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Abstract The construction of a cactus representation for all minimum cuts in an edge-weighted) undirected 
network is studied in this pa,per. Given such a network with a set V of vertices and a set E of edges, the 
previously known algorithms for constructing a, cactus representa,tioil require solving / V [  - l maximum flow 
problems? each with a prescribed pa,ir of source and sink, in order to find all minimum cuts that separate 
them. We first show tha,t computing a maximum flow between a pair of vertices, S and t ,  reveals many other 
inini~nun~ cutls tint do not separate S and t .  Based on this fa,ct, we propose a new algorithm that can choose 
ail arbitrary pair of source and sink for each maximum flow problem. For a network with unit edge weights) 
our algorithm runs ill O ( l E [ +  A[Vl2) time, where A is the weight of a minimum cut. 

l. Introduction 
Let N = (V, E, c) denote a network with a set V of vertices and a set E of edges weighted 

by a function c. The minimum cut in a network is one of the most fundamental notions in 
graph theory and is a rich source of interesting combinatorial problems (e.g., [7, 81). Many 
algorithms for finding a t  least one minimum cut in a network have been designed so far 
[4, 7, 10, 11, 12, 141. Currently, the asymptotically fastest algorithms can find a minimum 
cut in a network N = (V, E ,  c) in O ( ~ E ~ ~ V ~ V ~ ~  log IVI) [l41 or O ( ~ E ~ ~ V ~  ~ o ~ ( ~ V ~ ~ / ~ E ~ ) )  time 
[IO]. It is well-known that one can find all minimum cuts separating two specified vertices, 
S and t ,  by computing a maximum flow between S and t [19]. 

We investigate in this paper the problem of constructing a LLcompact'7 representation for 
all minimum cuts in a network. A network is commonly called a cactus if any pair of cycles 
in it, if any, has a t  most one vertex in common. It is known [3, 81 that  all minimum cuts 
in a network N = (V, E, c) can be embedded in a cactus of size O(lVl), from which any 
minimum cut can be easily obtained as a minimum cut of the cactus. This representation 
has been relatively unknown in the West since it was reported in [3]. However, its great 
usefulness has gradually been recognized. For example, it can considerably speed up the 
algorithms for the edge-connectivity augmentation problem [g, 171. 

For the special class of networks whose edges have unit weights, some efficient algorithms 
are known for constructing a cactus represent ation. For example, Gabow7s algorithm [g] 
runs in O(1 E l+A2 IVI log IVI) time, where A is the size of a minimum cut. If such a network 
has no multiple edges, a cactus representation can be constructed in O(AlV12) [ll] or O(1 Ek 
A21Vl log(lVl/A)) time [a]. 

Most of the known cactus construction algorithms [ll, 181 utilize a maximum flow al- 
gorithm. These algorithms are based on the fact that  the set of all minimum cuts can be 
divided into IVI-l disjoint sets, each of which is the set of minimum cuts separating two 
prescribed vertices and, hence, can be obtained by solving a single maximum flow problem 
in which both the source and sink are specified [19]. 
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Abstract The construction of a cactus represe~ttation for all minimum cuts in an edge-weighted, undirected 
network is studied in this paper. Given such a network with a set V of vertices and a set E of edges, the 
previously known algorithms for constructing a, ca,~tus representa,tion require solving [V[  - l maximum flow 

each with a prescribed pa,ir of source and sink, in order to find a,ll minimum cuts that separate 
them. We first show that computing a maximum flow between a pair of vertices, S and t ,  reveals many other 
ininiinun~ c~i t s  that do not separate S and t.  Ba,sed on this fa,ct, we propose a new algorithm that can choose 
an arbitrary pair of source and sink for each maximum flow problem. For a network with unit edge weights, 
our algorithm runs in O ( [ E [ +  A[vI2) time, where A is the weight of a minimum cut. 

l. Introduction 
Let N = (V, E, c) denote a network with a set V of vertices and a set E of edges weighted 

by a function c. The minimum cut in a network is one of the most fundamental notions in 
graph theory and is a rich source of interesting combinatorial problems (eeg., [7, 81). Many 
algorithms for finding a t  least one minimum cut in a network have been designed so far 
[4, 7, 101 11, 12, 141. Currently, the asymptotically fastest algorithms can find a minimum 
cut in a network N = (Vl E, c) in O ( ~ E ~ ~ V ~ V ~ 2  log IVI) [l41 or O ( ~ E ~ ~ V ~  l o g ( l V 1 2 / / ~ [ ) )  time 
[lO]. It  is well-known that  one can find all minimum cuts separating two specified vertices, 
S and t ,  by computing a maximum flow between S and t [lg]. 

We investigate in this paper the problem of constructing a "compact" representation for 
all minimum cuts in a network. A network is commonly called a cactus if any pair of cycles 
in it l  if any, has a t  most one vertex in common. It is known [3, 81 that  all minimum cuts 
in a network N = (V, E, c) can be embedded in a cactus of size O(lVl), from which any 
minimum cut can be easily obtained as a minimum cut of the cactus. This representation 
has been relatively unknown in the West since it was reported in [3]. However, its great 
usefulness has gradually been recognized. For example, it can considerably speed up the 
algorithms for the edge-connectivity augmentation problem [g, 171. 

For the special class of networks whose edges have unit weights, some efficient algorithms 
are known for constructing a cactus representation. For example, Gabow1s algorithm [g] 
runs in O(1 E l+A21Vl log IVI) time, where A is the size of a minimum cut. If such a network 
has no multiple edges, a cactus representation can be constructed in O(AlV12) [ll] or o(1Et.1- 
A21Vl log(lVl/A)) time [8]. 

Most of the known cactus construction algorithms [ll, 181 utilize a maximum flow al- 
gorithm. These algorithms are based on .the fact that the set of all minimum cuts can be 
divided into lVl--l disjoint sets, each of which is the set of minimum cuts separating two 
prescribed vertices and, hence, can be obtained by solving a single maximum flow problem 
in which both the source and sink are specified [lg].  
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A partition {X,X}  of V, is called a c u t  of N .  We say that  a cut {X,x} separates two 
subsets 0 C V', V" C V if V' 2 X and V" X .  A cut {X, X} separating two vertices 
U, v E V is called a uwcut .  For two vertices U,  v E V, define 

A(u, v ;  N )  E min{c(X, X) 1 {X, X} is a uv -cut of N}. 

For example, for the network Nl in Fig. l l  we have A(Nl) = A(vl,vlg; NI) = 4 and 
A(v9, vl2; NI)  = 5. We define 

A(N) min{c(X,x;  N )  1 {X,X} is a cut of N}, 

which is equivalent to  min{A(u, v; N )  1 distinct U,  v E V}. Since we consider only connected 
N, we have A(N) > 0. We call a cut {X, X} satisfying c(X, 7; N )  = A(N) a . m i n i m u m  
c u t  (or min-cut ,  for short) of N ,  and denote the set of all min-cuts of N by C(N). 

