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Abstract Two variants of the partial proximal method of multipliers are proposed for solving convex 
programming problems with linear constraints, where the objective function is expressed as the sum of 
two convex functions. The iteration of each algorithm consists of computing an approximate saddle point 
of the argumented Lagrangian. The global convergence is established under an approximation criterion for 
computing the saddle point. In particular, for the convex programming problem with multiple set constraints 
and the traffic assignment problem, one of the proposed algorithms can effectively be implemented on a 
parallel computer. 

1. Introduction 
With the development of computer science, parallel and distributed computation has been 
extensively studied (e.g. [2]). For convex programming problems, many researchers have 
proposed parallel algorithms based on the method of multipliers [13], the proximal point 
algorithm (4, 14, 15, 211, the splitting algorithm [7, 9, 201, the alternating direction method 
of multipliers [6, 81 and the modified trust region method [10]. On the other hand, Ha [l21 
presented a modification of the proximal point algorithm, in which only some of the variables 
are involved in the proximal term. This partial proximal method has been further analyzed 
by Bertsekas and Tseng [3], who particularly show that partial proximal minimization algo- 
rithms are closely related to  some parallel algorithms in convex programming. 

Let F : R'' + R U {+m} be a closed proper convex function, A an m X n matrix and b 
an m-dimensional vector. Consider the following convex programming problem: 

minimize F (z) 
subject to Az = b. 

The Lagrangian function I : Rn+m -> R U {+CO} is defined by 

where (-, -) denotes the inner product. It is well known [18, Theorem 28.31 that, under 
appropriate conditions, a saddle point (z*,p*) of the function l is a pair of optimal solutions 
for problem (1.1) and its dual. 

Among other things, we shall in particular be interested in the case where the objective 
function F is separable in two groups of variables, i.e., 

where z = (X, y) (X E Rnl, y E Rn2, ni + na = n) and the function g is strongly convex with 
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nlodulus Q, that is, there exists a positive constant Q such that 

for all y, y' E R 2  and A E (0 , l ) .  Then problem (1.1) is rewritten as 

minimize f ix )  + g(y) 
subject to  Alx + A2y = b, 

where A = (Al, Az). 
The purpose of this paper is to  propose two variants of the partial proximal method of 

multipliers for problem (1.4) and prove their global convergence. In particular, for problems 
with separable structure, one of the proposed algorithms can be shown to  incorporate the 
separability and effectively be implemented on a parallel computer. 

The paper is organized as follows. In Section 2, we review the method of multipliers and 
the proximal method of multipliers for problem (1.1). In Section 3, we propose two variants 
of the partial proximal method of multipliers designed to  solve problem (1.4). In Section 4, 
we give some basic results. In Section 5, we establish convergence theorems for the proposed 
algorithms. Moreover, we apply one of the proposed algorithms to  the convex programming 
problem with multiple set constraints and the traffic assignment problem in Sections 6 and 
7, respectively. 

2. Preliminaries 
A variety of methods have been developed for finding a saddle point of the Lagrangian 
function I defined by (1.2). In particular, the method of multipliers (MOM) generates a 
sequence {(z(") ,p(~))} converging t o  a saddle point of Â by the following iterative scheme: 

(z(P+l), p ( ~ + l ) )  a; arg min 

where {'y(")} is a sequence of positive numbers and Ll is a convex-concave function defined 

by 

where 1 . 1 denotes the Euclidean norm. Note that (2.1) means that the point (z("+'),p(p+') 
is an approximate solution of the min-max optimization problem on the right-hand side. 

) 

Since the function Ll is quadratic in p for any fixed 2, the inner maximization in (2.1) is 
equivalent to  computing p by 

p = - 7 (P) (Az - b). (2.3) 

Substituting (2.3) into (2.1)) we have 

Note that the computation of p by (2.3) can be carried out exactly, while the minimization 
in (2.4) to compute can generally be carried out only approximately. The method of 
multipliers [l] may be stated as follows: 
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Algorithm MOM 

Step 0: Let {7^)} be a sequence of positive numbers. Choose p(') arbitrarily. Set p := 0. 

