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Abstract This p p e r  considers a nunpreemptive priority queue with two classes of customers. Customers 
in each priority class arrive to the system according to a Markovian arrival process (MAP). Since the 
MAP is weakly dense in the class of stationary point processes, it is a fairly general arrival process. The 
service times of custcomers in ea,ch priority class are independent and identically distributed according to a 
general distribution function which may differ among two priority classes. Using both the generating function 
technique and t,he matrix analytic method, we derive various formulas for the queue length and waiting time 
distributions. We also discuss the algorithmic implement ation of the analytical results along with numerical 
examples. 

1. Introduction 
In many situations, customers impose different requirements on the system. In order to  

provide a solution which satisfies the particular requirement for each customer, a priority 
mechanism must be employed. Thus, the priority queue is one of the fundamental models 
in queueing theory and there exist a number of papers which study priority queues, e.g., 
[10, 18, 24, 25). Recently, broadband integrated services digital network (BISDN) has , 

emerged as an important field in which the priority mechanism is expected to be employed. 
Namely, BISDN is expected to  provide services to such diverse traffic as video, voice and 
data. These traffic types have very different needs as far as quality of service is concerned. 
One of the promising ways to provide services is to  implement a priority mechanism among 
traffic classes [27]. 

Most of the existing works on priority queues have assumed that the arrival process of 
customers in each priority class follows a Poisson process. The Poisson process, however, 
may not be suitable to describe bursty traffic such as video and voice, where there exists a 
fair amount of correlation and variation [6, 91. This paper studies a priority queue under 
the assumption that customers in each priority class arrive to the system according to a 
Markovian arrival process (MAP) which was introduced in [14]. The MAP includes as 
special cases the Markov modulated Poisson process ( M M P P )  and the superposition of 
phase-type renewal processes. Recently, Asmussen and Koole have shown that the MAP is 
weakly dense in the class of stationary point processes [2]. Therefore, the MAP is a fairly 
general process and has a capability of representing the correlation inherent in bursty traffic 
such as video and voice. 

More specifically, we consider a nonpreemptive priority MAP/G/ l  queue with two pri- 
ority classes of customers. The system consists of a single-server and a buffer of infinite ca- 
pacity to accommodate arriving customers from both priority classes. The service times of 
customers in each priority class are independent and identically distributed (i.i.d.) accord- 
ing to a general distribution function (DF) which may differ from one another. Customers 
are served under the nonpreemptive priority discipline [25]. The nonpreemptive priority 
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discipline is also called the head-of-the-line priority [10]. 
Let us review the related works. Machihara [l71 and Sugahara et al. [23] have studied 

priority queues with two priority classes assuming correlated arrivals of high priority cus- 
tomers and Poisson arrivals of low priority customers. Takine et al. [28] have studied a non- 
preemptive priority MAP/G/ l  queue with many priority classes, where a common service 
time distribution among different priority classes is assumed. Also Takine and Hasegawa 
have studied the workload process in the MAP/G/ l  queue with state-dependent service 
times and the results have been applied to characterize the waiting time distribution in 
the preemptive resume priority MAP/G/ 1 queue [26]. Discrete-time priority queues with 
correlated arrivals have also been studied in [8, 11, 22, 271. In all of those four papers, 
the service times of customers in all classes are assumed to be constant and equal to the 
slot size. As a result, the performance of high priority customers can be evaluated without 
considering lower priority customers. 

Queueing systems wit h MAP arrivals have been analyzed through the matrix analytic 
method developed by Neuts [19]. Readers are also referred to [20, 15, 161. Note that the 
matrix analytic method allows no more than one random variable to have the countably 
infinite space for the description of system dynamics. However, the model considered in 
this paper requires two mutually dependent random variables, each of which is defined in 
the countably infinite space (i.e., the number of customers in each priority class). Thus, a 
straightforward application of the matrix analytic method does not help solve the model. In 
this paper, using both the generating function technique and the matrix analytic method, 
we derive various formulas for the queue length and waiting time distributions in each 
priority class. We also discusses the algorithmic implementation of the analytical results 
and provide our experience in computing various quantities of interest. 

The remainder of this paper is organized as follows. In section 1, the queueing model 
and some preliminary results are described. In sections 2 and 3, we analyze the queue 
length and waiting time distributions of high priority customers and of low priority cus- 
tomers, respectively. In section 4, the algorithmic implementation of the analytical results 
is discussed, along with numerical examples. Finally, in section 5, we provide concluding 
remarks. 

