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Abstract This paper considers MAP/G/1 queueing systems under the following two situations: (1) At 
the end of a busy period, the server is turned off and inspects the queue length every time a customer 
a,rrives. When the queue length reaches a pre-specified value N ,  the server turns on and serves customers 
continuously until the system becomes empty. (2) At the end of a busy period, the server takes a sequence 
of va.cations. At the end of ea,ch va.cation, the server inspects the queue length. If the queue length is greater 
than or equa,l to a pre-specified value N at this time, the server begins to serve customers continuously 
until the system becomes empty. For ea.ch case, we analyze the stationary queue length and the actual 
wa,iting time distributions, and derive the recursive formulas to compute the moments of these distributions. 
Furthermore, we provide a numerical algorithm to obtain the mass function of the stationary queue length. 
The numerical exa,mples show tl1a.t in light traffic, correlation in a,rrivals leads to a smaller mean waiting 
time. 

I. Introduction 
There are many variants in single-server queueing models with server vacations, where 

a server is unavailable for occasional intervals called vacations. Queueing systems with 
vacations have been studied for the last two decades and applied to investigate the perfor- 
mance of computer, communication and manufacturing systems. Excellent surveys have 
been found in [3, 41. 

Recently, a single-server queue with multiple vacations and exhaustive services has been 
analyzed by Lucantoni et al. [g], where customers arrive to the system according to a Marko- 
vian arrival process (MAP). MAP includes as special cases the Markov modulated Poisson 
process (MMPP) and the superposition of phase- type renewal processes. Asmussen and 
Koole [l] have also shown that  MAP is weakly dense in the class of stationary simple point 
processes. Therefore MAP is a fairly general process and has a capability of representing 
a wide class of arrival processes. 

In this paper, we consider MAP/G/ l  vacation models with the following characteristics. 
Customers arrive to the system according t o  a MAP with representation (C, D), where C 
and D are m X m matrices. Note that m denotes the number of phases in the underlying 
Markov chain which governs the arrival process. As for the definition of MAP, readers 
are referred to section 2.1 in [g]. Service times are independent, and identically distributed 
(i.i.d.) according to a general probability distribution function (PDF) S(x )  with finite mean 
E[S] ,  whose Laplace-Stieltjes transform (LST) is denoted by S*(s). As for the vacation 
policy, we consider the following two situations: 

1. At the end of a busy period, the server is turned off and inspects the queue length 
every time a customer arrives. When the queue length reaches a pre-specified value 
N, the server turns on and serves customers continuously until the system becomes 
empty. 
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2. At the end of a busy period, the server takes a sequence of vacations, where vacation 
times are i.i.d. according to a general PDF V(x) with finite mean E [V]. At the end of 
each vacation, the server inspects the queue length. If the queue length is greater than 
or equal to a pre-specified value N at  this time, the server begins to serve customers 
continuously until the system becomes empty. 

In what follows, Case 1 is referred to as N-policy without vacations and Case 2 as N- 
policy with vacations. (In [12], Case 1 is referred to as N-policy and Case 2 as vacations 
with a threshold.) In both cases, there is a possibility that the server remains being idle 
even when some customers are waiting for their services. Thus, both queues with the above 
features fall into a category of queues with generalized vacations [2]. Note that when N = 1 
without vacations, our queueing model is reduced to  the ordinary MAP/G/1 queue. Also 
when N = 1 with vacations, our queueing model is reduced to the MAP/G/l  with multiple 
vacations and the exhaustive service. Thus, the queueing models considered in this paper 
are regarded as generalizations of those which have been analyzed. 

The queueing system under N-policy without vacations has been one of the classical 
subjects on control of queues (see [5] and references therein). As for the N-policy with 
vacations, there also have been a number of works. Among them, Hofri [6] and Kella [7] 
studied the same control policy for the M/G/1 system. Lee and Srinivasan [g] studied the 
Mx/G/l  system under the N-policy with vacations. 

A typical application for N-policy is the quality control problem [7]. A manufacturing 
plant produces certain items that occasionally are defective. The good items are marketed 
while the defective ones are kept in storage until they can be reworked to  meet specifications. 
Assume that one of the machines in the plant may be converted as needed from production 
mode to a repair mode in order to perform this rework. The question is what would be 
an appropriate cutoff number N such that if the number of defective items is at least N, 
then the special machine will be converted from the production mode to the repair mode 
at the next opportunity. After conversion to repair mode, this machine will rework all 
of the defective items (including new arrivals) exhaustively, and then switch back to the 
production mode when there are no defective items left. 

