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Abstract This paper discusses a solut,ion method to a multiobjective, multi-level decentralized system. A 
decomposition method is proposed for dividing the n-level problem finally into n - 2 single level problems 
a,nd a two-level problem. A method with dominattion trees based on the "two-level simplex algorithm" is 
developed for generating the nondominated solutions to this type of n-level decentralized system. 

1. I n t r o d u c t i o n  

In a multi-level decentralized system consisting of one hea.clquarters, several divisions and 
factories [2] , it is required to  make its decision considering not only a competition with others 
but also the coexistence with the social environment to  pursuit the overall development of 
the corporation. 

From the strategic view points, the headquarters is forced in such a circumstance to con- 
sider the second and third objectives in making its decision, while the objectives of divisions 
and fa,ctories remain single. This type of decentralized system is called a "multiobjective, 
multilevel decentralized system" in this paper. 

A multi-level decentralized linear system can generally be represented as a multi-level 
linear programming problem [l] , but so far there is no solution method proposed for dealing 
with a multiobjective, multilevel decentralized system. 

This pa.per first formulates a mathematical model for a multiobjective, multilevel de- 
centralized system. A method for generating all the nondominated solutions to this model 
is proposed and a numerical example of a two-objective, there-level decentralized system is 
demonstraied to show the effectiveness of the proposed method. 

2. M o d e l  F o r m u l a t i o n  

A corporation adopting a decentralized decision-making system can be described as a 
multi-level decentralized system as shown in Fig. 1. The first (top) level in Fig. 1 means the 
headquarters of the c~rpora~tion and the second level, various divisions. The headquarters 
allocates gross resources such as budget, man power, energy, raw materials and facilities 
among the divisions. Ea,ch division makes a.n aggregate production plan and resource allo- 
cation for factories belonging to the division. Factories located at  the third level shown in 
Fig. 1 produce different types of products, using the resources allocated by their divisions. 

In general, a multiobjective, n-level decentralized system described above is mathemat- 
ically formulated in the following a,ggregated form: 

[ P r o b l e m  P(")] 
< t h e  1 s t  l e v e l  p r o b l e m  > 
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1 Headquarters -1 

The 1st division ... 

The (1, l)  

factory factory 

1 The Icth division 1 
I 

r 

The (I<,l) The (I<, nI<) 
a . .  

factory factory 
I 

Fig.1 Organization of a three-level decentralized system 

(--- -- Flow of resource allocation plan. - Flow of production plan) 

subject to Glyl S Yl ,  
Y l  2 0, 

< the 2nd level problem > 
Maximize f 2 ( ~ 2 )  = { c 2 x ( y n , - l ( .  ( ~ 3 ( ~ 2 ) ) ) )  - c n , - 1 , 2 y n - l ( ~ n - 2 ( -  ( y 3 ( y 2 ) ) ) )  

- ~ n - 2 , 2 y n - 2 ( ~ n - 3 ( -  . ( ~ 3 ( ~ 2 ) ) ) )  - - ~ 3 , 2 ~ 3 ( ~ 2 ) }  - C 2 , 2 y 2 ,  

subject to G2y2 Y2 + Dsyl, 
y 2  2 0, 

< the ( n  - 1)th level problem > 

Maximize fn(x) = cnx, 
subject to AX = b + Dnyn-l) 

X 2 0, 

where the notations a,re defined below. 
L: number of objective functions of the headquarters 
X: production amount vector to be planned a t  the nth level (including slack variables if these 

are introduced to  Eq. (12)) 
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x(yn-1): optimal solution to the n th  level problem with the resource given by yn-1 
y i { ~ i - ~ ) :  optima,l solution to the i-level problem with the resource given by yi-1, i = 