2. MATHEMATICAL MODEL AND PRELIMINARY RESULTS 
There are two priority classes of customers. High priority customers arrive to the system 

according - to - a MAP (Markovian Arrival Process) with representation (CH, EH), where 
CH and DH are MM X MH matrices. denotes the number of states in the underlying 
Markov chain which governs high priority arrivals. A l~o~lowpr io r i ty  customers arrive to 
the system according to a MAP with representation (CL, DL), where CL and EL are 
ML X ML matrices. As for the details of the MAP, readers are referred to section 2.1 of 
[14]. In Appendix, we reproduce the definition of the MAP from [14]. Let AH (resp. A L )  
denote the mean arrival rate of high (resp. low) priority customers. We then have 

where e denotes a column vector with all elements equal to one and TTH (resp. TTL) denotes 
a 1 X MH (resp. 1 X ML) vector which satisfies 

We assume that all customers arriving to the system are accommodated in the buffer of 
infinite capacity. 
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There is a single server who serves customers according to the nonpreemptive priority 
discipline. Thus once the service for a customer starts, it will proceed to completion. 
The service times of high (resp. low) priority customers are independent and identically 
distributed according to a DF HH(x) with mean hH (resp. HL(x) with mean h^). Let 
p~ (resp. pi,) denote the utilization factor of high (resp. low) priority customers, i.e., 

p~ = and p~ = ALhL. Furthermore, let A denote the overall arrival rate A H  + X L  
and p denote the overall utilization factor pu + p ~ .  We assume that all customers arriving 
to the system are eventually served, i.e., p < 1. The service times and the arrival processes 
are assumed to be mutually independent. 

Before proceeding to the analysis, we consider the superposed arrival process of two 
independent MAPS with representations (CH, E H )  and (CL, E L )  [28]. Let M be MHML. 
In order to distinguish high priority arrivals from low priority arrivals, we introduce the 
following M X M matrices: 

where @ (resp. @) denotes the Kronecker product (resp. the Kronecker sum) [5], and IH 
resp.  IL) denotes the identity matrix of the same order as DH (resp. D& 

We denote by NH,! (resp. the number of high (resp. low) priority arrivals in (O,t] 
and by St the state of the underlying Markov chain of the superposed arrival process 
at time t. Let N ( n l ,  722, t)  denote an M X M matrix whose (2, j ) th  element represents 
Pr{NHt = n h  NLIt = n2, St = j 1 So = i}. The matrices N ( n l ,  n2, t)  (nl,  n2 2 0, t >. 0) 
satisfy the forward Chapman-Kolmogorov equations: 

where N ( 0 , 0 , 0 )  = I, N ( - l ,  n2, t )  = 0 and N ( n i ,  -1, t )  = 0. Let N*(z,w, t)  denote the 
matrix generating function (GF) of N(n1,  n-2, t). For 121 5 1, 5 1 and t 2 0, we have 

The mean arrival rate \n (resp. \J_} of high (resp. low) priority customers given in (2.1) is 
now expressed as 

AH = nDfie,  AL = m e ,  

where TT denotes a 1 X M vector whose j t h  element represents the stationary probability 
of the underlying Markov chain of the superposed arrival process being in state j .  Note 
that TV is given by 

7r = TTH (g) 

and it satisfies 
7r(C+D)=O, 7 r e = l .  

In what follows, we shall provide some preliminary results given in [26], which have 
analyzed the workload process in the W / G /  1 queue with state-dependent service times. 
As explained in [26], the arrival process considered in this paper is characterized by a MAP 
with state-dependent service times. Therefore, in the rest of this section, we summarize 
results in [26], which will be used later in this paper. 
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We define Q as an M X M matrix which represents the infinitesimal generator of an 
underlying Markov chain obtained by excising busy periods. Namely, if we observe the 
system only when the server is idle, the dynamics of the observed underlying Markov chain 
is governed by the generator Q. The matrix Q satisfies 

Note here that eQx denotes the transition probability matrix of the underlying Markov 
chain during the first passage time to the idle state of the server given that the first 
passage time starts with the amount X of the initial work. Let K, denote a 1 X M vector 
which satisfies 

K,Q = 0, 

Furthermore, let V(s )  denote a 1 X M vector 
Stieltjes transform (LST) for the amount of 
unfinished work of both priority classes) when 
We then have 

whose j th  element represents the Laplace- 
work in the system (i.e., the sum of the 
the underlying Markov chain is in state j .  

where H x s )  (resp. x ( s ) )  denotes the LST for service times of high (resp. low) priority 
customers. The recursive formula for the derivatives of V(s )  evaluated at S = 0+ is found 
in [26]. In the analysis presented below, we assume the system is in equilibrium. 

Remark 2.1. K, is the stationary probability vector of the underlying Markov chain given 
that the server is idle [26]. 

3. ANALYSIS OF HIGH PRIORITY CLASS 
In this section, we consider various quantities of interest with respect to high priority 

customers. In section 3.1, we study the distribution of the number of high priority cus- 
tomers in the system immediately after departures of customers in any priority class. In 
section 3.2, we study the number of high priority customers at a random point in time. 
Finally, in section 3.3, we study the waiting time distribution of high priority customers. 