Step 1: Compute z(p+l) by approximately minimizing #Q(.z; p^, F). 
Step 2: Let := p(p) - - , ( p ) ( ~ z ( ' - + ~ )  - 6). Set p := p + 1 and go to  Step 1. 

Rockafellar 119, Theorem 41 shows the convergence of algorithm MOM under the following 
approximation criterion for (2.4): 

where {c^} is a sequence of positive numbers such that â‚¬( < m. Generally speaking, 

it is difficult to check (2.5), because the exact minimum value inf&(z;p^, $/l^) is usually 
unknown. 

On the other hand, assuming that the function F is strongly convex with modulus /?, 
Kort and Bertsekas [16, Proposition 41 show the convergence of MOM under the following 
approximation criterion: 

dist (0, ~ l # ~ ( z ( ~ + ~ ) ;  p"-), 7"")) 5 p, 4 '""" 
where {+P)} is a sequence of positive numbers such that ?/p) < 2{3. In (2.6), Cl& denotes 
the (set-valued) subdifferential of the convex function <pi and dist(0, S) denotes the distance 
between the origin and a set S .  The criterion (2.6) is easier to  check than (2.5) in that the 
former does not contain an unknown quantity. 

The proximal method of multipliers (PMOM) is a variant of MOM, which generates a 
sequence {(z(p), ?(p))} by the following iterative scheme: 

(,@+l), p("+1)) ss arg min { max L2(z, p; ^(A, p("), 7("))} , 
z â ‚ ¬  p â ‚ ¬  

where {T^)} is a sequence of positive numbers and La is a convex-concave function defined 

Like the case of Ll ,  the exact maximizer of L2 in p is given by (2.3). Thus, by (2.3) and 
(2.7), we have 

z(H1) ss arg min (2; z"" , p("', 71"'). 
z  i- R" 

where 

To sum up, the proximal method of multipliers [l91 may be stated as follows: 
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Algorithm PMOM 

Step 0: Let {7('*)} be a sequence of positive numbers. Choose ,do) and p(') arbitrarily. Set 
p := 0. 

Step 1: Compute z(fi4^l) by approximately minimizing g52(2; z("),  p(''), 71")). 

Step 2: Let p(n4-1) := p(") - ~ ( P ) ( A , Z ( ~ + ~ )  - b). Set p := p + 1 and go to  Step 1. 

The convergence of algorithm PMOM is established by Rockafellar [19, Theorem 71, under 
the following approximation criterion: 

where {c^} is a sequence of positive numbers such that < m. Like (2.6), criterion 
(2.9) does not contain an unknown quantity. Moreover, the strong convexity of the function 
F is not required unlike algorithm MOM with (2.6). 

3. Algorithms 
In this section, we shall focus our attention to  problem (1.4). The Lagrangian C- for problem 
(1.4) may be written as 

Let us consider the convex-concave function 

Notice the difference between this function and the functions Ll and L2 defined 
(2.8), respectively. Since the function C- is strongly convex in y by assumption, 
L is strongly convex in (X, y). 

(3.1) 

(3.2) 

by (2.2) and 
the function 

Using the function L, we develop two algorithms that belong to  the class of partial 
proximal met hod of multipliers (PPMOM) . The first algorithm, called PPMOMl , generates 
a sequence {(X^), y ( ~ ) ,  p("))} by the following iterative scheme: 

where {+p)} is a sequence of positive numbers. Like (2.3), the exact maximizer of L is given 

by 
= I n )  _ ( P )  7 (AIx + A2Y - b), 

so that 

where 

Algorithm PPMOMl may be formally stated as follows: 
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Algorithm P P M O M l  

Step 0: Let {"yd} be a sequence of positive numbers. Choose X(') and p(') arbitrarily. 
Set p := 0. 

Step 1: Compute (.^;^p+'), y(p+l)) by approximately minimizing $(X, y; x ( d ,  p('Â¥) 7(p) ) ,  

Step 2: Compute p^') := p(p) - 7 (p) (Air(^') + A2y(p+l) - 6). Set p := p + 1 and go to  
Step 1. 