2,3, . . . ,  n -  1 
x(yn-l(. . . (yi+l (yj)))) :  information on the optimal production amount determined at the 

nth level, fed back to the j t h  level 
yi(yi-l(. . ( ~ j + ~ ( y ~ ) ) ) ) :  information on the optimal resource allocation determined a t  the 

it11 level, fed back to the j t h  level, i = j + l, .,. . , n  - 1, j = 1 ,2 , .  . . , n  - 2 
D,: constraint ma,trix with respect to  the resource yi-1 allocated from the (i  - 1)th level to  

the ith level 
A: technical coefficient matrix with respect to production amount vector X in the n th  level 

problem 
G,: technical coefficient matrix with respect to  resource allocation vector y i  in the i th level 

problem 
b: lower limit vector for resources available in the nth level problem 
Yi: lower limit vector for resources available in the ith level problem 
c \ :  the lth objective coefficient row vector with respect to X in the 1st level problem 
c,: objective coefficient row vector with respect to X in the i th level problem, 

i = 2,3, ..., n 
CIJ : objective coefficient row vector with respect to y j  in the i th  level problem, 

< < <  - 1  1 = ] = 2 = ? 2  

If the decision space defined by Eqs. (3)) (4), (6)) (7)) (g), (10)) (12) and (13) is feasi- 
t t t ble, problem has a set of nondominated solutions expressed by (yl , y2,  . . . , yn_l  , X^) 

satisfying the following three conditions: 

a , )  Eqs- (3)) (41, (61, (7), (g), (101, (12) and (13) hold. 

with at  least one inequality becoming " > " . 

3. P r o p e r t i e s  of the Model 
The multiob jective, multi-level decentralized system formulated in the previous section 

can be transformed into neither a usual multi-level decentralized system nor a centralized 
system with multiple objectives. To analyze the properties of problem P*") defined by Eqs. 
(1) through (13)) we first decompose the problem into the two problems and 
LP("-~) as follows: 

[ P r o b l e m  
< the reduced 1st level problem > 

1 1 Maximize f; ( ~ 1 7  ~ 2 )  = { c ; x ( ~ n - i  (. . . (ys(y2)))) - cn_l,lyn-l (yn-2(- . (y3(y2)))) 
- 1 

cn-2,1~n.-2(~n-3(. . . ( ~ 3 ( ~ 2 ) ) ) )  - . . . - c~, ly3(y2)}  
- 1 1 

'2,1Y2 - c l , l Y l )  
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subject to Glyl 5 Yl, 
G 2 Y 2  ^ Y2 + D2y1, 

yl,y2 2 0, 

< the reduced 2 n d  level  p r o b l e m  > 
Maximize f 3 ( ~ 3 )  = {c3x(yn-1 ( S  . . ( ~ 4 ( ~ 3 ) ) ) )  - ~n-i,3yn-i(yn-2(. . (y4(~3))))  

-cn-2,3Yn-2(Yn.-3(. ( ~ 4 ( ~ 3 ) ) ) )  - . - - c 4 , 3 ~ 4 ( ~ 3 ) }  - C3,3Y3, 

subject to G3y3 S Y3 + Day2, 
Y3 2 0, 

< the reduced (n - 2)th l eve l  p r o b l e m  > 
Maximize fn-~(yn-1) = cn-ix(J'n-l) - Cn-l,,-lyn-1, 

subject to G n - l ~ n - ~  S Yn-] + Dn-lyn_2, 
yn-l 2 0, 

< the reduced (n - 1)th level  p r o b l e m  > 
Maximize fn(x) = CnX, 

subject to AX b + Dn,yn-1, 

X 2 0, 

Problem P*" ' )  is constructed by combining the first and the second level problems in 
problem excluding the objective function of the second level problem and is 
constructed by combining the second level through the nth level problems excluding the 
objective functions at the third through the nth level problems. 

Repeating this decomposition procedure, we can construct the n - 1 multiob jective- 
headquarters, multi-level problems, P("-'), . . . , and the n - 1 single-level LP 
problems, LP^-'), . . . , LP(') and a multiobjective-headquarters, single-level prob- 
lem P('). The lowest level problems P(') and LP(') are finally derived as follows: 

subject to Giyl 5 Yl, 
Giyl 5 Yi + Diyi-l, i = 2,3, .  . . , n  - l, 
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(;+l) Fig. 2 Relationships among Pp , P?, P!") and PP 

[Problem LP(') ]  
Maximize fn(x) = cnx,  
subject to AX = b + Dnyn-1, 

X > 0, 
Let P-p' be the set of feasible extreme points in problem P(') .  Since any feasible solution 

can be expressed by a linear combination of some extreme points, any nondominated solution 
( 2 )  can be also represented by a linear combination of some feasible extreme points. Let Pn 

be the set of nondominated extreme points to problem P^. Using linear programming 
theory and the results of analysis given by Wen [4] and Wang et al. [3], we can represent the 
relationships among these sets as follows: 

(1) [Property l] Py C P!) a,nd P(') C P};-",i = 2,3,. . .n. 