3.1. Number of High Priority Customers at Departures 
In this subsection, we first consider the joint distribution of the numbers of high and 

low priority customers immediately after departures of customers in any priority class. We 
choose the time instants immediately after departures as imbedded points. Let NH (resp. 
NL) denote the number of high (resp. low) priority customers at imbedded points and S 
denote the state of the underlying Markov chain. We define P*(z,u) ( \ z  < 1, I w I  < l) 
as a 1 X M vector whose j t h  element P a z ,  W) is given by P& U )  = E [ Z ^ W ^ I ~ = ~ } ] ,  

where I/vi denotes the indicator function of the event X. We then have 

where, for z < 1 and W 5 1, 
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Note that the ( 2 ,  j ) t h  element of matrix A* (z, W) (resp. B* (z7 W))  represents the double G F  
for the numbers of high and low priority arrivals during a service time of a high (resp. low) 
priority customer when the underlying Markov chain is in state j at the end of the service, 
given that the underlying Markov chain is in state i at the beginning of the service. (3.1) 
is interpreted as follows. The factor [P*(z, W) - P*(O, U)] represents the vector G F  of the 
joint distribution of the numbers of high and low priority customers when a high priority 
service starts at an imbedded point, while the factor [P*(O, W) - P*(0 ,  O)] represents the 
vector GF for the number of low priority customers when a low priority service starts at  
an imbedded point. Note that in the latter case, there are no high priority customers 
in the system. The factor P*(O, O)(-C)-lDH (resp. P*(0,0)(-C)- '  DL) represents the 
stationary  roba ability vector of the state of the underlying Markov chain at the beginning 
of a service of a high (resp. low) priority customer following an idle period which starts 
from an imbedded point with no customer. Taking the above facts into account, we obtain 
(3.1). 

We now consider the marginal distribution of the number of high priority customers 
in the system at  imbedded points. Let p H ( ^ )  denote a 1 X M vector whose j t h  element 
represents the GF for the number of high priority customers in the system at imbedded 
points when the underlying Markov chain is in state j. By definition, we have 

and therefore, it follows from (3.1) that 

where, for \z\ < 1, 
A^) = A*(^ l),  B&) = B*(z ,  1). 

Note here that AH(z) and BH(z)  are given by (see (3.2) and (3.3)) 

where 
C H = C + D L  

We now rewrite (3.4) as 

Note that (3.5) contains two unknown vectors P*(0 ,0 )  and P* (0 , l ) .  

Theorem 3.1. The vector P*(0 ,0 )  is given by 

Proof. Note that the total number of customers in the system is a step function with 
unit jumps. Thus, the distribution of the total number of customers immediately before 
arrivals is the same as that immediately after departures [4]. Since the server is idle with 
probability 1 -p7 the j th  element of the vector ( l  - p) n represents the stationary probability 
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that the server is idle and the underlying Markov chain is in state J' at a random point in 
time (see Remark 1). We then have 

On the other hand, K, is expressed as 

The key observation in (3.8) is as follows. Given that the server is idle, the probability 
that the underlying Markov chain is in state j at a random point in time is given by the 
ratio of the mean amount of time spent in state j during an idle period to the mean length 
of idle periods. Note that (i, j ) th  element of ( - C ) '  is the mean amount of time spent in 
state j, starting from state i, before an arrival [12]. Taking these into consideration, we 
obtain (3.8). 

It follows from (3.8) that 

from which, we obtain 

Comparing (3.10) with (3.7), we have 

(3.6) follows from (3.9) and (3.11). 
Next we consider P* (0 , l ) .  To obtain P*(0 ,  l),  we need the following lemma. 

Lemma 3.2. P*(0 ,  l ) e  is given by 

Proof. The probability that an arbitrary departuring customer is of high priority is equal 
to AH/A. Thus we have 

from which, it follows that 

Finally, we obtain (3.12) from (3.6) and (3.14). 
In order to derive the unknown vector P*(0 ,  l), we construct another imbedded Markov 

chain. Among departure points of all customers, we remove points at which high priority 
customers exist. As new imbedded points, we select only departure points at which there 
are no high priority customers in the system. 

Let ij? = ( q ! ~ ~ ,  . .) denote the stationaxy probability vector of the newly constructed 
imbedded Markov chain, where & is a 1 X M vector whose j t h  element represents the 
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stationary joint probability of having i low priority customers in the system and the un- 
derlying Markov chain being in state j at imbedded points. Furthermore, let P(w)  denote 
the vector GF of the stationary vector h: 

From the definition of the newly constructed imbedded Markov chain, we have 

from which, it follows that 

Note that W(0) has already been obtained (see (3.6) and (3.12)). 
We now consider the state transition from an imbedded point to the next imbedded 

point. Let GH(u) (lwl 5 1) denote an M X M matrix whose ( i , j ) th  element represents 
the GF for the number of low priority arrivals in a busy period of high priority customers 
when the underlying Markov chain is in state j at the end of the busy period given that 
the underlying Markov chain is in state i at the beginning of the busy period. To obtain 
GH(w), we introduce Ak(w) (lwl < 1) which satisfies 

That is, Ak(w) denotes the matrix GF for the number of low priority arrivals in the service 
time of a high priority customer when 
Using A k  (W), we have 

k high priority customers arrive in the service time. 

The key observation in (3.17) is that the number of low priority arrivals in a busy period 
of high priority customers is given by the sum of the number of low priority arrivals in 
the first service of the busy period (which is represented by Ak(w)) and the number of 
low priority arrivals in k busy periods following the first service time (which is represented 
by G&)') when k high priority customers arrive in the first service time. Similarly, we 
define Bk(w) (M < 1) which satisfies 

Note that Bk(w) represents the matrix GF for the number of low priority arrivals in the 
service time of a low priority customer when k high priority customers arrive in the service 
time. 