For a set of vertices, U C V, the network induced by U in N is the network N' whose 
vertex set is U and whose edge set consists of all the edges e = ( U ,  v) E E such that U,  v E U. 
In other words, 

N' = (U, [U X U] n E, C') 

where c' is the same as c, except that it is restricted to  the edge set of N'. For E' 2 El 
N-E' denotes the network obtained from N by deleting the edges in El7 keeping the vertex 
set V unchanged. For V' C V, N-V' denotes the network obtained from N by deleting the 
edges incident to vertices in V' as well as the vertices in V'. 

Throughout the paper, we may write a singleton set {X} simply as X. 

2.2. C a c t u s  Represen ta t ion  for  Min-Cut s  
We call a network consisting of a single vertex a t r iv ia l  cactus. A network with more 

than one vertex is called a cac tus  if any edge in it belongs to  a cycle+ and any pair of cycles, 
if anyl has a t  most one vertex in common. A cactus N = (V, E, c) is said to  be uniform,$ if 
c (e )  = l for 'de E E .  Since the weight of any edge of a uniform cactus is always l, we simply 
write N = (Vl E )  to  refer to  a uniform cactus N = (V7 E, c). Obviously, for any non-triviall 
uniform cactus N l  A(N) = 2 holds and E(X, X; N )  'consists of two edges on the same cycle 
for any min-cut {X, X}. 

This subsection shows how to embed a set of min-cuts of a network N in a LLsmall" uniform 
cactus. For a given network N = (V, El c), we introduce a uniform cactus R = (W, F) and 
a mapping p : V + W. Throughout the remainder of the paper, we shall use the term 
'Lvertex" to denote an element in V, and the term "node" to denote an element in W. In 
what follows, we normally use U and v with or without subscript/superscript to  denote 
vertices, and x 7  y, and z with or without subscript/superscript to denote nodes. W may 
contain a node X such that V contains no vertex v with p(v) = X. Such a node X is called 
an e m p t y  node .  As before, C(N) and C(R)  denote the set of all min-cuts of N and R '  
respectively. 

Definition 2.1 For a given subset C' G C(N) of min-cuts ,  (R, p) i s  a representa t ion  for 
C' if i t  satisfies (i) and (ii): 

(i) For an  arbitrary min-cut  { S )  W-S} E C(R),  { X , x }  E C' holds, where X = { U  1 
p(u) E S} and = { G  1 ~ ( v )  E W-S}. 

+This condition is normally not imposed on a cactus, so that  a cactus may have a "bridge.') Howeverl a 
bridge can be replaced by two edges in order t o  satisfy this condition. Our definition makes the subsequent 
discussion of cacti slightly easier. 

iThis definition of "uniform" is more restrictive than that  in 1161. 
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(ii) Conversely, for any mzn-cut {X) X} E C', there exists a min-cut {S, W-S} E C(R) 
such that X = {U 1 p(u)  E S} and X = {v 1 p(v) E W-S}. 

A representatzon ( R ,  p )  for Cf is called a c a c t u s  r ep resen ta t ion  for C' if R is a unzform 
cactus. U 

For convenience) we use the following notation: 

p ( X ) ~ { q ( v ) l v ~ X }  f o r X G V ,  

P-'(s) {v E V 1 ~ ( v )  c S} for S c W) and 

p-'(C') E {{q-' (S)) v-' (W-S)} 1 {S, W-S} E C'} for Cf C(R). 

When ( R )  p) is a representation for Cf C(N))  we say that  cut {X)X} G C' and cut 
{S, W-S} E C(R) co r re spond  to each other if v ( X )  2 S and v ( X )  2 W-S. The 
conditions (i) and (ii) in Definition 2.1 can be expressed simply as 

v-' (~('72,)) = C'. 

Note that any min-cut {S, W-S} E C(R) always corresponds to  exactly one min-cut in 
Cf. However) a min-cut in Cf may correspond to  more than one min-cut in C(R) if R has 
an empty node. For the special case Cf = 0, ( R ,  v) with a trivial cactus R = (X) 0) and 
q(V)  = X is a cactus representation for it. It is shown in [3] that)  for any network N) 
there exists a cactus representation (R) 9) for C(N). For example) Fig. 2 shows a cactus 
representation for C(Nl) for network NI in Fig. 1) where z2) zg) z15 are empty nodes. 

non-empty node 

empty node 

Figure 2: A cycle-type normal cactus representation for C(Nl) 
({m} beside node zi shows (xi)). 

Unfortunately) a cactus representation for a given C', if one exists) may not be uniquely 
determined without imposing further structural restrictions) as shown below. In a cactus 
representation) we call a cycle on n nodes an n-cycle, and a node v belonging to exactly 
J' cycles a j - junct ion node .  Note that ,  by definition, neither S nor W-S contains only 
empty nodes, if {S, W-S) E C('72). In particular, there is no empty 1-junction node in 
a cactus representation. We call a cactus representation n o r m a l )  if it has no empty 2- 
junction node belonging to a 2-cycle, and we call a normal cactus representation without 
empty 3-junction nodes a cycle- type normal cactus representation (see [16]). For example, 
Figs. 3(b), (c) and (d) show three cactus representations for the same network in Fig. 3(a).  
The cactus representation in Fig. 3(b) is not normal since it has an empty 2-junction node, 
z l ,  belonging to the 2-cycle {zl , 2 2 1 .  The cactus representation in Fig. 3(c) is not of cycle- 
type since it has an empty 3-junction node; 2 3 .  while that in Fig. 3(d) is of cycle-type. The 
cactus representation in Fig. 2 is also a cycle-type normal cactus representation. 
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In the rest of this paper? we shall restrict ourselves to  the cycle-type normal cactus 
representations, which is justified by the following lemma. 

} 

0 : empty node 

Figure 3: Three examples of cactus representations. 

Lemma 2.1 [l61 Given  a network N = (V, E, c ) ,  (i),(ii) and (iii) below hold for a n y  subset 
C' G C(N). 

( 9  

(ii) 

(iii) 

If C' has a cactus representation, t h e n  C' has  a cycle-type norma l  cactus representation. 
(Lemma 3.3(ii) in [l61 .) 
If C' has a cycle-type norma l  cactus representatzon, t h e n  such  a representatzon i s  
unique. (Theorem 4.1 in [l61 .) 
A n y  cycle-type norma l  cactus representation (Rl p) for C', if o n e  exists,  has  a t  m o s t  
IVI emp ty  nodes. (Lemma 4.4 in [16].) 0 

3. Representing Min-Cuts by a Partition 
As a preparation for cactus representation of all min-cuts in N = (V, E, c)? we introduce 

and discuss in this section the concept of an "ordered partition" of V, by which we represent 
some min-cuts of N .  