We can interpret the defective items as the customers and the special machine as the 
server, where this server is available for serving these customers only when the machine is 
in the repair mode. The service time is the time required to rework a defective item to 
meet specifications. 

If we count the number of defectives at  each time when the defective is produced, we 
then have a queueing system under N-policy without vacations. On the other hand, if we 
inspect the number of defectives after a certain period, we have a queueing system under 
N-policy with vacations. 

In [7],  authors assumed that defective items occur according to a Bernoulli trial for each 
machine, and hence, the superposition of the output processes of defective items from the 
various machines could be regarded as a Poisson process. However, if we consider a few 
production machines, MAP is suitable for modeling the arrival process. 

The queueing models considered in this paper are formulated as Markov chains of M/G/1 
type [10]. However, the boundary behavior in our queueing models is complicated, espe- 
cially in the N-policy with vacations. Thus, the usual approach given in [l01 does not 
seems to be efficient. We provide an alternative approach to compute an essential quantity 
related to the boundary behavior. Thus, combined with the established methods in [g], [l01 
and [13], this approach gives a simple and efficient algorithm to compute various quantities 
of interest. 

The remainder of this paper is organized as follows. In section 2, we study the queue 
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length and waiting time distributions for IV-policy without vacations. We derive the re- 
cursive formulas to compute the queue length distribution, the factorial moments of the 
queue length distribution and the moments of the actual waiting time distribution. In sec- 
tion 3, we study the queue length and actual waiting time distributions for N-policy with 
vacations. We derive the recursive formulas to compute the queue length distribution, its 
factorial moments and the moments of the waiting time distribution. In section 4, we show 
some numerical examples using the moment formulas of the waiting time for N-policy with 
and without vacations. In particular, we show that that in light traffic, the correlation in 
arrivals leads to a smaller mean waiting time. Throughout the paper, we assume that the 
system is in equilibrium. 

2. N-policy without Vacations 
In this section, we consider a MAP/G/l queue under N-policy without vacations in 

equilibrium. First, we consider the stationary queue length at departures. Then, we 
consider the stationary queue length distribution at an arbitrary time. We also derive 
the LST of the actual waiting time distribution for an arriving customer. 

2.1. Generating function for queue length at departures 
We consider the imbedded Markov chain at departure epochs. Let An (n > 0) denote an 

m X m matrix whose (i, j ) th element represents the conditional probability that n customers 
arrive to the system during a service time of a customer and the underlying Markov chain is 
in phase j at the end of the service given that the underlying Markov chain is in phase i at 
the beginning of the service. In the queue under N-policy without vacations, the transition 
probability matrix P is given by 

where & (n > N - 1) denotes an m X m matrix which is given by 

Note that the factor (- C ) l  D represents the phase transition matrix during an interarrival 
time [g]. As for the computation of An, readers are referred to [13]. Let A(z) and B(z) 
denote matrix generating functions of the An and the Bn, respectively: 

We then have [g] 

Furthermore, B(z} is given in terms of A ( 4 :  
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Let xk ( k  2 0 )  denote a 1  X m vector whose ith element represents the stationary joint 
probability that the number of customers in the system at departures is k  and the phase of 
the arrival process is i. Furthermore, let X (4 = xk^, which denotes the generating 
function of the x k .  From ( 2 . 1 ) ,  we have the following equation: 

4 4  ( 2 . 4 )  X ( ~ ) = X ~ B ( ~ ) + [ X ( Z ) - X ~ ] - ,  
z 

from which we obtain 

( 2 . 5 )  X ( Z ) [ ~ ~ - A ( ~ ) ] = X ~ { [ ( - C ) - ~ D ~ ~ " - I } A ( ~ ) .  

Thus, once we obtain X O ,  the vector generating function X ( z )  is completely determined. 
Before considering X Q ,  we derive some formulas which will be used later. 

Let TT denote a 1  X m vector whose i th element represents the stationary probability of 
the underlying Markov chain being phase i. Note that TT satisfies 

where e denotes an m X 1 vector whose all elements are equal to one. Setting z = 1  in 
( 2 . 5 )  and adding X ( 1 ) e r  to both sides yield 

where A = A ( 1 ) .  We define j3 as j3 = A 1 ( l ) e .  Post-multiplying both sides of ( 2 . 7 )  by /3, 
we obtain 

where p denotes the utilization factor which is given by TTP.  Due to the assumption that 
the system is in equilibrium, we have p < 1.  In the derivation of ( 2 . 8 ) ,  we use the equality 

which comes from ( 2 . 3 )  and ( 2 . 6 ) .  
On the other hand, differentiating ( 2 . 5 )  with respect to  z,  setting z = 1  and post- 

multiplying both sides by e yield 

where we use the equality 

j3 = ( I  - A)(eir - C - D ) - ' D e  + pe, 

which again comes from ( 2 . 3 )  and ( 2 . 6 ) .  From ( 2 . 8 )  and ( 2 . 9 ) ,  we obtain 
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where A denotes the mean arrival rate which is given by x D e .  Note that p = AE [S] , which 
can  be verified with (2.3). 