Using GH(w), we have the following equation for @(U): 
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With (3.17)) (3.18) becomes 

where GL(w) is defined as 

Setting W = 1 in (3.19) yields 

where GH = G H ( l )  and GL = G L ( l ) .  Note that GH corresponds to the state transition 
matrix of the underlying Markov chain during a busy period of high priority customers. 
Thus, GH satisfies (see (10) of [14]) 

Also, GL satisfies 
GL e ( c ~ + D ~ G ~ ) x d ~ L ( x ) .  

Let gH denote the invariant probability vector of the transition matrix GH, namely, 

gff = ~ H G H ,  gHe = 1- 

Note that gHGL = gH [14]. Adding @(l)egH to both sides of (3.21)) and observing that 
I - GL + egH is non-singular, we obtain 

where we use the equality G(1)e = 1. Finally, using (3.15) and (3.22)) we have the following 
theorem. 

Theorem 3.3. The vector P * ( 0 ,  l )  is given b y  

(3.23) P*(0 ,1)  = P*(0,  l ) egH + P*(0,0)(-C)- '  [DHGH + CHGL] [I - GL + egH]-' , 
where P*(0 ,0)  and P*(O, l )e  are given in (3.6) and (3.12), respectively. 

Thus P H ( z )  is completely determined by (3.5)) (3.6) and (3.23). In what follows, we 
provide the recursive formula for the derivatives of PH(z} evaluated at z = 1. Since the 
derivation of this formula is routine (see [19]), we omit the proof. 

Corollary 3.4. We define for n 2 0 

where ~ 1 0 '  = PH(l), Â  = AH(l )  and B$' = B H ( l ) .  Then PP is recursively obtained 
b Y 
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and for n > 1, 

Next we consider the probability mass function of the number of high priority customers 
immediately after departures of any priority class. Let (k  = 0,1 , .  . .) denote a 1 X M 
vector which satisfies 

rx") 

Note that the j t h  element of p? denotes the joint probability of having k high priority 
customers and the underlying Markov chain being in state j immediately after departures 
of any priority class. Furthermore, let A: and B^ denote M X M matrices which satisfies 

We then have the following theorem. 

Theorem 3.5. The vector (k = 1,2 , .  . .) is obtained by the following recursion: 

-H 
with = P*(0 ,  l), where A; and B,. are given by 

Proof. It is clear, by definition, that p: = P*(0 ,  l ) .  The recursion for (k  > 1) 
is obtained by observing the system only when the number of high priority customers is 
equal to or less than k at departures and by considering the transition to the state having 
k high priority customers. Since a very similar recursion is well known (see [21]), we omit 
the details of the proof. CI 

3.2. Number of High Priority Customers at  a Random Point in Time 
In this subsection, we derive various formulas for the number of high priority customers 

at a random point in time. To do so, we first consider the number of high priority customers 
immediately after departures of high priority customers. Let xH = (XL X?, . . .) denote 
the stationary probability vector of the number of high priority customers immediately 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Nonpreemptive Priority MAP/G/l Queue 2 75 

after departures of high priority class, where X̂  denotes a 1 X M vector whose 7th element 
represents the joint probability of having k high priority customers in the system and the 
underlying Markov chain being in state j immediately after departures of high priority 
class. Furthermore, let XH (z) denote the vector GF of the stationary vector X": 

We then have the following theorem. 

Theorem 3.6. X H ( z )  is given in terms of P H ( z )  b y  

Proof. By the definitions of XH (z) and PH (z), we have 

Noting AH( l )e  = e ,  P H ( l ) e  = 1 and (3.13), we have 

Finally, using (3.5), we obtain (3.24). 
The followings are direct conclusions of Theorem 3.6. 

Corollary 3.7. Let X" (n > 0) denote the nth derivative of X H ( z )  evaluated at z = 1, 
where X^ = X H ( l ) .  Then, for n 2 0, 

Corollary 3.8. The vector xff (k 2 0) is given b y  

Let YH(z) ( l z  5 1) denote a 1 X M vector whose ith element represents the GF for 
the number of high priority customers in the system at a random point in time when the 
underlying Markov chain is in state z. 

Theorem 3.9. YH(z)  and X H ( z )  are related b y  

Proof. (3.25) is a special case of the result in [29], which has shown the relationship 
between the stationary queue length distributions at a random point in time and at  de- 
partures in the stationary queue with batch MAP arrivals. Besides, we can show (3.25) by 
using an approach similar to [28]. D 

According to the discussion in [14], we have the following results. 
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Corollary 3.10. Let YP (n > 0) denote the nth derivative of YH(2) evaluated at 2 = 1, 

where Y" = YH(l)  = 7r. Then, Y: (n >_ 1) is obtained by the following recursion: 

Corollary 3.11. Let yf (k 2 0) denote a 1 X M vector which satisfies 

Then, yf (k 2 1) is recursively obtain by 

3.3. Waiting Time of High Priority Customers 
In this subsection, we consider the waiting time of high priority customers. For \ z  < l 

and Re(s) > 0, let AH ( z ,  S) (resp. BH (2, S)) denote an M X M matrix which represents the 
matrix GF/LST of the joint distribution of the number of high priority arrivals during the 
backward recurrence time of a high (resp. low) priority service and the forward recurrence 
time of the service time. By definition, we have 

After some calculations, we obtain 

where H'f,(s) denotes the LST of the DF Hn(x). Similarly, 

where H a s )  denotes the LST of the DF HL(x). 
For 1 . ~ 1  <; l and Re(s) > 0, let n H ( z ,  S) (resp. I I L ( z ,  S)) denote a 1 X M vector which 

represents the vector GF/LST of the number of high priority customers and the forward 
recurrence time of the current service when a high (resp. low) priority customer is being 
served. 