[Property 21 If both a E PP and a E P!) hold, then a E p f l )  holds for i = l ,  2 , .  . . , n - l .  

Conversely, if a E PP holds, then a E PP holds but a E P$' does not always hold 
for i = 1,2, . . .  ,nÃ 1. 

For simplicity, consider a multiobjective, two level (n = 2) decentralized system. The 
original problem defined by Eqs.(l) through (13) with n = 2 is decomposed into prob- 
lems P(')  and LP(')  as defined by Eqs.(32) through (40) with n = 2. It is obvious that 

P ~ I  PP a,nd P p 1  C P^. In problem the second level problem gives the set of 
bases (the extreme points) with respect to X corresponding to the given vector yl to the 
first level problem. The first level constructs the set of feasible extreme points by uniting 
the set of fea,sible extreme points with respect to yl and the set of bases with respect to X 
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provided from the second level problem. Nondominated extreme points are defined for this 
set of feasible extreme points and generated by searching each feasible extreme point in this 
set successively. Therefore, ~ ' 2 )  PP) holds, that is, the nondominated extreme points are 
also feasible extreme points in problem 

G) (Â¥'+l ('+l) and pn According to properties 1 and 2, the relationships among Pp , Pp , Pn 
can be illustrated in Fig. 2. 

(2) Using the "two-level simplex algorithm [3]", we can find all the elements of the set Pp . 
According to Property 3, we can get all the elements of the set PP as the elements of 

P? satisfying the optimality conditions for problems LP('), LPW,. . . , LP("'). Note that 
unlike the general multi-objective linear programming [5 ] ,  it is impossible to judge whether 

or not each element in P P  is nondominated for problem P(") by making a local judgement 

(i.e., solving a sub-LP problem) at each extreme point in PP  on the searching process. 
This is because a nondominated solution to problem is not always feasible for problem 
P*") and a dominated solution in problem can be nondominated for problem P(") 

( as indicated in Property 2. Therefore, if an element, a, in P}) does not belong to pp"', 
some extreme points dominated by the a in problem P^ can be nondorninated solutions to 
problem P("). Fortunately, using Zeleny's theory of multi-objective linear programming [5 ] ,  
we can construct a set of domination trees which represent domination relationships between 

(2) any pair of extreme points adjacent to each other in Pp . If an a in P )  belongs to PP), 
the a is nondominated solution to problem P(") according to Property 2. Otherwise, all the 

extreme points dominated by the a in PP can be generated through the domination trees, 

and should be checked whether or not they belong to P P .  If we can find some extreme 

points belonging to P' on this checking process, then these points become candidates for 
nondominated solutions to problem P*"). The detailed solution procedure is presented in 
section 4. 

In order to generate a set of domination trees, we have to derive additional properties 
with respect to extreme points in problem P^). For this purpose, we construct the following 
problem M L P  which is equivalent to P('*: 

[Prob lem M L P ]  
1 Minimize - f l ( z ) = u z ,  

L Minimize - f L (z) = u z, 
subject to Qz  = p, 

'SO, Y, S O , x i j  SO,J '=  1,2 ,..., ni,!=1,2 , . . . ,  K ,  
where Q, z, p and ul(row vectors), l = 1,2 , .  . . , L ,  are defined by 

G1 1 
-D2 0 G 2  I 

-D3 0 Gs I 
S . .  