As an approximation criterion for the inexact minimization in (3.4)) we use 

where {c^} is a sequence of positive numbers such that E E ~ ( ~ )  < m and = min{l, 
p#^}. ( p  is the modulus of strong convexity of g.) The subdifferential of (p used in (3.5) is 
given by 

9cl>(x, Y; 2, P, 7 )  = %$(X, Y; % P, 7) X aYMx7 Y; 2, P, 7) (3.6) 

with 
1 

az(t>(x, y; 2,p, 7) = 9,{(x, y,F) + -(X - 2) + M ( ~ 1 x  + A2Y - b) 
7 

(3 .7)  

Note that, like (2.6) and (2.9)) criterion (3.5) does not contain an unknown quantity such as 
the exact minimum value of a convex function. Note however that,  owing to the quadratic 
term (fl2)IAlx + A2 y - b12, the function <j> t o  be minimized in Step 1 does not enjoy the 
separability that the given problem possesses. 

From this point of view, we propose another implementation of the partial proximal 
met hod of multipliers, which we call PPMOM2: 

(x(P+D y(P+l) ,  p ( ~ ~ + D )  a arg max min L(x,Y,P;x 

where {7(jL)} is a sequence of positive numbers. The difference between (3.9) and (3.3) 
consists in the order of min- and max-operations in computing the saddle point of L. The 
idea of reversing the order of min- and max-operations has also been considered by the 
authors [l41 for the primal-dual proximal point algorithm. 

Since the function L is separable in X and y, the inner minimization in (3.9) can be 
separately carried out in X and y. For any fixed p, let (X(p; 2, ̂),Y (p)) be the exact 
minimizer of L, i.e., 

Since L is strongly convex in (X, y) because of the partial proximal term 1/(27)1x - q2 
and the strong convexity of g, X(p;  2 , ~ )  and Y(p) are uniquely determined. Note that the 
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minimizer X(p;  2 , 7 )  in (3.10) depends on the iteration while Y (p) in (3.11) does not. By 
(3.9), (3.10) and (3.11), we have 

p('̂ ') ss arg max $(p; X('", p'"), # h ) ) ,  
p? R" 

where 

The second version of the partial proximal method of multipliers, algorithm PPMOMa, may 
then be stated as follows: 

Algorithm PPMOMz 

Step 0: Let {7('l>} be a sequence of positive numbers. Choose X(') and p*') arbitrarily. Set 
p := 0. 

Step I: Compute p("+') by approximately maximizing $(p; X^,  p(/'), fl. 

Note, in particular, that the function $ defined by (3.13) is differentiable and its gradient is 
given by 

1 
W(P; x76, 7) = - - (P - 6)  - (AiXfp;  2 , ~ )  + AsY(p) - b). (3.14) 

7 
We use the following approximation criterion for the inexact maximization in (3.12): 

where { e ( f L ) }  and { , @ p ) }  are the same as in (3.5). The convergence of these two algorithms 
will be established in Section 5. 

4. Basic results 
A pair of optimal solutions (X*,  y*) and p* to  problem (1.4) and its dual, respectively, satisfies 
the Kuhn-Tucker conditions 

In addition, (X*, ̂/*,p*) is a saddle point of the Lagrangian function l defined by (3.1). 
Suppose that problem (1.4) has an optimal solution (X*,  y*) and satisfies the constraint 
qualification 

ri(dom(f) X dom(g)) {(X,  y)IA1x + A^Y = b }  # 0, 
where ri(-) and dam(-) denote the relative interior of a convex set and the effective domain of 
a convex function, respectively. Then there exists a vector p* satisfying (4.1) [18, Corollary 
29.1.41. 
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Associated with the Lagrangian t is a point-to-set mapping Ti : -+ RTt,l+n2+m 

defined by 

Since the convex-concave function t is closed and proper [18, pp. 362-3631, the mapping Ti 
is maximal monotone [18, Corollary 37.5.21. In view of the definition (4.2) of Tl, the zeros 
of Te satisfy the Kuhn-Tucker conditions (4.1)) and hence they solve problem (1.4) and its 
dual. Notice that since the function g is strongly convex with modulus /3, Tn is strongly 
monotone with modulus Q with respect to  the second component y, i.e., 

for all (U, U, S)  E TAX, y,p) and (U', v', S') G TAX', y',pl). 
Consider the following parametrizedproblem perturbed by (U, v, S) E Rn1+n2+m: 

minimize f (X) + g ( y) - (U, X)  - (v, Y)  
( X , ~ ) E R ~ ~ + ~ ~  

subject to  Alx + A2y = b + S. 