Lemma3.12. IJff(z,s) a n d I I L ( z , s )  aregiven by 
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Proof. The above equations are derived from the following observation. The probability 
that the server is busy for a high (resp. low) priority service at a random point in time 
is given by pH (resp. p^). Given that the server is busy for a high priority service, the 
joint GF/LST for the number of high priority customers and the forward recurrence time 
of the current service is given by the product of the vector GF  for the number of high 
priority customers immediately after the beginning of the current service (which is given 
by A{PH(z) - P'(0, l) + zP'(0, 0 ) ( -C) - 'DH}/h)  and the matrix GF/LST AH(z, S) for 
the number of high priority arrivals during the backward recurrence time of the current 
service and the forward recurrence time of the service time. These observations yield (3.26). 
(3.27) is also derived from very similar observations. 

Remark 3.13. The vector GF YH(z)  of the number of high priority customers at a 
random point in time is given by 

y H ( z )  = (1 - + lirn ITH(2 ,  S) + JIL(~,S). 
s+O+ s+O+ 

After some calculations with (3.28), we can verify (3.25). 

Let VH (S) (Re(s) > 0) denote a 1 X M vector whose j t h  element represents the LST of 
the virtual waiting time of high priority customers when the underlying Markov chain is 
in state j .  

Theorem 3.14. VH(s) is given by 

Proof. By definition, we have 

The substitution of (3.26) and (3.27) into (3.30) and some straightforward calculations 
yield 

VH(s) = (1 - /I)K + A [{l - H;(s)}P*(O, 1) - P*(0 ,  0)(-C)-' {H&(s)DH 

+ H;(s)~H}] [sI + CH + H&(~)DH]-' . 

Finally, using (3.6), we obtain (3.29). 

with V  ̂ = VH(O+) = v  and for n 2 1, 

d" d" 
hff = (-1)" lim -H&(s), h p )  = (-1)" lim -H;(s). 

+ o +  dsn S+O+ dsn 

We provide the recursive formula for V-? without proof. 
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Corollary 3.15. V" (n > 1)  is obtained by the following recursion. 

h$) + - [ n ~ f - l )  ( h g ) ~ ~  - I )  + z ( ~ ) ]  ( e r  - C - D)-' D u e ,  
1 - PH 

Let W d s )  ( R e ( s )  > 0 )  denote a 1 X M vector whose jth element represents the LST 
of the actual waiting time of high priority customers when the underlying Markov chain is 
in state j immediately after arrivals. By considering the state of the underlying Markov 
chain upon high priority arrivals, we have the following theorem. 

Theorem 3.16. W H ( s )  is given by 

Corollary 3.17. V H ( s ) e  and W H ( s ) e  are related by 

Proof. Post-multiplying both sides of (3.29) by [sI + C H  + H & ( s ) D H ] e  and noting (3.6),  
(3.12) and 
(3.32) A [P*(O, l )  + (l - ~ ) & C H ]  e = AL,  

we obtain (3.31). 

4. ANALYSIS OF LOW PRIORITY CLASS 
In this section, we consider various quantities of interest with respect to low priority 

customers. In section 4.1, we study the distribution of the number of low priority customers 
in the system at imbedded points introduced in section 3.1. In section 4.2, we study the 
number of low priority customers at a random point in time. Finally, in section 4.3, we 
study the waiting time distribution of low priority customers. 

4.1. Number of Low Priority Customers at  Imbedded Points 
To analyze the low priority class, we first consider the number of low priority customers 

immediately after departures given that there are no high priority customers at those 
instants. Recall that P(@) is defined as the vector GF for the number of low priority 
customers immediately after departures given that there are no high priority customers. 

We rewrite (3.19) as 
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We define for n > 0 

dn dn dn 
= lim -tf-(W), GP = lim -GH(w), GP = lim -GL(w), 

~1 dun - + l  dun + l  dun 

with P(0) = @(l) ,  Gg) = GH(l) and Gfl = GL(l ) .  We provide the recursive formula for 
P(") without proof. 

Corollary 4.1. P^ (n >, 0) are recursively obtained by 

where P^ = P(0)  is given in (3.22). 

Let G: and G: denote M X M matrices which satisfy 

According to the consideration similar to the proof of Theorem 3.5 ,  we have the following 
theorem for the recursive formula to compute the coefficient vector tb,. 

