applicant only accepts 
an offer with probability p = 1 - q. Offers can be made indefinitely until an offer is accepted in 
Sinith[6]. To examine the effect of the number of offers, we reconsider here the Smith's problem 
under the assumption that only a predetermined number m of offers can be made (see Ano 
and Tamaki[l], and Tainalci[7] for other modifications of the Smith's problem). We call this 
problem m-problem. To solve the m-problem, we must solve the (m-l)-,(m-2)-,- Â ¥  1-problems 
sequentially. Hereafter, we call an applicant candidate if the applicant is relatively best, i.e., 
the applicant is more preferred to all those preceding him/her. Obviously the optimal strategy 
only gives an offer to a candidate. In Section 2, it is shown that the optimal strategy for the 
m-problem is thresl~old type and described as follows: pass over the first sm - 1 applicants 
and give an offer to the first candidate that appears. It is also shown that sm is non-increasing 
in m. In Section 3, some asymptotic results will be given. We have so far assumed that the 
acceptance probability is always constant. In Section 4, we briefly consider the case in which 
this assumption dose not hold. Let pm be the acceptance probability when we are allowed to 
make m more offers. It can be shown that for some particular values of pm, m = 1,2, -, the 
optimal strategy gives an offer not only to a candidate but also to a non-candidate. 

© 1996 The Operations Research Society of Japan



308 K. Ano, M. Tamaki & M. Hu 

2. The m-problem 
Let .Xn denote the relative rank of the nth applicant among the first n applicants(rank 

1 being the relatively best). Since the applicants appear in random order, it is easy to see 
that Xn,  i <: n <, N ,  are independent random variables with P(Xn = i) = 1/n, 1 < i < n. 
Note that, if Xn = 1, the nth applicant is called candidate. Define the state of the process as 
(n,m),  1 < n, n2 < N ,  when we confront the m-problem and observe that the nth applicant 
is a candidate. In state (n, m), we must decide either to give an offer or not to the current 
candidate. Our trial is said to be a success if we can employ the overall best. Let wn("^ be the 
probability of success starting from state (n, m). Also let u ~ ( ~ ) ( v ~ ( ~ ) )  be the corresponding 
probability when we make an offer (when we do not make an offer) to the current candidate 
and proceed optimally thereafter. Then, by the principle of optimality, we have 

The boundary conditions are vn(0) = 0 for all n,, v f l  = 0 for m > 1 and w ~ ( ~ ) = u ~ ( ~ ) = ~  
for m > 1. The first term of right hand side in Eq.(2.2) follows since when the current ca 
ndidate accepts the offer, the probability of success is the probability that all of the (n + 
l ) th,(n+2)th,- .  - ,Nth applicants are not candidate, that is, P(Xn+1 > 1, , XN > 1) = n/N. 
The second term of right hand side in Eq.( 2.2) follows since when the offer is declined, the 
m-problem enters into the (m - l)-problem. Now repeated use of (2.3) yields 

Throughout this paper, the vacuous sum is assumed to be zero. Let Bm be the one-stage 
look-ahead stopping region for the m-problem, that is, Bm is the set of state (n, m) for which 
giving an offer immediately to the current candidate is at least as good as waiting for the next 
candidate to appear to whom an offer is given. Thus 

Let An"") = {uim) - ~ J ' s ~ + ~ ( n / j ( j  - l))!*$""}{~/n}. Then Bm = {(n,m) : 2 O }  and 
A;") can be written as follows from (2.2) and (2.4): 

It is well known that if & is closed, e.g., Bm = { (n ,  m) : n 2 S;} for some specified integer 
S', then Bm gives the optimal offering region for the m-problem (see,e.g., Ross[4]). The fol- 
lowing theorem is the main result of this section. 
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Theorem 1 Let S', = {min{n : A:") 2 O } .  Then Bm is written as Bm = { ( n ,  m )  : n 2 S',} 

and gives an optimal offering region for the m-problem. Moreover S* is non-increasing in m. 

Proof. It suffices to  show that (i) for fixed k ,  if A?) 2 0 for some n then A:) 2 0 for all - 
j > n + 1, and (ii) for all n,  A?"̂  >, A^. We show these by induction on k.  The assertion 
for k = 1 is immediate since we have from (2.5) 

which is obviously increasing in n and 

Assume both (i) and (ii) hold for k = m. Then the optimal strategy for the m-problem 
gives an offer to  t,he candidate which appears after or on s",here S; = min{n : A^,'") > O}. 
Therefore for j > sE2, 

and for j < S;, 

Consequently we have 

Substituting (2.6) into (2.5), we have 

ALÂ¡'+~ = At" + g 

j=msax(n+l,s&) j - l  

When n + 1 < S* since the summation in the right hand side of the above equation is non- 
negative constant from the definition of S", and A? is increasing in n ,  Aim+') is increasing in 
n. That is, 

When n + 1 > S;, from the definition of S; we have A? 2 0 for j = n + 1, . , N. Thus from 
the hypothesis (ii) with k = m, 

Inequalities (2.8) and (2.9) imply that (i) holds for k = m + 1. 
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Now S;+! can be written as s k i  = min{l < n 5 S; : AV 2 O} and can be 
written as 

Therefore we have from (2.7) and (2.10) 

where the first inequality follows from s:+~ < S: and the second follows from the induction 
hypothesis. Thus (ii) for k = m + 1 is established, which completes the proof. 