Then we can show the next result. 

Proposition 1 Suppose that, for some constant A > 0, the parametrized problem (4.4) has 
an optimal solution, whenever max{lul, [vl, lsl} < A.  Then we have 

0 E int im(Tl), (4.5) 

where int(-) and im(-) denote the interior of a convex set and the image of a mapping, 
respectively. 

Proof. Let V(s) denote the set {(X, y) \ A p  + A2y = b + S}. It suffices to show that 

for any vector S such that 1 sl < A. Because, then, for each (U, v, S) such that max{jul, \ v \ ,  \ S \ }  

< A, there exists a Lagrange multiplier vector p associated with an optimal solution (X ,  y) 
of (4.4) satisfying 

i.e., 

U ,  U ,  s )  (= %(X, Y) P), 

which implies (4.5). 
To show that (4.6) holds for any S such that  [ S ]  < A ,  we assume to  the contrary that 

there exists some vector S' such that Is'] < A and 

Under the hypothesis of the proposition, it is obvious that 
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for any vector S satisfying Is1 < A. Therefore, we have 

where rb(-)  denotes the relative boundary of the set. Then there exists a hyperplane H C 
Rn1+n2 containing V(sl) such that (dom( f )  X dom(g)) C H+, where H+ is a half space 
defined by H .  Let H be another half space defined by H and choose (69 E in t (H7)  
arbitrarily. Then, letting = A12 + A2ij - b E Rm, we have V(sl + 6(s - S')) C int(H-) for 
any 6 > 0. Since (dom(f) X dom(g)) C H+, this implies that,  for all S > 0 small enough, 

Since 1 s'l < A, this contradicts (4.7) and the proof is complete. 

The hypothesis of Proposition 1 can be regarded as a constraint qualification for problem 
(1.4). We may expect that it usually, if not always, holds when the original problem (1.4) has 
a solution and the feasible set of problem (1.4) has a nonempty intersection with dam( f )  X 

dom(g) provided that the perturbation s is small enough. 
Recall that each iteration of both algorithms PPMOMl and PPMOM2 consists of finding 

a saddle point of the function L defined by (3.2). Any saddle point ( X ,  y ,p)  of L satisfies 

From (4.2), it follows that 

Let II : Rn1+n2+m --> Rn1+n2+m denote the projection mapping onto the space of variables X 

and p, i.e., 

q x ,  Y, P) = (X, 0, P), V(x, Y, P) E R ni +n2 +m. 

Then (4.8) can be written as 

Thus the set of saddle points of the function L may be formally expressed as the right-hand 
side of (4.9). 

We show some properties of the mapping Q = (11 + ̂ TA1 in Proposition 2, and then 
show some properties of P = QII = (11 + 7 T t ) ' I I  in Proposition 3. 

Proposition 2 Let Q = (11 + 7Tt)-'. Suppose that dom(T,) # 0. Then we have the 
following: 
(2) The mapping Q is single-valued on Rn1+n2+m. 
(ii) For any ( X ,  y, p),  (X', y', p') E Rn1+n2+m, 

where f3' = min{l, P T } .  
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Proof. (i) By [5, Theorem 2.71, it is sufficient to  show that the mapping (H+7Te) is maximal 
monotone and coercive. 

First, we derive the maximal monotonicity of (11 + 7Te). By [5, Proposition 2.101, 7Te 
is maximal monotone for any 7 > 0, since so is Te. Therefore, by [5, Theorem 2.31, the 
mapping (11 + 7Te) is maximal monotone, because 

dom(7Te) n int dom(II) = dom(Te) n Rn,1+n2+m, # 0. 