Theorem 4.2. The vector (k 2 1) is obtained by the following recursion: 

4.2. Number of Low Priority Customers at  a Random Point in Time 
In this subsection, we derive various formulas for the number of low priority customers 

at a random point in time. To do so, we first consider the number of low priority customers 
immediately after departures of low priority customers. Let xL = (X:, X?,  . . .) denote the 
stationary probability vector of the number of low priority customers immediately after 
departures of low priority class, where X{' is a 1 X M vector whose j th  element represents 
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the joint probability of having k low priority customers in the system and the underlying 
Markov chain being in state j immediately after departures of low priority customers. 
Furthermore, let X L ( w )  denote the vector GF of the stationary vector xi: 

Let BL(it;) (lwl 5 1)  denote an M X M matrix which represents the matrix GF for the 
number of low priority arrivals during a service time of a low priority customer. Note that 

where C L  is given by 
G = C + D H .  

Theorem 4.3. X L ( w )  is given in terms of ^^} b y  

Proof. By definition, X L ( w )  is given by 

Multiplying the numerator and denominator by P* (0, l )  e and noting (3 .15 )  and ( 3 . 3 2 ) ,  we 
obtain (4 .1 ) .  

We define for n > 0 

with X" = X L ( l )  and BP = BL(l) .  The followings are direct conclusions of Theorem 
4.3.  

Corollary 4.4. X/Â¥" (n > 1) is obtained b y  the following recursion. 

Corollary 4.5. xi (k > 0 )  is obtained 

where B^ (k  2 Q) is an M X M matrix which satisfies 
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Let Y L ( w )  (lul 5 1) denote a 1 X M vector whose j t h  element represents the GF for 
the number of low priority customers in the system at a random point in time when the 
underlying Markov chain is in state j .  Applying the result in 1291, we obtain the following 
theorem. 

Theorem 4.6. Y L ( w )  and X L ( u )  are related b y  

Since the above formula takes the same form as in Theorem 3.9, the derivatives of Y L(w) 
evaluated at w = 1 in terms of X'" and the coefficient matrices of Y L ( w )  in terms of 
xi are obtained by the same recursion as in Corollaries 3.10 and 3.11, with appropriate 
changes of notations. 

4.3. Waiting Times of Low Priority Customers 
The waiting time distribution of low priority customers in the nonpreemptive priority 

queue is identical to that in the counterpart of the preemptive resume priority queue. Since 
the waiting time distribution in the preemptive resume priority queue has been analyzed 
in more general settings than in this paper [26], we only provide the results from 1261. 

Let @ ^ ( X )  denote a 1 X M vector whose j t h  element represents the probability that the 
amount of work in the system is equal to or less than x immediately before an arrival of an 
arbitrary low priority customer when the underlying Markov chain is in state j immediately 
after the arrival. We denote the LST of W )  by % ( S ) :  

Note that % ( S )  is given in terms of V * ( s ) :  

where V ( S )  is given in (2.3). We then have the following theorem [26]. 

Theorem 4.7. The LST wL(s) for the waiting time of low priority customers is given 
by 

00 

wL(s) = 1 d G L ( x ) e Q ; ( ~ ) ~ e ,  Re(s)  > 0, 

where Q & ( s )  is an M X M matrix which satisfies 

Let ~ , f f  denote a 1 X M vector which satisfies 

where 

Q - lim Q k ( s )  = CH + D H a  
H - s+o+ 

Note here that 

&H = 9 H -  

Using the result in [26], we have the following result. 
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Corollary 4.8. The mean waiting time E[wL} of low priority customers is given by 

where 

and 

5 .  ALGORITHMIC IMPLEMENTATION AND NUMERICAL EXAMPLES 
In this section, we first consider the algorithms of the essential quantities in computing 

various performance measures obtained in this paper. Next we discuss the numerical 
implement ation of these algorithms. Finally, we show some numerical examples. 

5.1. Algorithms 
We note that Q ,  GH,  GL, A" BB", G? and G; are the essential quantities in corn- 

puting the queue length distributions. In this subsection, we provide the algorithms to 
compute these quantities. 

As for the computation of Q ,  we combine the algorithm in 1261 and the linear extrap- 
olation proposed in section 3 of [7]. That is, the approximation Q*[N] to matrix Q is 
computed in the following way. Starting with Q[0] = 0, we compute for N = 1 ,2  . . . 

where J" is a diagonal matrix so that every row sum in Q*[N] becomes zero. 
As for the computation of GH,  the detailed descriptions of the computational algorithms 

are provided in [l51 and [28]. We follow the algorithm in [28]. Namely, the approximation 
G*fr[N] to matrix GH is obtained by starting GHIO] = 0 and computing for N = 1,2, .  . .) 

G m  = GH [NI + J P  (GH [NI - GH[N - l]) , 

where J" is a diagonal matrix so that matrix G*fr[N] is stochastic and 

Furthermore, the approximation G i  [NI to matrix GL is computed by 

+ G~'(cH + DHGH[N])] n ,  

Jff (GL[N] - GL[N - l ] ) ,  
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where J :  is a diagonal matrix so that matrix G i [ N ]  is stochastic and 

Next we consider the computation of matrices A? and B?. We follows the algorithm 
in [28] for these quantities. Namely, matrices A? and B? are computed by 

where k  2 0 and matrices FP ( n  = 0,1,2, .  . . , k = 0,1, .  . . , n )  are given by the following 

recursion with F? = I: 

Once the matrices A^ and B? are obtained, the moment matrices Ar) and B" are 
computed by 

k !  
A$) = A;, B ~ = Z  k !  