Remarks. (2.10) can be rewritten to be 

where the right hand side is considered as a time fraction of the server being busy between 
consecutive imbedded points. 

2.2. Determination of the vector xO 
In this subsection, we obtain a formula to compute XQ. We define the level i as the set 

of states {(i, l ) ,  . . , (2, m) 1, i 3 We first consider the state transition of the underlying 
Markov chain during the first passage time from level i + 1 to level i (i  > 0). Let G denote 
an m X m matrix which represents the state transition matrix of the underlying Markov 
chain during the first passage time. Then we have [l01 

Note that G is stochastic when p < 1. Also G satisfies the following equation [g]: 

As for the computation of G, readers are referred t o  [g] and [13]. 
Using G, we consider the state transition of the underlying Markov chain during the 

recurrence time of the level 0. Let K denote an m X m matrix which represents the state 
transition matrix of the underlying Markov chain during the recurrence time. Note that  K 
satisfies 

Let K denote the invariant probability vector of K,  which satisfies nK = K and K e  = 1. 
Once we obtain K, we can readily obtain a;~. Let K denote the mean recurrence time of 
level zero. By definition, zo is given in terms of K and K [l01 

Substituting ~y in (2.13) into (2.10)) and solving with respect to K, we have 

Thus, K is given in terms of K and the vector xo is given by (2.13). 

Remarks. In the ordinary M/G/1 paradigm, we first compute the invariant probability 
vector g of G, and then obtain K and A' in terms of g [10]. However, in our formulation, 
we derive the quantities of interest only in terms of K, and we don't need to compute g. 
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2.3. Queue length distribution at  departure and its moments 
In this subsection, we provide the computational algorithm for the queue length distri- 

bution xk (k  > 1) at departures and its moments. Note that a stable algorithm for the 
Markov chain of M/G/ l  type is provided in [ll]. Since (2.1) is of M/G/ l  type [10], we 
follows the algorithm in [l11 and obtain the following recursion for xk (k  > I) :  

where 
00 

(2.14) A,. = X AnGn-", k >  1, 

Next we provide a recursive formula to compute the factorial moments of the queue 
length distribution at departures. We define X("), A(") and B(") as 

We then follow the approach in [l01 and obtain the following recursion for the factorial 
moment S of queue length distribution at departures: 

where 

Namely, computing U('), X('), [/(l) and then [/Â¥C^') x ( ^ e ,  X^) in this order, we obtain 
the nth factorial moment X(") of the queue length distribution at departures. 
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2.4. Queue length distribution at an arbitrary time and its moments 
In this subsection, we consider the distribution of the number of customers in the system 

at an arbitrary time. Let y denote a 1 X m vector whose zth element is the stationary joint 
probability that the number of customers in the system is n and the phase of the arrival 
process is i at an arbitrary time. Let Y ( z )  = yn+ which denotes the generating 
function of the y .  Y ( z )  consists of the idle term and busy one. Let U denote the idle 
time of the server. Then, we obtain the mean idle time as 

Using (2.10) and (2.17), we obtain the vector whose zth element represents the conditional 
probability that the number of customers in the system is k and the phase of the arrival 
process is i given that the server is idle: 

Using (2.18), we obtain 

where A*(z) is the matrix generating function of the number of arrivals during the forward 
recurrence time of a service time and given by [g] 

From (2.4) and (2.20), the second term in (2.19) becomes 

Substituting (2.21) into (2.19), we obtain 

(2.22) Y (2) = \{-X (z) (C + z D)-'. 

(2.22) shows the relationship between the queue length distribution at  departures and at 
an arbitrary time. Since this relationship holds for any stationary queue with MAP arrivals 
[14], an independent verification provides a validation for our analysis so far. 

Post-multiply both sides of (2.22) by (C + zD)  and comparing the coefficients of zk in 
both sides, we obtain the following recursion for y k  (k > 0) in terms of the xf:: 
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Next we consider the factorial moments of the queue length distribution at  an arbitrary 
time. We define Y ( ~ )  as 

dn 
Y(") = lim -Y (z). 