Next we show that (11 + TT{} is strongly monotone. For any (U, v, S) 6 TAX, y,p)  and 
(U', v', S') E Tl(xl, yl,p'), we have 

and 

(X', 0, P') + ~ ( u ' ,  v', S') 6 (n + 7TO(x1, Y', P'), 

respectively. Then, by (4.3)) we have 

where ,B' = inin{l, ,By}. This implies that  (I1 + 7Tl) is strongly monotone. Since the strong 
monotonicity implies the coerciveness, we have proved (i) . 
(ii) For any ( X ,  y, p) 6 R7'l +m , let (X+, y+, p+) = Q(x, y, p). (Note that the existence and 
the single-valuedness of Q(x, y, p) are assured by (i).) Then, it follows from the definition of 
Q that 

x ,  Y, P) 6 (H + 7Tt)(x+, Y+, P+)) 

for some vector (U+,  v+, S+)  E Te(x+, y+, p+). Similarly, for any (X', y', p') E Rn1+n2 7 we 
have 

(X', S', P') = (X'+, 07 P') + 7(47 V:, S'+), (4.12) 

where (X'+, y'+, p'+) = Q(xl, y',pl) and (U'+, v'+, S'+) 6 Te(x'+, !/+,p'+). By (4.11) and (4.12)) we 
have 

Since Te is strongly monotone with respect to  the second component (c.f. (4.3))) we have 

It follows from (4.13) and (4.14) that 
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where /3' = min{l, ,@}. Therefore we have 

which completes the proof. 0 

From Proposition 2, we obtain the following results immediately. 

Proposition 3 Let P = QII = (11 + ~ T ; ) - ~ I I .  Suppose that dom(Tt) # 0. Then we have 
the following: 
(i) The mapping P is single-valued on Rn1+"2+'". 
(ii) For any ( X )  y ,p))  (X', y',pl) G Rn1+TL2+m, 

where f3' = min{l, By}, 

Proof. (i) Obvious from Proposition 2 (i). 
(ii) From (4.10), we have 

This completes the proof. 

As mentioned above, each iteration of algorithms PPMOMl and PPMOMz consists of 
computing a saddle point of the function L, and hence the formulas (3.3) and (3.9) are 
regarded as particular realizations of the scheme 

where P(") is defined by 
P(") = (n + '/'"T,)-~!!. 

Note that the mapping P(") is single-valued by Proposition 3. If 11 is replaced by the identity 
mapping I in (4.17)) the iteration (4.16) becomes 

This is nothing but the proximal method of nlultipliers, of which particular realization is 
algorithm PMOM described in Section 2. 

5. Convergence 
5.1. Convergence of algorithm P P M O M l  

The purpose of this section is to establish a convergence theorem for algorithm PPMOMl. 
First, we show the following proposition. 
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Proposition 4 For any (X, y, p) E Rn1Â¥+n2+m we have 

where P = QH = (ll + - i~ , ) ' lH and 94 is given by (3.6)-(3.8). 

Proof. Let us choose an arbitrary vector W = (wl, 0'2) ? Qd>(x. y; 2 ,  p, 'y}. From (3.6)-(3.8)) 
we have 

and 

where 
p = P -  ~ ( A I X  + A i y  - h). 

In view of the definition (4.2) of Te, (5.2)-(5.4) are written as 

or equivalently, 

X ,  Y) P) = Q ( 7 w  + 2, 7^2, P), 
where Q = (I1 + 7Te)-l. (Note that Q is single-valued by Proposition 2.) From (5.5)) it 
follows that 

By Proposition 2, we have 

Since W E 9ip(x, y; ?, h7) was arbitrary, we obtain (5.1). 13 

Now, we are ready to  show the following convergence theorem for algorithm PPMOMl 

Theorem 1 Suppose that the hypotheses of Proposition 1 are satisfied. Then the sequence 
{(X(''), ^/(p), p("))} generated by algorithm PPMOMl with (3.5) converges to a vector (X*, y*, p*) 
satisfying the Kuhn- Tucker conditions (4.1) for problem (1.4). 
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Proof. Under the given hypotheses, there exists an optimal solution (X*, y*) of problem 
(1.4) together with a Lagrange multiplier vector p*, satisfying the Kuhn-Tucker conditions 
(4.1). Hence it follows from Proposition 1 that  0 E int im(T^). Furthermore, by Proposition 
4, the approximation criterion (3.5) implies 

Then, from Theorem 1 of [12], any of the limit points of the sequence {(x^y y (~ - ) ,  p(^)} is 
a zero of Tt and { ( x ( ~ ) , p ^ ) ) }  converges. Since g is strongly convex, the y-component of 
a solution of (1.4) is uniquely determined, which implies that {yl^} converges. Thus the 
whole sequence {(X^, y ( ~ ) ,  !/p*)} converges to  a solution of (1.4). 