( k  - n)!  ( k  - n)! 
B?. 

k=n k=n 

Next we consider the computation of the coefficient matrices G? and G[ of G H ( w )  and 
GL ( W )  

Lemma 5.1. G H ( w )  and G L ( w )  satisfy the following equations. 

Proof. According to a discussion similar to section 2 of [26], we can show that the matrix 
GF for the number of low priority arrivals during the first passage time, (governed only by 
high priority arrivals) to the idle state with the initial work X is given by 

from which, (5.5) and (5 .6)  follow. For brevity, we omit the details of the proof. 
We now consider the computation of G;. We rewrite (5.5)  as 

where 
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Let @p ( n  > 0, k > 0) denote an M x M which satisfies 

We then have from (5.7) and (5.8) 

Note here that 

(5.10) 

Comparing 

with @p) = 

the coefficient matrices of wk in both sides of (5.10)) we obtain for n > 0 

I and @F) = 0 for k > 1. 
Therefore, the approximation G^[N] to matrix G^ is obtained by starting with G^[(] = 

0 (k > 0) and computing for N = 1,2, . . ., 

where @)[NI = I @[NI = 0 ( k  > l) and @?[NI ( n  2 1, k 2 0) are recursively 
computed by 

Once the approximations G ~ N ]  to matrices G? are obtained, the approximation G: [NI 
to matrix G: is computed by 

where 

Furthermore, the moment matrices G'i,) and GP) are computed by 

k! 
G^ E k! 

(k - n)! G?[N], GP = E 
k = n  k z n  (k - "1' G W I  . 
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5.2. Stopping Criteria 
In computing matrix Q by the algorithm described in the preceding subsection, we need 

a criterion to stop the recursive computation of matrices Q[N]. Since Q[N] is entrywise 
nondecreasing and Q[oo] is the infinitesimal generator of a positive recurrent Markov chain 
261, we adopt the following scheme in computing matrix Q.  First we set CQ such that 
0 < â‚ <C 1. Then we stop the computation of Q[N] when the following stopping criterion 
is satisfied for some N = N* 

max[-Q[N*]e]i < CQ.  
I 

We then use the approximation Q*[N*] to matrix Q.  
Next we consider the computation of matrix GH. In the algorithm described in the 

preceding subsection, we need to truncate the infinite sum in (5.1) at some positive integer 
value Tff. Furthermore, we need a criterion to stop recursive computation of matrices 
GH[N]. We adopt the following schemes in computing the approximation to matrix GH. 
First we set two parameters CG and C*Q such that 0 < CQ 5 C& <C 1. Then we choose the 
truncation index ~ f f  in such a way that T: is the minimal integer value which satisfies 

Further we stop the recursive computation of GH [NI when the following stopping criterion 
is satisfied for some N = N*: 

We then use the approximation GL[N*] to matrix Gm 
In computing GE[N], we need to truncate the infinite sum in (5.2) at some positive 

integer value Tfj. We choose the truncation index Th in such a way that Tk is the minimal 
value which satisfies 

We then use the approximation GE[N*] to matrix GL.  
Next, we consider the computation of matrices A?. We need to truncate the infinite 

sum in (5.4) for each k and stop computing matrices A? at some k. We follows the scheme 
in [28]. Namely, we first set a parameter â ‚  (0 < ew l) and we choose the truncation 
index TA in such a way that TA is the minimal value which satisfies 

Then the approximation A?* to matrix A? is obtained as 

and A?* = 0 for k 2 TA + 1. Note that the approximation A?* satisfies the following 
inequality [28] : 

(5.14) i n  E A f * e  2 1-c;. 
[k:o ] i 
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Since AH( l )  = xo A? is stochastic, we scale up each row of matrices A^* in such a way 
that matrix AH( l )  becomes stochastic. 

Similarly, in computing the approximation B?* to matrix B; we follow the above 
scheme with the truncation index TB in such a way that TB is the minimal value which 
satisfies 

The rest is the same as in computing A?*. 
Finally, we consider the computation of G? and G:. In the algorithm provided in the 

preceding subsection, we need to truncate the infinite sums in (5.11) and (5.13), and stop 
computing for some k as well as N .  For convenience, we slightly modify the algorithm 
as follows. First we set Tg = max(Tg,T&). Then we compute @ [ N I  (0 <, n < TG) in 
(5.12) iteratively for N = 1,2,  . . . , and stop the computation when the following criterion 
is satisfied for some N = N* 

We use the approximation G*] to matrix G:. And then we compute the approximation 
G ~ N : ]  to matrix G; using (5.13), where the infinite sum is truncated at TG. 

Now we suppose we have computed the approximation G ~ [ N ; ]  and G ~ ' [ N ; ]  for 0 < 
k 5 K - 1 (A' 2 1). Then, we compute @<'l')[N] (0 < n < To) iteratively for N  = 1 ,2 , .  . . 
using 

and we stop the computation when the following criterion is satisfied for some N = N v  

[ G m - ]  - G;[N;- - l ] ]  . < Q. 
1,3 a 93 

We use the approximation G ~ [ N & ]  to matrix G;. And then we compute the approxi- 
mation G ~ N ; ]  to matrix G{- using (5.13), where the infinite sum is truncated at To. 
We stop the computation of G? and Gf' for some k = K* when the following criteria are 
simultaneously satisfied 

And we set G" = G;* = 0 for k > K* + 1. 