;-+l dzn 

We follow the approach in [g] and obtain the following recursion to  compute Y^ (n >, 1): 

where Y^ = Y ( l ) .  

2.5. LST for actual waiting time and its moments 
In this section, we consider the waiting time distribution of an arriving customer. To 

do so, we first consider the waiting time of a customer which arrives when the server is 
idle. Let yt denote a 1 X m vector whose ith element represents the joint probability that 
a customer arrives when the server is idle, finds k waiting customers upon arrival, and the 
state of the arrival process immediately after the arrival is i. Using (2.18), We then have 

Thus, the LST WT(s) of the waiting time distribution when the customer arrives during 
an idle time of the server is given by 

Next, we consider the waiting time of a customer which arrives when the server is busy. 
To do so, we first derive the joint transform for the number of customers and the forward 
recurrence time of the current service when the server is busy. Note that the server is busy 
with probability p. Given that the server is busy, customers in the system is classified 
into two types. One includes customers which are in the system when the current service 
starts. The other includes customers which arrive during the backward recurrence time of 
the current service. Thus we have the joint transform Y*(z, S) for the number of customers 
and the forward recurrence time at an arbitrary point of the current service: 

where A ( q  S) denotes the joint transformed matrix for the number of customers which 
arrive in the backward recurrence time and the forward recurrence time, and is given by 
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Therefore we obtain the LST W,*^) for the waiting time distribution of a customer which 
arrives when the server is busy as follows: 

where we use the equality 

which comes from (2.5). 
Let ^*(S) denote the LST for the actual waiting time distribution. By definition, W*(s) 

is given by WT(s) + Wl(s). Therefore we obtain 

We now consider the moments of the actual waiting time. We first define W^ as 

To obtain the recursive formula to compute W^, We rewrite (2.25) as 

N-l 

W*(,) = t o  E [(-C)-' Tk(S)e xo T(s) De, 
k=0 

where 

We then have 

where for n > 1, 

Thus once we have Tin and T^, W^ is readily obtained. In what follows, we provide 

the recursive formula to compute Tin and T*"). 
First, we consider Tin' (n 2 1). We define Hk(s) and Sk(s) as 

Then, Tis(s) = HN-k-i(~)Sk(~). Furthermore, we define HP) and 5'1") as 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



MAP/G/l Queues under N-policy 197 

and S(") = S}"). Note that = E [S] .  Taking the nth derivative of Hl( s ) ,  we obtain 
Hin) = n! ( -c) - ("+~)D.  Since Hk(s )  = Hl( s )  Hk- l (s) ,  we compute the nth derivative 

H" using the recursion 

where H )  = [ ( - C ) ^ D ] ~ .  Similarly, we compute the nth derivative 5';' using the recur- 
sion 

= % ) s ( ~ - ~ )  k - l  7 

i=O 

where S(') = 1. Thus we obtain the nth derivative T'") by 

Secondly, we consider the nth derivative T(Â¡ of T ( s ) .  Using (2.26), it follows 

T ( s ) [ s I  + C + S*(s)D] = U ( s ) ,  

where 

U ( s )  = I - [ ( - c ) - ~ D ] ~ [ s Â ¥ ( s ) ] ~  

We define U(") (n 2 1 )  as 

dn 
U(O)=U(O), ~ ( ~ ) = l i m ( - l ) ~ - U ( s ) ,  S+O n 2 1 .  

dsn 

Then, we obtain 

N (n )  U ( ~ ) ^ ~ - [ ( - C ) - ^ D ] ~ ,  U ^ = - [ ( - C ) - ' D ]  S N .  

According to a similar reasoning in [ g ] ,  we obtain the following recursion to compute ~ ( " 1 :  

where T ( O )  = T(0) .  We summarize the procedure to compute W(").  

1. Compute H? and S; recursively. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



198 S. Kasahara, T. Takine, Y. Takahashi & T. Hasegawa 

2. Compute TLn) using H?) and S?). 

3. Compute U('), ~ ( ' ) e  and T(O) in this order. 

4. Compute z^, ~ ( ~ ) e  and T ( ~ )  recursively. 

5. Compute w ( ~ )  using T? and ~ ( " 1 .  

Remarks 
1. Setting N = 1 in (2.25)) we obtain 

which is identical to the result in [g]. 
2. In the case that customers arrive according to  a Poisson process with rate A ,  C = -A 
and D = A. Substituting these into (2.10) yields X,-, = (1 - p)/N. Furthermore, (2.25) 
becomes 

which is the LST of the waiting time distribution of M / G / l  under N-policy [12]. 