5.2. Convergence of algorithm P P M O M 2  
In this section, we establish a convergence theorem for algorithm PPMOM2. We first 

show the following proposition. 

Proposition 5 For any (X, y,p) E , we have 

where P = (II + yTe)-lII and V$ 2s given by (3.14). 

Proof. Put,  for convenience, S. = V$(p; 2 ,  P, 7). From (3.14), we have 

where X = X(p;  5 , ~ )  and y = Y(p). Then, it follows from (3.1) that 

In view of (3.10) and (3.1 l ) ,  it holds that 

From (5.7) and (5.8), we have 

which implies that 

( X ,  Y, P) = P(?, 6, P - ̂ ). 
Therefore, it holds that 

From (5.9) and (5.10), we obtain (5.6). 

Now we state a convergence theorem for algorithm PPMOMg. 
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Theorem 2 Suppose that the hypotheses of Proposition 1 are satisfied. Then the sequence 
{(X^, y*p),  ?(p))} generated by algorithm PPMOM2 with (3.15) converges to a vector (X*, y*, p*) 
satisfying the Kuhn-Tucker conditions (4.1) for problem (1.4). 

Proof. The proof is similar to Theorem 1. By Proposition 1, we obtain 0 E int im(Tt) and, 
by Proposition 5, 

By using Theorem 1 of [ E ] ,  we obtain the desired result. 

6. Application to problems wit h multiple set constraints 
In this section, we consider the following convex programming problem: 

minimize g( y ) 
subject to y G Cl 17 C2 D n C^, 

where the function g : Rn -+ R U {m} is closed, proper and strongly convex (with modulus 
P )  and the sets Cl, C2, . . . , CN C Rn are closed and convex. We suppose that each Ci is 
individually so simple that the projection onto Ci is easy to  compute. We shall show how 
algorithm PPMOM2 can effectively be applied to  problem (6.1). 

Let us reformulate problem (6.1) in the form (1.4) as follows: For each i, let fi : Rn -+ 

R U {+m} be the indicator function of C,, namely 

0, i f x i e C i ,  
fi(xi) = +m, otherwise. 

Then problem (6.1) can be written as 

N 

minimize X /,(xi) + g(y) 
i=1 

subject to xl = x2 = = X N  = y. 

Now let AI be the n X n identity matrix I, A2 be the N n  X n matrix [-I, -I, . ,  -I]* and 
6 = 0. Furthermore, let f : RN" -+ R U {+m} be given by 

Then, we see that problem (6.2) is represented as problem (1.4). Note in particular that the 
function f has a separable structure. 

It follows from (3.10) that 

X(p;  2 , 7 ) = a r g  min 
X E R N ~  

Thanks to the separability of f, each component of X(p;  2 , y )  can be computed individually 
as 
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where pi and 2, are the i th components of p and 2, respectively, and Projc( . )  denotes the 
projection onto the set Ci. 

On the other hand, we have from (3.11) that 

Thus Y(p) is uniquely obtained by minimizing the strongly convex function subject to  no 
constraints. If the function g is separable in yj, j = 1,2,  . . . , n, then Y (p) can be computed 
componentwise. With X(p; 2 , y )  and Y(p) thus computed, the value of $(p; ?,c, 7 )  and its 
gradient V$(P; 2,@, y)  can be evaluated by (3.13) and (3.14)) respectively. Therefore, the 
maximization of $ in Step 1 of algorithm PPMOMz may be carried out using any gradient- 
type algorithm such as quasi-Newton methods. 

7. Application to traffic assignment problems 
In this section, we apply algorithm PPMOMZ to  traffic assignment problems. Consider a 
directed network G = (A/", A}, where A/" and A are the sets of nodes and arcs, respectively. 
Let 

K :  number of commodities (0-D pairs), 
xkj E R: flow of commodity k on arc j ,  
yj E R: total flow on arc j, i.e., yj = xEi X k j ,  

gj : R -+ R U {+m}: travel cost on arc j dependent on total flow yj, 
0 ( i )  C A: set of arcs originating at  node i, 
I ( i )  C A: set of arcs terminating at  node i, 
dki R: demand for commodity k at  node i. 