3.1. Minimum Cut Partition 
Let N = (V, E, c) be a network. A cut {X, X }  of N crosses another cut {Y, F} of N if 

The following elegant lemma lays the groundwork for subsequent discussions~ 

Lemma 3.1 [2, 3, 181 Let  {x1x} and {Y,Y} be a n y  two  min -cu t s  of N = (Vl E l  c). If 
these cuts cross each otherJ t hen  

(i) c(V1, V2) = c(V2, Vs) = c(V3, h) = c(V4? Vl) = A(N)/2, and 

(ii) c(Vl, V3) = c(V2, V4) = O 
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We call an ordered set (V1, V2 . . . , K), r > 2, an ordered partition (or o-partition, 
for short) of V if {Vl, . . . , K} is a partition of V. Given an o-partition (Vl, . . . , Vr) and two 
indices h and k (1 < h < k < r ) ,  we define 

For C' C C(N),  an o-partition 71-1 = (Vl, V2, . . . , K) of V is called a min-cut o-partition 
(or MC-partition, for short) over C', if 

An o-partition 9 = (V', V', . . . , V',) of V is called a circular MC-partition over C', if 

We say that a cut in the above Cl (resp. Cg) belongs to  the MC-partition 71-1 (resp. circular 
MC-partition 7r2), and that 71-1 (resp. 71-2) represents Cl (resp. C^). Clearly, any circular 
MC-partition over C' is an MC-partition over C', but not vice versa. With these notions, 
Lemma 3.1 can be restated as follows. 

Lemma 3.2 Let { X , X }  and {Y,Y} be any two rnin-cuts of a network N = (V, E, c). If 
these cuts cross each other, then (Vl, V2, K,  h )  is a circular MC-partition over C(N), where 
V l = X n Y ,  V 2 = X n Y ,  V s = X n y ,  a n d h = X n y .  13 

We now introduce two basic types of cactus representations, which represent the set of 
all min-cuts belonging to an MC-partition and a circular MC-partition, respectively. We 
call a uniform cactus a chain if i t  consists only of 2-cycles and each node is either a 1- 
or a 2-junction node. A representation ( R ,  p) in which R is a chain is called a chain 
representation. Let 71-1, Cl, Q, and C2 be as defined above. Clearly, Cl has a chain 
representation, which we denote by ("Ry,, where 

Here {ei, ei} = Â£'(xi xGl), 1 < i < r-l. Similarly, C2 has a cycle representation, which 
we denote by ( f in  , <^r ), where 

= ({X, I 1 < i < r'}, {ell e2 , .  . . ,err}). and &'(xi) = V; (1 <: i <: r'). 

Here ei = (xi, x & ~ ) ,  1 5 i 5 r'-l, and er/ = (xr1, xi).  

3.2. Maximal Circular MC-part it ions and Subcactus 
Let C' C C(N) for a network N = (V, E, c). A circular MC-partition (Vi, V;, . . . , K) over 

C' is said to be maximal if for any X C K with 1 < i < r,  (Vl, . .  . , l&i, X, K-X, V*, . . . , Vr) 
is no longer a circular MC-partition over C'. Suppose that  C' has the cycle-type normal cactus 
representation (R, 9). For any r-cycle C ( r  > 2) in R, let W(C)  (resp. F ( C ) )  denote the 
set of nodes (resp. edges) on C, and let (Wi, F{Y i = l, 2 , .  . . , r ,  denote the connected 
components of R-F(C), where each (Wi, .Fi) appears on C in the order z = l, 2,  . . . , r .  
Clearly, each (Wi, F,) is a uniform cactus, which we call a subcactus in R-F(C). Since 
any two cycles in R has a t  most one node in common, each subcactus (Wi? Fi), z = 1,. . . , r ,  
has exactly one node (say, yi) from W(C) ;  these nodes appear in the order, yi,  y2, . . . , yr 
on C .  Let TT̂  = (Vl, h,. . . , Vr) be the o-partition of V such that = ^ " ( W i ) ,  z = 
1 , 2 , .  . . , r. Clearly, i\c is a circular MC-partition over C'. We say that C yields TC from R .  
Interestingly, it is known [l61 that there is a one-to-one correspondence between the maximal 
circular MC-partitions and the cycles in a cycle-type normal cactus representation. More 
formally, we have the following lemma. 
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L e m m a  3.3 [l61 Given N = (V, E ,  c) and C' C C(N), let ( R ,  p) be the cycle-type normal 
cactus representation for C'. Then, an 0-partition TV = (Vl, V,,. . . , K )  of V is a maximal 
circular MC-partition over C' if and only $"R. has an r-cycle which yields TV from R. D 

For example, the 5-cycle = {zl, 2 2 ,  z7, 28, zll} in Fig. 2 yields a circular MC-partition, 

over C(Nl) in the network NI of Fig. 1. Since the representation in Fig. 2 is the cycle-type 
normal cactus representation for C(Nl), T V C  is a maximal circular MC-partition over C(Nl) 
by Lemma 3.3. Conversely, Lemma 3.3 implies that  a maximal circular MC-partition over 
C(N) uniquely determines a cycle in the cycle-type normal cactus representation for C(N). 

3.3. (S, t ) -MC-Part i t ions 
We say that an edge e = (S, t)  is cr i t ical  if A(s, t ;  N )  = A(N). Thus, if e is critical, then 

we have \(N-e) < \{N). This subsection first shows, for a given a critical edge e = ( S ,  t ) ,  
how to derive an MC-partition of V which represents all min-cuts separating s and t. Based 
on Lemma 3.1, Dinits, et al. [3], and Karzanov and Timofeev[ll] proved the following lemma, 
which plays an important role in enumerating all min-cuts effectively. 

L e m m a  3.4 [ll, 181 For a network N = (V, E, c), let ( s , t )  G E be critical. Then, all 
min-cuts in C(N) that separate S and t belong to one MC-partition over C(N). 