3. N-policy with Vacations 
In this section, we consider a MAP/G/ l  under N-policy with vacations in equilibrium. 

First, we consider the queue length distribution at departures. Then, we derive the formula 
of the queue length at an arbitrary time. We also derive the LST of the actual waiting 
time distribution for an arriving customer. 

3.1. Generating function for queue length at departures 
We choose the time epochs immediately after the service termination and the vacation 

termination as imbedded points. Let X:  (z:) denote the joint probability vectors whose 
ith element represents the probability that the imbedded point is the service (vacation) 
termination, the number of the system is n and the phase of the arrival process is i. We 
define the following generating functions: 

Let Vn denote an m X m vector whose (I, J') t h  element represents the conditional probability 
that n customers arrive during a vacation and the underlying Markov chain is in state j 
at the end of the vacation given that the underlying Markov chain being in state i a t  the 
beginning of the vacation. Let V(z) = c = o  V n C  which denotes the matrix generating 
function of the Vn. We then have [g] 

Considering the transition between consecutive imbedded points, we have the following 
equations: 
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where A(z) is defined in (2.2). 
Note that X ] :  (0 <: k <  ̂ N - 1) are recursively obtained in terms of X : :  

(3.4) a-; = z'Vo [ I  - w1 ) 

k -  1 

(3.5) X ;  = X:% + E x , " v ~ -  [ I  - ~ ~ 1 - l  ) l 1 < k < N - 1  
i=o 

Thus, X v ( z )  is given in terms of X ;  (see (3.2)) and therefore X s ( z )  contains only one 
unknown vector a;:. Note that the queue length at  departures is characterized by Xs(z) .  
Let xk ( k  2 0) denote a 1 X m vector whose ith element represents the joint probability 
of k customers in the system and phase i of the underlying Markov chain at  departures. 
Further, let X ( z )  = Er?, xkzl', which denotes the vector generating function for the x i .  
By definition, we have X (z) = X s ( z ) / X s ( l ) e .  Thus once we obtain X', X(z} is completely 
determined. Before considering a*:, we derive some formulas which will be used later. Using 
(3.1), (3.2) and (3.3), we have the following equation: 

The derivation of (3.6) is given in Appendix 1. Using (3.6) and (A.3), we have 

and therefore we obtain 

3.2. Computation of the vector X: 
In this subsection, we derive a formula to compute X : .  First, we consider the number of 

customers at the end of an idle period when the threshold value is equal to n (1 5 n < N). 
Let R: ( k  >_ n) denote an m X m matrix whose (i, j ) t h  element represents the conditional 
probability that there are k customers in the system and the underlying Markov chain is 
in state j at the end of an idle period given that the underlying Markov chain being in 
state i at the beginning of the idle period. Note that the R: is computed by the following 
recursion: 

For later use, we define the matrix generating function Rn(z) as: 

Now we consider the state transition during the recurrence time of the departure instant 
being in level zero. Let IK denote an m X m matrix which represents the state transition 
matrix of the underlying Markov chain in the recurrence time. Furthermore, let K denote 
the invariant probability vector of IK. Then x i  is given by 6 = &/K, where K denotes 
the mean recurrence time of the departure instant being in level zero. 

Note that, with R> IK is given by 
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where G is defined in (2.11). Thus, K, is obtain by solving nK = n and ne = 1. We now 
propose a simple recursive formula to compute K. Multiplying both sides of (3.4) and (3.5) 
by K ,  we obtain 

k - l  

(3.11) ~f = &vk + y>;'*vk_, [ I  - G]"' ,  l l < k < N - 1 ,  i=O 

W here 

* = &l,. 

Also, multiplying both sides of (3.6) by K, we obtain 

from which, it follows that 

Therefore, K is computed as follows. First we compute xl* (0  < k < N - 1 )  by (3.10) and 
(3.11) and then compute K by (3.12). 

3.3. Queue length distribution at  departures and its moments 
We first consider the queue length distribution at departures. Observing the system 

immediately after departures, we have the following transition matrix P: 

P = 

W here 

k t l  

B k  = E ̂ +l-n, k > N - 1 .  
n=N 

Since the transition matrix P takes the same form as in (2.1),  we have the same recursion 
for xi as in section 2: 
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where At and Bk are given in (2.14), (2.15) and (2.16). Thus, from (3.7)) the queue length 
distribution xk is computed by 

Since the structure of the transition matrix is exactly the same as in section 2, we can 
use the same recursive formula in subsection 2.3 to compute the factorial moments for the 
queue length at departures. 