5.3. Numerical Examples 
In this subsection, we show some numerical examples assuming the following. The 

service times of high (resp. low) priority customers are constant and equal to one (resp. 
two). The arrival process of high (resp. low) priority customers is an MMPP with states 
1 to f i  (resp. M^) [19]. The underlying Markov chains for high and low priority arrivals 
transit from a given state only to its adjacent states. State transition rates for high (resp. 
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high priority - 
low priority - 

Fig.1 Mean Waiting Times as a Function of O H .  

low) priority class do not depend on the current state of the underlying Markov chain 
and are denoted by (resp. W). When the underlying Markov chain is in state j, high 
(resp. low) priority customers arrive to the system according to a Poisson process with 
density j aH (resp. ?aL). In the remainder of this subsection, we assume MH = 3, fi = 2, 
QL = 0.1, a n  = 0.25, and a^ = 0.1. It is easy to show that the utilization factors are given 
by p~ = 0.5 and p~ = 0.3, and they are independent of the values of OH and Q.L. Note 
that there remains only one free parameter OH. As decreases, the sojourn time in each 
state of the underlying Markov chain for high priority class becomes longer, so that the 
correlation in high priority arrivals becomes higher. 

Fig. 1 shows the mean waiting times as a function of OG'. The mean waiting time of low 
priority customers increases wit h the increase of the correlation in high priority arrivals, 
while the mean waiting time of high priority customers is not affected so much. This 
phenomenon is explained as follows. In the above settings, when the underlying Markov 
chain of high priority arrivals is in state 3 and that of low priority arrivals is in state 2, the 
traffic intensities of high and low priority arrivals are 0.75 and 0.4, respectively. Thus in 
such a period, the overall traffic intensity is greater than one, i.e., the system is overloaded. 
As a result, arriving customers of low priority class are accumulated in the buffer during 
the overloaded period. Fig. 2 shows the probability mass function of the queue length 
distribution in the queue with the above settings. As we expect, the queue length tail of 
low priority customers is longer than that of high priority customers. 

6. Concluding Remarks 
In this paper we studied a nonpreemptive priority MAP/G/ l  queue with two classes of 

customers, where the service times in each priority class may have a different distribution 
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number of customers 

Fig.2 Queue Length Distribution 

from one another. We derived the GF for the queue length and the LST for the waiting 
time in each class. Furthermore, as for the high priority class, we derived the recursive 
formulas to compute the mass function of the queue length, the moments of the queue 
length and the waiting time distributions. On the other hand, as for the low priority class, 
we derived the recursive formulas to compute the mass function of the queue length and 
the moments of the queue length distribution, as well as the mean waiting time. We also 
discussed the algorithmic implement at ion to compute the formulas in detail and provided 
some numerical results. 

An algorithmic formula to compute the moments of the waiting time distribution of 
the low priority class still remains as an open research issue. The main difficulty lies in 
the computation of the high-order derivatives of Q&(s)  given in (4.2). A similar difficulty 
has already been recognized in computing the high-order derivatives of the fundamental 
matrix G ( s )  in the MAP/G/l queue, which plays a central role in the matrix-analytic 
method [19]. Alternatively, we would utilize a numerical technique in [3], which enables 
us to obtain moments of a nonnegative distribution from its transform. Also, using a 
numerical inversion technique in [l], we would obtain the waiting time distribution in each 
priority class from its LST. Those numerical techniques, however, are beyond the scope of 
this paper. 

Appendix (Definition of MAP [14]) 
We reproduce the definition of MAP from [14]. Consider a Markov chain on the state 

space {l, 2,.  . . , M + l}, where {l, 2, . . . , M} are transient states and {M + l} is absorbing. 
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Absorption, starting from any state, is certain. The MAP is then defined as follows. 
Assume the Markov chain is in transient state i (1 i < M). The sojourn time in state i 
is exponentially distributed with parameter a;. When the sojourn time has elapsed, there 
are two possibilities. With probability pi,, (1 < j <  ̂ M), the Markov chain enters the 
absorbing state with an arrival and is instantaneously restarted in the transient state j .  
With probability qi,, (1 5 j < M, j # I) ,  the chain immediately enters the transient state 
j. Note that 

M M 

E qi,, + E ~ i , j  = 1, for 1 < i M. 
1=1 j=l 
J^i 

Equivalently, if we define C and D as M X M matrices whose (i, j ) th  elements are denoted 
by Ci j  and respectively, and for each i (1 5 i 5 M), we define Di,, = sip;,, (1 - < j 5 
M), Cij  = aiqi,, (1 < J<, M, j # i )  and C,, = -a,, then the elementary probability of an 
arrival in an infinitesimal interval of length dt which leaves the Markov chain in state j. 
given the Markov chain being in state i is Dijdt.  Similarly, the elementary probability of 
a transition to state j without arrivals in an infinitesimal interval of length dt, given the 
Markov chain being in state i (i # j) is Cijdt. Thus, the infinitesimal generator of the 
underlying Markov chain which governs the arrival process is given by C + D, and when 
a transition driven by D happens, an arrival occurs. 
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