Proof:  We first show that any two min-cuts {X,.X"} and {Y,F} in C(N) that separate s 
and t never cross each other. Assume s C X and S G Y,  i.e., s G X D Y = Vl, without loss 
of generality. If these cuts cross each other, edge e = (S, t) is contained in E(Vl, G )  and 
hence c(V,,V3) 2 c(e) > 0, where V, = X n F. However, by Lemma 3.1 (ii), c(Vl, G )  = 0 
must hold, a contradiction. Therefore, {X,X} and {Y,F} do not cross each other. This 
implies that all min-cuts {Xi, Xi} (S 6 X;, i = 1,. - . , q) in C(N) that  separate S and t can 
be arranged so that 

{S} C X1 C X, C . C X, C V-{t} 

holds. Thus, (Xl,  Xi-Xi, . . . , XÃˆ-XFl X,) is the MC-partition over C(N) that  represents 
all min-cuts {x,,Xi} (i = 1, . . . , q). D 

Figure 4: The (vh v^)-MC partition T ^ @  ,1,19) over C(Ni} 
and its partition blocks {Ai} and {B,}. 
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The fact that (S, t )  E (i.e., c(s, t ;  N )  > 0) is important in this lemma. For example, let 
N be a 4-cycle on the vertex set {vo, vl, v-i, v3}, with edge set {(vi, v+l(mod 4))  1 0 <: i <: 3} 
such that each edge has a unit weight. Then, TT = ({vo}, {v1}, {v3}, {v2}) is an MC-partition 
over C(N). However, the min-cut {{vo, v3 1, {vh v^}}, separating v0 and 212, does not belong 
to  TT. Note in this case that (vo,v2) $ E .  

The MC-partition in Lemma 3.4 for a critical edge (S, t )  is unique. We call it the (S, t)- 
MC-partition over C(N), and denote it by T T ~ ~ , ~ ~ .  For example, the (vi, wig)-MC-partition, 
T T ( ~ l  ,Vlg), the in Fig. is TT@l ,vl9) = ({'l}, l '3, '4, VS}, {VG}, {'77 {'g , '11 7 '12}7 

~ 1 3 }  7 {v14} 7 {v15 $l6 7 vl71 vl8} 7 {vlg}) as shown in Fig. 4. 
It turns out that  T ~ ~ ~ , O  can be computed efficiently by the following lemma. 

Lemma 3.5 [ll, 181 Let (S, t )  (E E be a critical edge in a network N = (V, E, c). The 
(S, t )  -MC-partition; over C(N) can be obtained by finding a maximum flow between 
source S and sink t in N .  

Proof sketch: Picard and Queyranne[19] introduced a directed acyclic graph which repre- 
sents all st-cuts with weight \(S, t ;  N) ,  and Ball and Provan[l] describe an algorithm that  
computes such a directed graph from a maximum flow[5] between S and t. Karzanov and 
Timofeev[ll] and also Naor and Vazirani[18] show how to  construct TT(,,,) from the directed 
graph. D 

It can be shown that ,  after finding a maximum flow between such s and t, T V ( ~ , ~ )  can be 
constructed in O ( ~ V ~ + ~ E ~ )  time [ l ,  11, 18). 

We now consider the other min-cuts that do not separate s and t for any critical edge 
(S, t ) ,  i.e., the min-cuts not belonging to any (S, ()-MC partition. We say that  a cut {X, X} 
crosses a partition {Vl, . . . , K} (or an o-partition (Vi, . . . , K ) )  of V if {X, X} crosses some 
cut of the form {V,, V-V,}. A cut {X, X} is compatible with a partition {K, .  . . , V,} (or 
an o-partition (Vl, V2, . . . , Vr)) of V, if 

We prove below the first set of our new results which implies that,  by solving a maximum 
flow between two vertices S and t ,  not only minimum cuts that separate S and t ,  but  also 
many other minimum cuts which do not separate s and t can be obtained. 

Lemma 3.6 Let ( S ,  t)  be any critical edge in a network N = (V, E, c). Then no min-cut 
{X, X\ 6 C(N) crosses the (S, t)-MC-partition, qS , ,b  over C(N). 

Proof: See Appendix 1. 0 

Given an o-partition, TT, of V for a network TV = (V, E, c), let Ccomp(~)  denote the set of 
all min-cuts in C(N) that are compatible with TT. 

Lemma 3.7 For a critical edge (S, t) in a network N = (V, E, c), let TT(~,;)  = (Vl, . . . , V^} 
he the (s,t)-MC-partition over C(N), and let { X , X }  Ccomp(~(s,t))- Then, we have the 
following: 

(i) If {X, X }  separates s and t ,  then either X = h7.) or = $,r) for some i (1 < i < r). 

(ii) I/ {xJ} does not separate s and t ,  then X == Via)  or X = yid for some i , j  
(1 < i 5 j < r) such that {Vk ,E}  6 C(N) for each k (i <_ k 9). 

Proof; (i) Immediate from Lemma 3.4. (ii) See Appendix 2. 0 

Clearly, by this lemma, one can compute Ccomp(~(,s,t l)  in polynomial time from a given 
(S, t)-MC-partition, In Section 6, we will see that Cmp(n-(s,t)) can be computed from 

in linear time, and furthermore it has a cactus representation. 
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4. Algorithm Out line 
This section gives an overview of our algorithm (to be presented in Section 7) for con- 

structing a cactus representation for all min-cuts of a network N .  To this end, we first 
review a previously known algorithm for enumerating all min-cuts of N .  

4.1. Enumerating All Min-Cuts 
Suppose that we have the (s,t)-MC-partition, ~ r ( ~ , ~ ) ,  of V for a critical edge ( s , t )  in 

N = (V, E, c). We thus know all min-cuts in C(N) that separate s and t .  In order t o  find 
other min-cuts in C(N),  we need not consider any cut separating s and t. We can therefore 
identify t with S, changing all edges of the form e = (t, W) to  e = (S, W) and 'deleting t and 
all the resulting self-loops, if any. Let NtEs denote the resulting network, which,inherits its 
weight function from N .  Let {X, X }  be any cut of N such that {S, t} X .  Then, clearly, 
{X-t,  X }  is a cut of NtZs satisfying E(X-t, V-X; Nt=.) = E ( X ,  X, N) .  From this, it follows 
that A(Nt=s) 2 A(N). If A(Nt=s) > A(N), then all min-cuts separate s and t ,  and we know 
all of them. If A(&) = A(N), on the other hand, the rest of the min-cuts of N can be 
found as the min-cuts of NtZs. Based on this observation, one can enumerate all cuts in 
C(N) by repeating edge contraction until the network has only two vertices: 

Algorithm CONTRACT {Input: a network N = (V, E, c). Output: C(N) = 
1Vl (i) -}  

begin 
Compute A(N); A := \ IN);  ~ ( 1 ~ 1 )  := N ;  
for i = V / ,  Vl-l, . . . , 2  do 

begin 
Choose an arbitrary pair of adjacent vertices S^), t^ in N^ 

and test if A(di), tW; W(')) = A; 
If so, compute the set C^ of all min-cuts separating ŝ  and t(') in N(') 

and store it as the (S^), t ^ ) - ~ ~ - ~ a r t i t i o n  
else, let C(') := 0; 
~ ( i - l )  := ̂ (i) 

t(')=s(i) 
end 

end. 