3.4. Queue length distribution at an arbitrary time and its moments 
Let Y (z) denote the vector generating function of the number of customers at  an arbi- 

trary time. According to  a similar reasoning as in subsection 2.4, we obtain 

where A*(z) is given in (2.20) and V*(z) is the matrix generating function of the number 
of arrivals during the forward recurrence time of a vacation and given by: 

1 
V* (z) = - [V(z) - I] [C + z D] -l . 

E[Vl 

Substituting V*(z) and A*(z) into (3.13) and noting the following equalities 

we rewrite Y (z} as 

In (3.14)) X ( z )  denotes the vector generating function of the queue length at departures 
(see (3.7)). Since this relationship holds for any stationary queue with MAP arrivals [14], 
an independent verification provides a validation for our analysis so far. 

Since the queue length distributions at departures and at  an arbitrary time are related by 
the common equation, the queue length distribution yk at  an arbitrary time is recursively 
obtained by (2.23) and (2.24) in terms of the queue length distribution xk at departures. 
Furthermore using the recursion in section 2.4, we obtain the factorial moments of the 
queue length distribution at an arbitrary time. 
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3.5. Joint PDF of number of arrivals and remaining vacation time 
Let fl(i, j, X )  (i, j = 0,1 , .  . .) denote an m X m matrix whose (k, l)th element represents 

the probability that, given the phase being in i at the beginning of the vacation and a 
customer arrival in the vacation, i customers arrive in the elapsed vacation time, j customers 
arrive in the remaining vacation time, the remaining vacation time is not greater than X 
and the phase is j at the end of the vacation. We also define the joint transformed matrix 
of fl(i, j, X )  as 

Then, fl*(zl, z2, S )  becomes 

i ti-n (X - tIn 

i=O n=O ( i - n ) !  n! 

In order to expand the matrix factor (91 + C + zl D)~D($I  + C + z2D)', we introduce 
matrices Fk1(m, n) (k, l = 0,1,2, - , m = 0,1, , k, n = 0,1, . , l )  which satisfy 

where Fo,o(O, 0) = D. Then, matrices Fk,i(m, n)  satisfies the following recursion 

and 

Thus, we obtain 
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Substituting (3.18) into (3.15) yields 

Considering the coefficient matrices of 44 on both sides of (3.19), we obtain 

3.6. LST for actual waiting t ime and its moments 
In this subsection, we consider the actual waiting time distribution for N-policy with 

vacations. Let R ~ s )  denote an m X m matrix whose (i, j ) th  element represents the LST 
for the length of the idle period when the number of customers is k and the phase is j 
at the end of the idle period given that the phase is i at the beginning of the idle period 
and the threshold value is n. From the similar reason of (3.8) and (3.9), R?(s) satisfies the 
following equations 

where 

K ( s )  = /* e-"P{k,t)dV(t). 
0 

We also define Rn(s) = E& R?(s). 
First, we consider the waiting time when the tagged customer arrives at  the system in 

a vacation time. We observe the the following two cases: 

1. The queue length becomes greater than or equal to N at the end of the vacation time 
during which the tagged customer arrives. 

2. At the end of the vacation, there are k (< N) customers in the system. Then, the 
next service starts after the period according to RN-k(s). 

Thus, the LST WT(s) of the waiting time of a customer when it arrives during a vacation 
time is given by 

+(XÂ + X;) E E W,, j ,  s ) R ~ - ~ - ~ - ~ ( s ) [ s * ( s ) ] ~  
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where (X,  y)+ indicates the maximum value of X and y. 
Next, we consider the waiting time when the server is busy. The joint transform Y * ( z ,  S) 

defined in subsection 2.5 becomes 

Then, the LST W;(s) of the waiting time when the server is busy is given by 

From (3.6), (3.23) and (3.24), the LST of the actual waiting time distribution is obtained 

For calculating nth moment of the waiting time, we define following notations: 

UzJk{s) = ̂ {i, j, S) R N-k-i-j-1 (4 [^(s)]k+i, 
dn 

= lim (-l)n-Uijk(s), 
S->-o dsn 

dn 
~ ( s )  = X; + X;-l(S*(~)), X ^  = lirn ( - I ) ~ ~ X ( S ) ,  

S-+O ds 

T(S) = U(S) [SI + C + s*(s)D]-l, U(S) = I - v(s*(s)). 