-Dn-1 0 I 
0 -Dn 0 A 

T T T T  T T T T  z =  (YI  ,S1 ,Y2,s2,...,Y,,.-l,sn,-l,x 1 7 

T T  p = (Y^,Y^ . + S ,  ~ ^ - , , b  ) , 
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where LLT" denotes the transposition and Si, i = l ,  2, . . . , n - 1, are the slack variables for 

Eqs. (3), (6)) (9). 
Since the feasible region of problem MLP is made by combining Eqs. (3)) (4)) (6)) (7)) 

(g),  (10)) (12) and (13)) any feasible solution in problem M L P  satisfies condition (a). How- 
ever, in problem M L P ,  the objective functions of the lower level problems are all removed 
and therefore a feasible solution in M L P  does not always satisfy conditions (b) and (c). 

A simplex tab lea,^ for problem M L P  can be constructed by using the following equations: 

where pk and ii: are defined as 

Pi  = (Qfllp)t, qi[j] = ( Q & Q N ) ~ ~ ~ ~  7 

- - 1  - 2  
"[j] - ( U ~ ~ Q ~ ' Q N ) ~ ~ ~  = (uj,  - 7 

where "B" and "N" stand for "basic" and "non-basic", respectively. 
Letting 11 be an index set of nonbasic variables in the simplex tableau, we define 

( 2 )  Consider that the current extreme point in MLP belongs to Pp . Applying the results 
derived by Zenely [5] to this case, we get the following properties: 

[Property 41 Assume Oj  > 0 and u j  S 0 for a nonbasic variable, zj, j 6 11. If the adjacent 

extreme point generated by introducing zj as a new basic variable belongs to P!, then 
it dominates the current extreme point. 

[Property 51 Assume (?j > 0 and iij 2 O for a nonbasic variable, ~ j ,  j E 11. The adjacent 
extreme point generated by introducing zj  as a new basic variable is dominated by the 
current extreme point. 

[Property 61 Assume that OjU, 2 Okuk for two nonbasic variables z j  and zk, j, k 6 11. If the 
adjacent extreme point generated by introducing zj  as a new basic variable belongs to 

P', then it dominates the adjacent extreme point generated by introducing zk as a new 
basic variable. 

( 2 )  Using Properties 4 through 6, we can construct a set of domination trees for Pp . 
Searching each extreme point downward from the top of each domination tree, we can find 

("1 an extreme point ra,nked at the first highest level along a domination tree belonging to Pp . 
Then all the lower-ra,nked extreme points ca,n be neglected without any search because they 
are explicitly dominated by the extreme point, reducing the computation time for checking 

whether they belong to PP  or not. If we cannot find such an extreme point along a 
domination tree, all extreme points along the tree cannot become nondominated solutions 
to problem pin). 
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4. Solution M e t h o d  

We can not apply the existing methods developed for solving a usual multi-level system 
to generate a set of nondominated solutions to problem P("). We have to develop a new 
method exploiting Properties 1 through 6. 

From Property 1, any nondominated solution to problem P("), equivalently any element 

in PP, not only belongs to PE but also belongs to PP. However, from Property 2, it does 

not always belong to P". Therefore, enumeration of all elements in Pf' itself does not solve 
problem P("). Additional information on the rela>tionships among extreme points adjacent 

to each other in PP, such as domination trees, is helpful to generate all the nondominated 
solutions to problem P("). 

In the same way as that proposed for solving a single objective, two-level decentralized 

system, we can find all the extreme points in PP' by using the "two-level simplex algorithm 
[3]." Incorporating Properties 4 through 6 into the two-level simplex algorithm, we can 

provide not only all the extreme points in PP but also the set of domination trees. If any 

nond~mina~ted solution to problem listed at the top of each domination tree satisfies 
( condition (b), then it belongs to P;). Otherwise, the corresponding domination tree should 

be searched to find the first highest-ranked element along the domination tree satisfying 
condition (b). It should be noted that if the element satisfying condition (b) is not listed 
at the top of the corresponding domination tree, the element is not always a nondominated 
solution to problem P("), because it is not guaranteed for the element to satisfy condition 
(c). Condition (c) still remains to be checked at  the last stage of the searching procedure. 
This final check can be achieved by comparing the values of headquarters-objective function 
vector of the element with those of all the elements generated. 