CONTRACT divides the set C(N) into disjoint subsets C('), i = \V\, \V\-\, . . . , 2 ,  and 
outputs C(N) = $2 C^. By Lemma 3.5, C^ can be computed by finding a maximum flow 
between S^ and t^  in N^. Since the (S^), t ^ ) - ~ c - ~ a r t i t i o n  for C^ represents a t  most 
O(IV1) min-cuts, C(N) = U!!') C^ contains a t  most O(lVj2) rnin-cuts. Clearly, the amount 
of space required to store ( ~ ( ~ 1 ,  t ( ' ) ) - ~ ~ - ~ a r t i t i o n  for all i is also 0 (}Vi2) .  

4.2. Constructing Cactus Representation 
In CONTRACT, after finding all (SW, t ( ' ) ) - ~ ~ - ~ a r t i t i o n s ,  TT(~(.),,(.)), it may be possible 

to merge the obtained MC-partitions compactly into a single structure, that is, a uniform 
cactus. The previously known. algorithms [ll, 181 for finding a cactus representation for 
C(N) are based on this idea, and can be described as follows. 

Algorithm CACTUS {Input: a network N = (V, E, c). Output: a cactus 
representation (It, p) for C(N).} 

1 begin 
2 Compute A(N); ~ ( 1 ~ 1 )  := N ;  let s(lv^) be a vertex in V; 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



144 H. Nagamochi & T. Kameda 

3 for i = IV1,IVI-l,.. . , 2  do 
4 begin 
5 S(') := S(^'); choose as t(') a vertex adjacent to S(') in N^^; 
6 ('1 

~ ( ' - l )  := Nt(i)=s(i) 
7 end 
8 Â¥R.(' := (X, 0); @(V) := X; {(Â¥R.(') ^l)) is a cactus representation for 

c = 0} 
9 for i = 2 ,3 , .  . . , [V1 do 
10 begin 
11 Compute an ( S ( ' ) ,  t ^ ) - ~ ~ - ~ a r t i t i o n  TT,,!~) over c(N( ' ) ) ;  
12 Compute a cactus representation (Â¥R.(') ;W) for c(N( ' ) )  from ~ ~ ( , ( i ) , ~ ( i ) )  

and ('R(-11, ip<'-l)) 

13 end 
14 (Â¥R. p)  := (Â¥R.(Ivl) Â¥p(lvl) 
15 end. 

In the above algorithm ~ , ( i ) , ~ ( i ) )  must be computed for the specific pair of vertices S ( ' ) ,  

chosen in line 5, to  simplify the merging step in line 12. Therefore, we need an algorithm 
that can find a maximum flow between a prescribed pair of source and sink. The reason 
why the merging step would become much more complicated unless S( ' )  and t(') were chosen 
carefully is that the algorithms in [11, 181 make use of only those min-cuts which belong to  
the (S('), t ( ' ) ) - ~ c - ~ a r t i t i o n ,  X(,(i),,(i)). However, as shown in Lemma 3.7(ii) (and in Section 6 
in more detail), X(s(i),t(i)) may reveal many other min-cuts. In fact, it will turn out that  those 
additional min-cuts appear both in r/s(i) ,t(i)) and of line 12. In other words, 

those min-cuts will give us an indication on how to  combine r / s ( i ) , t ( i ) ~  and ( @ l ) ,  @ l ) )  

properly. By making the maximum use of the ( S ^ ) ,  t ^ ) - ~ ~ - ~ a r t i t i o n ,  ~ ( ~ ( i ) , d i ) ) ,  our new 
algorithm will choose the pair S^ and t^ arbitrarily in line 5 and have a simpler merging 
step in line 12. 

5. Union of Representations 
To implement step 12 of Algorithm CACTUS, this section introduces an operation for 

combining the representations for two different sets of min-cuts of N into a single represen- 
tation. 

l$' ji 

Figure 5: Two complementary partitions. 
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We say that a representation ( R ,  p) induces  the partition {Vl, h,. . . , K} of V, if R 
has exactly r non-empty nodes, xi,  x2, . . . , xr such that p l ( x i )  = v. Two partitions 
{K,. . . , K} and {V,. . . , yl} (or two o-partitions (h,. . . , K )  and (y,. . . , ',)) of V, where 
r r' 2 2, are said to  be complementa ry  (with respect to  V and d'), if there are two subsets 
V,, V,' such that 

V , u y = v .  

(See Fig. 5.) Thus, two cuts either cross each other or are complementary. Similarly, a 
cut and a partition may cross each other, be complementary or compatible. They can be 
complementary and compatible a t  the same time. 

j o i n t  nodes 

Figure 6: Union of 

Consider two cacti R = (W, F) and R' 
(R, p)  and (W, p') are representations for C 

two representations. 

= (W', F'), where W W = 0, such that 
C(N) and C' 2 C(N), respectively. These 

two representations are said to be complementa ry ,  if the two partitions, {Vl, V^, . . . , Vr} 
and { V ,  V,. . . , v,}, of V induced by ( R ,  p) and (R', p'), respectively, are complementary. 
(This implies r, r' > 2.) If ( R ,  if) and (R', p') are complementary, then there are two nodes, 
z G W and 2 G W', such that 

p-'(z) U p'-l(^') = v. 

We call these z and z' joint nodes.  The union,  denoted by 

of two complementary representations, ( R ,  if) and ('R', if'), is defined as the cactus obtained 
from R and R by identifying the two joint nodes, z,  z' as a new node, say z", and defining 
a mapping if" : V -+ W U W U {z"} - {z, X'} such that 

vu- l (~")  = if-'(^) n v'- l (~ ' ) ,  

p"-'(X) = w-l(x) for X 6 W-z, and ifu-'(X') = iff-'(X') for X' 6 W'-z', 

as shown in Fig. 6. Note that after the above union operation, the node z becomes an 
empty node if and only if the joint nodes z and z' satisfy i f l ( z )  n p l ( z ' )  = 0, i.e., 
i f l (W-z)  = p l \ [ z ' )  or equivalently if'l(W'-z') = p l ( z ) .  The significance of the union 
operation is given by the following lemma. 

L e m m a  5.1 Let a representation 'R = (W, F) for C C C(N) and a representation 'R' = 
(W', F') for C' C C(N) be complementary. Then (R", p") = ('R, if) 3 (R', p') is a represen- 
tation for C U C'. 
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Proof: Let R" = (W", F"), where W" = W U W U {2"} - {z, z'}. Let {X, X }  E C U C'. 
Consider the case { X , X }  E C (the other possibility, i.e., {X,X} G C can be treated 
analogously), and let {S, W-S} be the corresponding cut in C(R) ,  where we assume X = 
^-'(S) and 2 E W 4  without loss of generality. By definition, we have {S, W"-S} E C(R1'), 
yl""(S) = X, and p'^l(W"-S) = X. Conversely, let {T, W"-T} be an arbitrary cut 
in C(R1'), where we assume 2'' E W"-T without loss of generality. Then, T C W-z or 
T C W'-2' holds, because, otherwise, the network induced by T from 72'' would not be 
connected, implying a cut smaller than a min-cut, a contradiction. Therefore, {T, W"-T} 
corresponds to a cut in C U C'. 