T(") and U(") are defined in subsection 2.5. Then, the n th  moment w ( ~ )  of the actual 
waiting time becomes 
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From definitions of Tijk(s) and Uijk(s), m and Û  becomes 

where 

From (3.20), we obtain 

R ~ ( ~ )  is expressed as = T,Em RP("). From (3.21) and (3.22), R:(") can be expressed 
as 

Hence, we can calculate R :  recursively. 
We can calculate from the following equations 

Since we can calculate T^ according to the same way of the N-policy without vacations, 
we consider the calculating formula of U^. According to [l3], V ( 4  can be rewritten as 

where 

and Fm(k)  satisfies following equations 

Then, U^ can be calculated from following equations 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



S. Kasahara, T. Takine, Y. Takahashi & T. Hasegawa 

We summarize the procedure to compute W^. 

1. Compute B:'") and then R^W. 

2. Compute Fk,1(i, j) and then St^(i,j). 

4. Compute U(") and then T^ in the similar manner of section 2.5. 

5. Compute a"^. 

4. Numerical examples 
In this section, we present some numerical examples of the mean waiting times for N- 

policy with and without vacations. In our numerical examples, the service time distribution 
is chosen as an unit distribution with mean E [S] = 1.0 and the vacation time distribution 
as an exponential distribution with mean E[V] = 1.0. The arrival process is assumed to 
be a 2-state MMPP with 

From this construction, it is easy to see that TT = (1/2, 1/2). Note that the correlation in 
the arrival process becomes large with the decrease of r .  We calculate the mean waiting 
times with r = 0.5 and 1.0. 

In computing the matrices G and A under both N-policy with and without vacations, 
we truncate the infinite sums according to the criteria proposed in [13]. We also truncate 
the infinite sum for calculating V using the same criterion. 

In computing the kth moment n^( i ,  j), we need to truncate the infinite sums of (3.20). 
The accuracy of H^)(i , j )  depends on how many number of arrays for Fk,;(m, n)  we can 
store. Let c denote the index of the set {Fkll(m, n) : 0 <_ m <: k ,  0 n l}, where 
c = k + 1. From (3.16) and (3.17), the c + 1st set of Fk,1(m, n) can be calculated using 

the cth set of Fkli{rn, n) (see Fig. 1). Note that we choose a maximum value cmax of c 
under the constraint of computer resources such as disk space and memory size. In our 
implementation, we set Cmax to be 34. Since z f l* ( l ,  l, O)e = 1, we can check the accuracy 
of H^) (i, j) by summing NO)(i ,  j) over all i and j we computed. 

We first compare the mean waiting times calculated from moment formulas with those 
calculated from Little's formula using the mean queue length V^. Tables 1 and 2 show 
the numerical results of N-policy without and with vacations, respectively, where N = 5 
and r = 1.0. In those tables, WLST denotes the mean waiting time calculated by the LST 
and Wattle denotes that by Little's formula. 

From Table 1, we observe that WLST gives good agreement with Wattle- On the other 
hand, Table 2 shows that 1 WLST - WLittle 1 increases as p becomes large. This is because the 
accuracy of 7rH*(l,  l, O)e becomes worse (recall that we fixed cmax to 34). Note, however, 
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Figure 1: cth and c + 1st sets of Fk.;(m, n )  

Table 1: Comparison of Mean Waiting Times under N-policy without Vacations. 

that WLST agrees with WLittk in the order of 1 0 4  as p = 0.9. Thus it seems that it is 
sufficient for graphic representations to set = 34, except for the region of very high 
traffic. Therefore we use the result calculated by the LST in the following figures. 

Fig. 2 shows the mean waiting times in the case of N = 5 and 10 with r = 1.0. We 
observe that the mean waiting time becomes large as the value of N increases, and that 
the mean waiting time under N-policy with vacations is always larger than that without 
vacations. We also observe that mean waiting times in all cases diverge to infinity as p 
becomes small. This is because the queue length is hard to reach N when p is small. 

To investigate the influence of the correlation in arrivals on the mean waiting time, we 
plot Figs. 3 and 4, which show the mean waiting times with r = 0.5,l.O and that in Poisson 
arrivals with the same arrival rate, where N = 5. We observe that when p is large, the 
mean waiting time becomes large with the increase of the correlation in arrivals (recall that 
the correlation in arrivals becomes high with the decrease of r ) .  However, when p is small, 
higher correlation leads to a smaller value of the mean waiting time. Please also see Table 
3, which give numerical data of Figs. 3 and 4, respectively. 