Tables 1,2 and 3 give the values of S:, S;, S$ and the maximum probabilities of success of 
the 1-,2- ,3-problems for various values of p and N. Tables 4 and 5 give the values of S*,, - , S$ 

and the maximum probabilities of success of the 4-,5-,6-,7-problems for specified values of p 
and N. Note that the probability of success for the m-problem can be given by W \  for each 

Table 1. p = 0.3 

Table 2. p = 0.5 
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Table 3. p = 0.9 

Table 4. p = 0.3 

Table 5. p = 0.9 

3. Asymptotic Results 
It is of interest to  investigate the asymptotic behavior of S ' ,  when N tends t,o infinity. If 

we let n / N  -  ̂X as N -  ̂W, then, from (2 .7) ,  AS,") becomes an Riemann approximation t o  

where s;_l = limy- s;.i/N. Since 3; is the unique root X E ( 0 ,  of the equation 
A ( ~ ) ( X )  = 0 ,  we have 
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where 

Then 3; = exp{- l} and 

1 
= /l ^ LP(l + log y)dy = -p. 

e-  Y 

From (3.2), we get 3; = exp{-(l + q/2)}. Substituting AW{X) = p ( l  + logx) into (3.1) with 
m = 2, we have 

{ P(l + 1% X) + kpq, O < x < s \  AW(x) = 
p( l  + p log X) - },pq1og2x, 3; <: X < 1. 

Applying the above expression to  (3.3) for m = 3 yields 

Thus from (3.2), we have 

In a similar way, we have 

It is conject'ured from Smith's result that as m -+ oo, 

The limiting probability of success for the m-problem is expressed by 3; - , G as follows. 

Corollary 2. The limiting probability of success for the m -problem is given by 

PS'; + ~ q 3 ; - ~  + pq'̂ ;-a + - + Pqm-13;. 

Proof. We have from (2.1),(2.2) and (2.4) 

If we let n / N  -+ x as N -+ m, then v? becomes a Riemann approxima~tion to 
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where 

On the other hand, 3; satisfies ~ ^ ( 3 * , )  = 0. Therefore as a Riemann approxin~ation to 
the equation (2.5), we have 

Thus substituting (3.5) into (3.6), 

%-&-l) g 
p + $ v ( m - l ) ( ~ ~ _ l )  + p log 3; - q{^_& 

1 L) dy + /l  v (m- l ) (~ )  d y }  = 0. 
sm y2 S k - 1  y2 

Solving the above equation, we obtain as another expression for 3; 

4. When the acceptance probability is not constant. 
Here we consider the case where the acceptance probability is not constant. In this case, it 

may occur that an optimal strategy makes an offer to a non-can didate for some values of pm. 
Thus, to describe the evolution of the process completely, we must introduce, in addition to 
state (n, m), additional state < n, m > , where we confront the m-problem and observe that 
the nth applicant is a non-candidate. Let G'"'), and be defined for state < n, m > , 
as quantities corresponding to wim), uim) and v?. Then letting qm = 1 - pm, we have, from 
the principle of optimality 

Since u p  2 iikm), it is easy to see that 
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(i) If it is optima.! to make an offer in state < n,  m >, it is also optimal to make an offer in 
state (n, m). 

(ii) If it is optimal to make no offer in state (n, m ) ,  it is also optimal to make no offer in state 
< n , m  >. 

We give some numerical examples for the 3-problem assuming N = 100 . To describe the 
optimal offering region, we use the following nota,tions. 

Example 1 (p1 = 0.9, p2 = 0.6, p3 = 0.3) 

Gi = {( l ,n )  : n, > 38},G2 = {(2,n) : n > 28}, 
G3= {(3 ,n ) :  n > 14},Gm, 1 < nl $ 3, are empty, 

W '  = 0.248302. 

Example 2 (pl = 0.3, p2 = 0.6, p3 = 0.9) 

Gi = { ( l , n )  : n 2 38},G2 = {(2,n) : n 2 34}, 
G3 = {(3, n) : n > 36}, Gm, 1 $ rn < 3, are empty, 
W;-" = 0.346008. 

Example 1 treats the case where pi is decreasing, while Example 2 treats tlhe case where pi is 
increasing. The optimal strategy for Example 2 can be summarized as follows : pass over the 
first 35 applicants and then give an offer to  a candidate successively. The next example gives 
a case where the set Gm is not empty. It seems that such a thing can occur where the values 
of p2 or p3 are small compared with the value of pi. 

Example 3 (pi = 0.9, p, = p3 = 0.1) 

G1 = {( l ,  n)  : n > 38}, is empty, 

G2 = {(2,n) : n >  15}, 6 2 = { < 2 , n > : 4 1  < n $ 9 9 } ,  
G3 = { ( 3 , n ) : n > l 0 } ,  G 3 = { < 3 , n > : 4 l  < n < 9 8 } ,  

U = 0.293058. 
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