We summarize the proposed algorithm for generating the set of nondominated solutions 
to problem P("* as follows: 

(2) < S t e p  l> Make the set of domination trees over all the extreme points of Pp , by applying 
the two-level simplex algorithm to problem P^ and by using properties 4 through 6. 

< S t e p  2> Along each domination tree, find the first highest-ranked element satisfying the 
optimality conditions for problems L P ( ~ ) ,  , If the domination tree 
ha,s some branches, find such an element along each branch. If there is no such element 
found, abandon the tree or branch, and proceed the search for the other trees. 

< S t e p  3> Comparing the va,lues of hea,dqua,rters-objective function vector among the ele- 
ments found in Step 2, generate the set of nondominated solutions to problem P("). 

5. Numerical  Example  

To show the effectiveness and applicability of the proposed algorithm, we demonstrate a 
numerical example. Consider a corporation consisting of one headquarters and two division 
each of which has two fa,ctories. Assume that the corporation produces ten kinds of products. 
Each factory produces two or three kinds of product denoted by xll = (xl l l ,  x l 1 2 )  for the 
(1,l) factory, xi2 = ~ 1 2 2 ,  x12qT for the (1,2) factory, x21 = (a-211, x212)T for the (2,l) 
factory and x 2 2  = ~ 2 2 2 ,  for the (2,2) factory. We can formulate the three-level 
decentralized system as follows: 

[Example P r o b l e m  
< t h e  h,ea,dqua,rters p r o b l e m  > 
Maximize z], = ( lO, l )x l l (y l (w))  + (4,1,1)xi2(y(w)) 
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y 2 0, 
<the  (1, l} f a c t o r y  problem> 
Maximize 211 = ( 2 , 3 ) x n ,  

2 0 

subject to (; ;) xi1 S (q 
3 4 200 
X11 2 0, 

<the  (l, 2 )  fac tory  problem> 
Maximize Z12 = (1,4,2)x12, 

4 
subjectto (: 10 ? 0 ) ~ 1 2 5 ( ~ ! ) + ( ~  : ) Y I ,  

10 20 5 
X12 2 0, 

<th,e 2nd d i v i s i o n  problem,> 
~ a x i m i z e  2 2  = (l ,2)x21 ( ~ 2 )  + ( 5 , 9 , 3 ) ~ 2 2 ( ~ 2 )  - ( l , 2 ) ~ 2 ,  

9 4 28 20.5 
subject to (; ;o) y2 5 (g) + (!: i: ) W, 

Y2 2 0 ,  
<th,e (2,1} f a c t o r y  problem,> 
Maximize Z21 = ( l ,  3)x21, 

X21 2 0 ,  
<th,e (2,2} f ac tory  problem> 
Maximize = ( l ,  I ,  l)x22, 

subjectto (i i ) x 2 2 ~ ( F ) + ( : i :  : ) ~ 2 ,  

X22 2 0, 

(2) Using the algorithm proposed in section 4, we can find all the extreme points in Pp 
with the dornimtion trees as shown in Table 1 and Fig. 3. After checking whether or not 
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Fig. 3 Domination t r e e s  f o r  t h e  example problem 

S satisfy the condition (b), we finally obtained elements 4 g trees (2) 
and (3). The other trees have no element satisfying condition (b). Comparing the va l~~es  of 
headquarters-ob jective-functio~~ vector among these two elements, we get elements 4 and 25 
as the set of nondominated solutions to problem In this case, 30 elements in PP) are 
generated, but only 22 elements are checked to judge whether or not satisfy condition (b). 
Domination trees are helpful to reduce a large a~nount of computatio~l effort for achieving 
this final check. Computation time is only about l minute by EPSON PC-286 without a 
mat hemat ical processor. 

This paper discussed a mathematical model and its solution method for a multi-objective, 
multi-level decentralized system. An optimal solution method based on the two-level sim- 
p l e ~  algorithm with domination trees was proposed for solving this type of multi-level de- 
centralized system. A numerical example was demonstrated to show the effectiveness of the 
proposed method. 
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