From these tables, we observe that when p is small, Wr=o.5 < Wr=l.o < Wpoissom and 
when p is large, Wr=0.5 > > Wpoisson- In general, higher correlation in arrival makes 
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W a t t l e  1 WLST - Wattle X  ̂ (1 , 1,O)e 
20.4579 0.00000 0.99999 

Table 2: Comparison of Mean Waiting Times under N-policy with Vacations 

Table 3: Numerical Data under N-policy with and without Vacations 

P 
0.01000 
0.02000 
0.03000 

0.36000 
0.37000 
0.38000 

the mean waiting time larger. However, our numerical results show that it is not the case. 
Note that, in N-policy, the mean waiting time E[W] consists of two terms; one is the mean 
waiting time E[Wi] of customers which arrive in the idle period and the other is the mean 
waiting time -Â£'[W2 of customers which arrive in the busy period. Namely, 

Tables 5 and 6 show ̂ [Wi] and ^[W2] in the same settings as in Tables 3 and 4. We observe 
that E[Wi] (resp. Â£'[W2] is a decreasing (resp. an increasing) function of correlation in 
arrivals for a fixed p. We explain this phenomenon. When the correlation in arrivals is 
high, customers arrive back to back once a customer arrives. Thus after the first customer 
arrives in the idle period, subsequent customers are likely to arrive in a short interval, so 
that the mean waiting time of those customers becomes small according to the increase of 
the correlation in arrivals. On the other hand, the mean waiting time of customers which 
arrive in the busy period becomes large with the increase of correlation in arrivals, as in 
a work-conserving queue. In light traffic (i.e., for a small p), the former is the dominant 
factor in the mean waiting time ^[W]. Thus, correlation in arrivals leads to a smaller mean 
waiting time in light traffic. 

N-policy without vacations N-policy with vacations 

Wpoisson 

200.00505 
100.01020 
66.68213 

5.83681 
5.69906 
5.56961 

r = 0.5 

199.74357 
99.75333 
66.42999 

5.85972 
5.73609 
5.62130 

r = 0 . 5  

200.34455 
100.35618 
67.03470 

6.79160 
6.64972 
6.51801 

r = l . O  

199.87384 
99.88173 
66.55646 

5.86487 
5.73469 
5.61307 

r = 1.0 

200.47517 
100.48438 
67.16042 

6.79476 
6.64650 
6.50818 

W~oisson 

200.60585 
100.61180 
67.28452 

6.76540 
6.60968 
6.46367 
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Figure 2: 

Appendix 1. 

Mean Waiting Times under N-policy wit h and without Vacations 

Derivation of Equation (3.6) 

In this appendix, we derive (3.6) using (3.1), (3.2) and (3.3). From (3. l ) ,  we obtain 

(A.1) X s ( z )  [A- A(z)] = XV(z )A(z )  - [X: + X;.,(z)] A(z).  

Using (3.2) and (A.I ) ,  we have 

X s ( z )  [zI  - A(z)] = [X: + x&.,(z)] [V(z) - I] A(z) .  

Substituting z = 1 and multiplying both sides of (3.2) by e ,  we obtain 

(A.2) X v ( l ) e  = (X' + X&_,(! e .  

Table 4: Numerical Data under A^-policy without Vacations 
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1 Poisson 

0.4 0.6 
Traffic Intensity 

Figure 3: Mean Waiting Time under TV-policy without Vacations 

It then follows from (3.3) and (A.2) that 

(A.3) X s ( l ) e  = l - (X; + ~ k _ ~ ( l ) )  e .  

Next, setting z = 1 and adding X s ( l ) e x  to both sides of (A . l ) ,  we have 

(A.4) X s ( l )  = (l - (X; + ~ > _ ~ ( l ) )  e )  x 

+ [X; + X^(l)] [V - I]A (I - A + e x ) - 1  . 

Multiplying both sides of (A.4) by A1(l )e ,  we obtain 

(A.5) Xs ( l )A ' ( l ) e  = p [l - (X; + XL ( l ) )  e] 

+ [X' + +~^,_ , ( l ) ]  [V - I](A - ex) (ex  - C - D)-'De 

Table 5: Numerical Data under N-policy with Vacations 
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0.4 0.6 
Traffic Intensity 

Figure 4: Mean Waiting Time under N-policy with Vacations 

where we use the equality 

On the other hand, differentiating (A.1) and setting z = 1 yield 

where we use the equality 

V t ( l ) e  = AE[V]e + (I - V ) ( e r  - C - D ) - l ~ e .  

Thus, it follows from from (A.5) and (A.6) that 

(A.7) X S ( l ) e  = AE[V] (xi + + ~ _ ~ ( l ) )  e + p [l - (X' + +JC^,(~)) e] . 

Finally, using (A.3) and (A.7), we obtain 
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