Then the traffic assignment problem is formulated as follows: 

minimize my,) 
j â ‚  

K 

subject to  yj = X xkj, j c A 

Note that the solution of problem (7.1) corresponds to  the Wardrop's user optimal equilib- 
rium [17]. 

Let f k  : R^ -Ã R U {+m} be defined by 

0, if E x k  = dk and xk > 0, 
f k ( ~ k )  = +m, otherwise, 

where E E ~ ^ l ~ l ~ l  denotes the node-arc incidence matrix of G = (A/", A), xk = (xki , .  . . , x ~ \ A ) *  
and dk = (dkl,. . . , dklNl)T.  Then problem (7.1) is expressed as follows: 

k=l j?A 
K 

subject to yj = x x k j ,  j E A. 
A;= l 
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Furthermore, problem (7.2) can be reformulated as problem (1.4) in Section 1 with the 
following identifications: 

AI = [I, I , .  - . ,  I]) Aa = -I, 6 = 0, 

and 

where I is the \A X Id identity matrix. 
Assuming that the functions g,, j E A, are strongly convex with modulus /3, we consider 

applying algorithm PPMOM2 to the traffic assignment problem (7.1). Since f is separable 
with respect to commodities k, X(p;  ?, 7) defined by (3.10) can be computed componentwise 

which give rise 
cost. Similarly, 

to K independent single-commodity network flow problems with quadratic 
Y(p) defined by (3.11) can also be evaluated componentwise by solving Id1 

independent univariate minimization problems, i.e., 

8. Concluding remarks 
For problem (1.4)) we have proposed two variants of the partial proximal method of multi- 
pliers (PPMOMl and PPMOM2), which compute in each iteration an approximate saddle 
point of the argumented Lagrangian L. The difference between PPMOMl and PPMOM2 
lies in the order of the (X, y)-minimization and the p-maximization in finding an approxi- 
mate saddle point. In PPMOMl, the p-maximization of L with (X, y) being fixed is easy 
to compute, but the resulting (X,  y)-minimization problem becomes somewhat complicated. 
In PPMOMz, the (X,  ̂ -minimization is separately carried out in X and y and the resulting 
p-maximization problem becomes a differentiable optimization problem. Moreover, when 
the functions f and g are in particular separable, both the X- and y-minimizations are done 
in parallel (see Section 7). 

As briefly mentioned in Introduction, some researchers have studied the partial proximal 
method. In [3], Bertsekas and Tseng extensively studied the primal version of the partial 
proximal method for convex programming problems. They also consider the dual version of 
the partial proximal method and discuss its relation with a decomposition method in convex 
programming. On the other hand, Ha [l21 established some convergence results for the 
partial proximal method. The latter paper, however, only considers a basic iterative method 
under the general framework of maximal monotone mappings. It does not give any concrete 
procedure like PPMOMi and PPMOMz, which take into account a particular structure of 
the problem to be solved. 
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Finally, we mention some other methods related to the algorithms proposed in this pa- 
per. For the special case of (1.4), where A2 = -I and b = 0, the alternating direction 
method of multipliers (ADMOM) have been proposed by Gabay [l11 (see also [2, 6, 71). 
Each iteration of algorithm ADMOM consists of three operations; the X-minimization and 
the y-minimization of the augmented Lagrangian, followed by the update of the multipiers 
p. ADMOM has turned out to  be a useful decomposition algorithm for problems with some 
separable structure [8, 91. Tseng [20] proposed an alternating minimization algorithm sim- 
ilar to ADMOM for solving (1.4), in which the function g is also supposed to be strongly 
convex. This method differs from ADMOM in that the y-minimization is done with respect 
to the ordinary Lagrangian and hence, like PPMOM2, makes the most of the separability of 
function g the original problem may have. 

Acknowledgement This work was supported in part by the Scientific Research Grant- 
in-Aid from the Ministry of Education, Science and Culture, Japan (No. 06750417 and No. 
06650443). 