6. (S, A)-Cactus Represen ta t ion  
Throughout this section, we assume that the edge (S, t )  G E in a network N = (V, E, c) 

is critical, and = (Vl, . . . , K )  denotes the (S, t)-MC-partition over C(N). We will 
show how to construct a cactus representation for Ccomp(~(s,t)) (i.e., the set of all min-cuts 
compatible with the (S, t)-MC-partition) , which we call the "(S, t)-cactus representation." 

6.1. Min-Cuts  Compa t ib le  w i t h  (S, t ) -MC-Par t i t ion  
Using Lemma 3.7, one could enumerate all min-cuts in Ccomp(~(s,t)) by checking whether 

c ( Y ~ , ~ ) ,  V[ i , j~ ,  N )  = \{N) for all possible pairs, ( 2 ,  j ) .  However, there are as many as 0 ( r 2 )  = 
0(lV12) such pairs. To find them more efficiently, we first show that  the set Ccomp(~(s, t~)  can 
be represented by a collection of MC- and/or circular MC-partitions over C(N), based on 
which C c o m p ( ~ s , t ~ )  can be computed from in linear time. 

In order to  apply Lemma 3.7, we first partition {K, V2, . . . , Vr} into 

A = {V, I c (V , ,F ;N)  = \ (N) ,  1 < i < r}, and 

If we start with TT = (Vl, V2, . . . , K) and remove from TT all E A, we are left with a sequence 
of segments, each consisting of one or more partition blocks from {V,} with contiguous 
indices. Suppose that  there are qi-l such segments. For j = 0 ,1 ,  . . . , g ,  we use Bj to  denote 
the set of partition blocks from {V,} belonging to  segment j, with V1 G -Bo and Vr E Bq. 
Clearly, {Bj \ j = 0,1 , .  . . , q} is a partition of B .  

A can also be considered as consisting of contiguous segments as follows: start with 
TT = (Vi, V2, . . . , K )  and remove from TT all l( E B. This gives rise to exactly q segments. 
We now proceed to  partition A into at  least p (p > q) subsets, All  A2 . . . , Ap, such that each 
segment gives rise to a t  least one subset Ai. More specifically, Ai = {Vaii Vai+1; . . - , hi}, 
i = 1,2 ,  . . . , p ,  are defined as follows: 

Let by = 0, let Vai be the subset in A with the smallest index ai satisfying bi-1 < ail and 
let Vf,. be the subset in A with the largest index bi satisfying 

(6.1) C ( V ( ~ , , ~ ) ,  ^(a,,k); N )  = A(N) and Vk G A for any k, a, 5 k ^li. 

It is easy to  see that,  for each B,, j = 1 , .  . . , q - 1, there is an index i such that 

For example, Fig. 4 shows the partition blocks {Al, A2, A3} and {Bo, Bl, B2} for the (v1, v^}- 
MC-partition TT^ = (Vl, V;, . . . , V&) over C(Nl) for the critical edge (v1, vlg) in Nl of 
Fig. 1. 
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Lemma 6.1 Let {Ai \ i = 1, .  . . , p }  and { B j  \ j = 0,1 , .  . . , q} be as defined above for the 
(S, t)-MC- arti it ion for a critical edge (S, t )  E E in N = (V& c). Then, (i), (ii) and (iii) 
below hold. 

(i) The o-partition vs, = (Vl, . . . ,V -̂l , yal ,^) of V is an MC-partition over C(N), the 
o-partition 7 1 - B  = (?l1 bp), &p+1, . . . , K) of V is an MC-partition over C(N), and, for 
each j (l < j }<  ̂ q-l), the o-partition of V associated with By = &,+2, . . . , Va+-l}, 

is an MC-partition over C(N) . 

(ii) For each i (1 < i p), the o-partition of V associated with Ai, 

is a maximal circular MC-partition over C(N). 

(iii) Ccomp(~is,t)) consists only of the min-cuts belonging to the MC-partitions in (i) and (ii) 
above. 

Proof: (i) Immediate from the definition of ( S ,  t)-MC-partitions. 
(ii) and (iii) See Appendix 3. 

Note that a cut in C(N) may belong to  more than one MC-partition in { T ~ ,  1 j = 
1,. . . , q }  U {xA, I i = 1 , .  . . , p }  in the above lemma. For example, the cut {Vl,bi), ̂ (bi+l,r)} 
belongs to the MC-partition -KQ for some By as well as to the circular MC-partition TA,. 

6.2. (S, t ) -Cactus Const ruct ion 
This section proves that there exists a cactus representation for Ccomp(~(s,t))a 
For each By, j = 0,1,. . . , q, let (era. , be the chain representation for the min- 

cuts belonging to the MC-partition 71-5. over C(N) defined in Section 3.1, and for each Ail 
i = 1,2, . . . , p ,  let ( % L r A ,  AA,) be the cycle representation for the min-cuts belonging to the 
circular MC-partition TA, over C(N) defined in Section 3.1. 

In our running example (Fig. 4), grB0 has two nodes and represents the MC-partition 

Â¥n-fi = (Vl, V(2,g)). Similarly, "fe- has five nodes and represents the MC-partition 71-4 = 
(Vl, V2, V3, V4, Since = V, these two MC-partitions are complementary, and, 
therefore, their union (gvBO , ha)  @ (kAl , hA1) can be formed, with the nodes correspond- 
ing to the partition blocks %,g) of and Vi of xA1 as the joint nodes. By Lemma 5.1, the 
resulting cactus represents all min-cuts that are represented by (&Bol g v B )  or ( % L v A  , hA). 

Continuing as above, we can construct a single cactus which represents all min-cuts in 
Ccomp(~(s,t)).  More formally, a cactus representation (R(s,f), for Cisomp(~b,t)) is obtained 
as follows: 

if bi+l # then (R, y) := ( R ,  y) @ (em , ) , where E B,. } 
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Note that if bi+l = a^ then there is no intervening B-segment between A; and 
Since the two operands in each union (K,  p )  C (k,,,, (or (K,  p )  G,,,)) are 
complementary, Lemma 5.1 is applicable, and the obtained ('R.(s7t), p i so )  is a cactus rep- 
resentation for Ccomp(~is,t)). Note also that ,  in the above procedure, every time a union is 
formed, the two joint nodes turn into an empty node. This implies that  the mapping 
can be easily obtained from & g ,  without any extra computation. (See the paragraph 
just before Lemma 5.1.) It  is easy to  see tha t  Kisjt) contains pi-q empty nodes. 