References 
[l] Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic 

Press, New York, 1982. 
[2] Bertsekas, D .P. and Tsitsiklis, J.N. : Parallel and Distributed Computation: Numerical 

Methods. Prentice Hall, New Jersey, 1989. 
[3] Bertsekas, D.P. and Tseng, P.: "Partial proximal minimization algorithms for convex 

programming," SIAM Journal on Optimization, Vol. 4 (1994), 551-572. 
[4] Chen, G. and Teboulle, M.: "A proximal-based decomposition method for convex min- 

imization problems," Mathematical Programming, Vol. 64 (1992)) 81- 101. 
[5] Dolezal, V.: Monotone Operators and Applications in Control and Network Theory. 

Elsevier, Amsterdam, 1979. 
[6] Eckstein, J.: "Parallel alternating direction multiplier decomposition of convex pro- 

grams," Journal of Optimization Theory and Applications, Vol. 80 (1994), 39-62. 
[7] Eckstein, J. and Bertsekas, D.P.: "On the Douglas-Rachford splitting method and the 

proximal point algorithm for maximal monotone operators," Mathematical Program- 
ming, Vol. 55 (1992), 293-318. 

[8] Eckstein, J .  and Fukushima, M. : "Some reformulations and applications of the alternat- 
ing direction method of multipliers," in W.W. Hager, D.W. Hearn and P.M. Pardalos, 
eds., Large Scale Optimization: State of the Art (Kluwer, Boston, 1994)) 115-134. 

[g] Fukushima, M.: "The primal Douglas-Rachford splitting algorithm for a class of mono- 
tone mappings with application to  the traffic equilibrium problem," Mathematical Pro- 
gramming, to  appear. 

[l01 Fukushima, M., Haddou, M., Nguyen, V.H., Strodiot, J.-J., Sugimoto, T .  and Ya- 
makawa, E.: "A parallel descent algorithm for convex programming,'' Computational 
Optimization and Applications, to  appear. 

[l11 Gabay, D.: "Applications of the method of multipliers to variational inequalities,'' in: 
M. Fortin and R. Glowinski, eds., Augmented Lagrangian Methods: Applications to the 
Numerical Solution of Boundary- Value Problems (North-Holland, Amsterdam, 1983), 
299-331. 

[l21 Ha, C.D.: "A generalization of the proximal point algorithm," SIAM Journal on Control 
and Optimization, Vol. 28 (1990)) 503-512. 

[l31 Han, S.P. and Lou, G.: "A parallel algorithm for a class of convex programming," SIAM 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Partial Proximal Method o f  Multipliers 

Journal on Control and Optimization, Vol. 26 (1988), 345-355. 
[l41 Ibaraki, S., Fukushima, M. and Ibaraki, T.: "Primal-dual proximal point algorithm for 

linearly constrained convex programming problems," Computational Optimization and 
Applications, Vol. 1 (1992)) 207-226. 

[l51 Ibaraki, S. and Fukushima, M.: "Primal-dual proximal point algorithm for multicom- 
modify network flow problems," Journal of the Operations Research Society of Japan, 
to appear. 

[l61 Kort, B. W. and Bertsekas, D.P.: "Combined primal-dual and penalty methods for 
convex programming," SIAM Journal on Control and Optimization, Vol. 14 (1976), 
268-294. 

[l71 LeBlanc, L.J., Morlok, E.K. and Pierskalla, W.P.: "An efficient approach to solving the 
road network equilibrium traffic assignment problem," Transportation Research, Vol. 9 
(1975), 309-318. 

181 Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey, 1970. 
[l 91 Rockafellar, R.T. : "Augmented Lagrangians and applications of the proximal point 

algorithm in convex programming," Mathematics of Operations Research, Vol. 1 (1976)) 
97-116. 

[20] Tseng, P.: "Application of a splitting algorithm to  decomposition in convex program- 
ming and variational inequalities," SIAM Journal on Control and Optimization, Vol. 29 
(1991), 119-138. 

[21] Zhu, C.: "Modified proximal point algorithm for extended linear-quadratic program- 
ming," Computational Optimization and Applications, Vol. 1 (1992), 185-206. 

Satoru IBARAKI: 
Department of Applied Mathematics and Physics, 
Faculty of Engineering, Kyoto University, 
Kyoto 606, Japan 
e-mail: satoru@kuamp . kyoto-U. ac . jp 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