For example, Fig. 7 shows the (vl, fig)-cactus representation obtained by the above proce- 
dure from the (vl, vlg)-MC-partition 7i(u17vig) in Fig. 4. It  is seen from Fig. 7 that,  intuitively, 
the above procedure introduces p+q empty nodes, and insert cycles (for {A;}) and chains 
(for { B j } )  in the order in which they appear in the (S, t)-MC-partition. 

0 : empty node 

@ : non-empty node 

Figure 7: The (vl, vlg )-cactus representation for Ccomp(n-(vl 

From the above discussions, we have the following theorem. 

T h e o r e m  6.2 Let (S, t )  be any critical edge in a network N = (V, E, c). Then there is 
a cactus representation for the set of all min-cuts that are compatible with the (s,t)-MC- 
partition over C(N). D 

We call the cactus representation (Kfs t ) ,  for Ccomp(~(s,t)) obtained by the above 
procedure the ( S ,  t ) -cactus representa t ion .  The (S, t)-cactus representation may not be 
a cycle-type normal cactus representation. For example, the (vl, u19)-cactus representation 
of Fig. 7 is not normal. 

T h e o r e m  6.3 The (S, t)-cactus representation can be constructed from the (S, t)-MC-partition 
in O(\E\+\V\) time and O(IEl+\V\) space. 
Proof: A skeleton procedure for determining all Ail i = 1 , 2 , .  . . , p  using (6.1) would look 
like: 

a := k := 2; 

while  a < r d o  { 

while c(ya,k), = U N )  do { k  := k+1}; 

a := k := k+l};  

Whenever the inner while-loop is executed one or more times consecutively, a new subset 
Ai is determined. To analyze the complexity of the above procedure, imagine that the sets 
Vl, V2,. . . , l$ are arranged from left to  right. Intuitively, as the above procedure is executed, 
the set moves from left to right. The edge set E ( b ) ,  Y a , k ) )  may expand and shrink. 
As a and k change during execution, each edge enters E(V{ak), ^(a ,k) )  and leaves it a t  most 
twice. Therefore, the above procedure requires a t  most O(1E + V [ )  time. We can then 
construct the cactus in O( lV[)  time and O(IV1) space, since R isn  has at  most O(IV1) 
nodes and edges. Computing the mapping for can be done in O(1Vl) time and 
( V )  space as commented in the paragraph just before Theorem 6.2. 13 

For a non-critical edge ( U ,  v), we define the ( U ,  v)-cactus representation to be ( R ,  P), 
where R = ({X}, 0) and y?(V) = X. We will find this convention useful in the next section. 
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7. Complete Cactus Representation 
In the previous section, given the (S, t)-MC-partition T(,,~) for a critical edge (s , t ) ,  we 

showed how to  construct the (S, ()-cactus representation W,;)), i.e., a cactus repre- 
sentation for the set, Ccomp(~(s,t))l  of all min-cuts compatible with T(,,o. 

Figure 8: The cycle-type normal cactus representation for C(Nlvl=vlg). 

In general, C(N)-Ccomp(~(s,t)) is non-empty. According to  Lemma 3.6, no min-cut in C(N)- 
Ccomp(~(s,t)) crosses the (S, t)-MC-partition. Therefore, all min-cuts in C(N) -Ccomp(~~s , t ) )  
are complementary with T(,,~) , and no min-cut in C(N)-Ccomp(~(,,t)) separates S and t. The 
latter implies that each min-cut in C(N)-Ccomp(~(s,t))  has its counterpart in Nt=,, i.e., the 
network obtained from N by identifying t and S (see Section 4.1). For example, Fig. 8 
illustrates a cycle-type normal cactus representation for C(Nl,vlg=vl). 

The main objective of this section is to  show how to construct a cactus representa- 
tion for C{N) from the (S, ̂ )-cactus representation for a critical edge (S, t )  in 
N = (V, E, c) and the cycle-type normal cactus representation for C(Nt=,). Note that a cac- 
tus representation for C ( N )  for N with \ V  = 2 can be easily constructed and Nt=, has one 
less vertex than N .  Therefore, the method can be recursively applied, together with a "nor- 
malization" operation (see the proof of Lemma 3.3 in [16]) and the (S, t)-cactus construction 
method discussed in Section 6, t o  construct the cycle-type normal cactus representation for 
C(N) for any network N .  

If \INt=,) > A(N), clearly, C(N)-Ccomp(v~,,n) = 0, and an  (S, t)-cactus representation is 
a cactus representation for C(N). In the rest of this section, we assume that  (S, t) is a critical 
edge and A(Nt=,) = A(N). Let N denote NtZs, and ('R., (p) be the cycle-type normal cactus 
representation for ~ ( f i  and X be the node in 'k such that S ?. ( p l ( x ) .  Starting with the 
( S ,  t)-cactus representation ( 'Rls,~),  q(5,t)), we "graft" subgraphs of the cactus representation 
('k, G) for C(N) one by one, using the union operation. In order to  be "unioned7' together, 
the two cactus representations must be complementary. This puts restrictions on which 
subgraphs of the cactus representation ( f i .  ̂>) for C(N) can be "grafted." In fact, our 
main efforts in this section will be on determining "qualified" candidate subgraphs. Not 
only do we have to find qualified candidates, but we also need to  "decompose" the cactus 
representation (2, (p) for ~(19) in such a way that all information regarding the min-cuts in 
C(N)-C^n,p(vts,t)) stored in it is extracted from it as a subgraph. 
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7.1. Maximal Circular MC-Partit ion over C (Ntrs) 
Based on Lemma 3.3, this subsection investigates the relationship between the (S, t)- 

cactus representation y ~ ( ~ , ~ ) )  and the cycle-type normal cactus representation ('R., <y\ 
for c(N). 

For the (S, t)-MC-partition v(,,t) = (V1 , V2, . . . , VT) over C[N) , let a, and bi, i = 1,2 ,  . . . , p, 
be the indices defined in Section 6. (See Fig. 4 for an example.) From Lemma 6.1(ii), we 
see that ,  for each i, the o-partition, 

of V is a maximal circular MC-partition over C(N). This implies that the o-partition, 

of V - t  is a maximal circular MC-partition over C ( N )  if a, < bi (in the case of ai = bi, 
i f A i  = (~a i - l )~V(b i+ l ,Tv- t~  Vai) may not be maximal if there is another maximal circular MC- 
partition (V;, . . . , %) with V[ = V - Vai)- Therefore, by Lemma 3.3, the cycle-type normal 

cactus representation ('R., G) for C(N) has a (6; - ai+2)-cycle Ci which yields T T A i .  This fact 
plays a key role in Section 7.2 in finding from 'R. those min-cuts (Y, F) E C(N)-C,^mp(v(s,t)) 
which are complementary with T ~ ~ ~ O  with respect to Y and some Vk E {Va, Vai+l, . . . , h}, 
i.e., Y C b. Note, however, that  the converse is not true. That is, a cycle in 'R. on 
which X lies may not always correspond to  any maximal circular MC-partition over C(N) 
in Lemma 6.1(ii). 

7.2. Decomposing Cactus Representation for C(Nt=s) 
Again, the problem we face is the following: 

Given: the (S, t)-cactus representation (7Z(s,t), p t s t ) )  corresponding t o  the (S, t)-MC- 
partition = (Vi, V2, . . . , v), and the cycle-type normal cactus representation 

("R, v )  for c(N). 

Find: a cactus representation for C(N). 

As outlined in the introduction of Section 7, we need to  "decompose" ('R., G). We carry 
out the decomposition in two stages. In the first stage, we decompose 'R. into "blockcacti" 
at  X (see below). Some of these blockcacti (i.e., those in Rg defined below) are "qualified," 
while others need to be decomposed further into "subcacti" (see (7.3)). 

Let X be the node in 'R. such that s E ( p 1  (X), and remove X from 'R-. Let (W,', R),  
i = 1,2,  . . . , h, denote the connected components in "R - X, where C WÃ x. For each 
i = 1 ,2 , .  . . , h, the network Tt, = (W,, F,) induced by Wi = W, U {X} from 'R. is called a 
blockcactus at  X of "R. Intuitively, 'R., is obtained from "R by identifying all nodes not in 

with X. It is easy to see that it is a uniform cactus. Let us denote the node X in each 
"Ri by xi E W;. We now define a mapping : V Ã l& by 

(note that t now appears in 
normal cactus representation 
compatible with the partition 
representation a t  X.  

if 2 E Wi-xi 
:={%*-xi) if-,., 

@;l). Clearly, each ("Ri, h), i = 1,2 ,  . . . , h, is a cycle-type 
for C,, where Ci denotes the set of all min-cuts in N that are 
of V induced by ("Ri, (pi). We call each (f i;, (^;) a blockcactus 
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To state the next lemma, we need to define certain partition A* U B of V. For the (S, t)- 
MC-partition ir(s,t) = (Vl, V2,. . . , l$) in N ,  let ai, bi, i = 1 ,2 , .  . . , p ,  be the indices defined in 
the Section 6. (See Fig. 4 for an example.) Now define 

A* = 1 i =  l , 2  , . . . ,  p}. 

B was defined in Section 6, i.e., 

B = {Vl, . . . , Val-l} U {V, 1 bi < j < a* for some i = 2, . . . , p -  l} U . . . , V,}. 

Clearly, A* U B is a partition of V. For example, A* and B defined for the (v1, v19)-MC- 
partition, ir(vl,vN) = (h V2,. . . , V9), in Fig. 4 are given by 

Lemma 7.1 Given a network N = (V, E, c) and the cycle-type normal cactus representation 
(&, ip) for c(N), where N = NtZs for some critical edge ( s , t )  E E, let (Â¥Ri @.), i = 

1 ,2 , .  . . , h, be the blockcactus representations at X with S E ip l (x ) ,  where xi E Wi denotes 
X in each 7?.; = (Wi, Fi). Then, for i = 1,2 , .  . . , h, we have the following: 

(i) *(Wi -xi) X holds for some X 6 A* U B. 
(ii) ~f @?(Wi-xi) C X E A*, then @;'(Wi -xi) = X .  
(iii) If ipp  (Wi -xi) C X E B, then @a Wi - xi) C X .  

Proof: (i) Because of our assumption that A(N)  = q N ) ,  {Wi -xi, W - (Wi -xi)} is a 
rnin-cut of 'R, and hence {Y, V}, where Y = @,l (Wi -xi), is a min-cut in C(N). This cut 
does not separate s and t ,  since {S, t} F. By Lemma 3.6, the cut {Y, V} does not cross 
the (S, t)-MC-partition T T ( ~ , ~ )  = (K,  K ,  . . . , Vr), i.e., it is either compatible or complementary 
with K(,,) .  Assume the assertion (i) is not true, and let Y n X l  # 0 # Y n X 2  for two distinct 
X1,X2 E A*UB (note that X l n X 2  = 0). Then, since {s,t} C Yimplies Vlul$ C F, neither 
Y nor is contained in one Vk E {Vl, V-̂ , . . . , K},-i.e., {V, V} cannot be complementary 
with (S, t)-MC-partition ~r; , ,~) .  Thus, the cut {Y, Y} must be compatible with the TT(~,^) .  
This, together with the fact that {Y, F} does not separate S and t ,  implies, by Lemma 6.1, 
that there is an i such that,  for all Vk E Y, k E {ai, . . . , bi}. This contradicts the 
definition of X-\ and X2.  
(ii) Assume X = for some i = l , .  . . ,p. Let (R ,  p )  be the cycle type normal cactus 
representation for C(N), and zs (resp. 2;) be the node in R = (W, F) such that S E p l ( z s )  
(resp. t E p l ( z t ) ) .  To obtain a cactus representation for c(N), consider the set qs,^) 
of all nodes y E W - {zg,  ~ f }  such that zs and G are no longer connected in R - y. Let 

Zis,^) = U {zs, zt}, and let denote the graph obtained from R by shrinking ZiS,;) 
into a new single node z(s,t), deleting any resulting self-loop. Clearly, is a cactus. Define 

1 
~ ( ~ , t )  to be the mapping such that y&(z) = p- ( ) if 2 6 W - Z(s,t) and ;̂lt) (^(S,^)) = 

U z e z ~ , f i  p '  (2). Then ) is a representation for c(N), since only those rnin-cuts 
in R that do not separate zs and zt remain in Note that the resulting representation 

has a (6, - a, + 2)-cycle C, which yields T T A t ,  where C, passes through 
y(s,t)) may not be normal, but is of the cycle-type since no empty 3-junction node 

newly is created. has an empty 2~junction node, say, 2,  belonging to a 2-cycle 
CL only when such cycle is a subpath of a longer cycle in R (i.e., C' passes though z and 
z ( ~ , ~ ) ) .  For each such node z, merge z into Z ( ~ , O ,  deleting the two edges of CL. The resulting 
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representation is the cycle-type normal cactus representation for c(N), which is unique by 
Lemma 2.1(ii). We denote it by (2, if), where X = zSt .  If a cycle Ci with bi - a, + 2 2 3 
remains in ($ @), then (ii) holds. Assume that Ci is deleted from (Rlsl t ) ,  pislt)) by removing 
an empty node z that belongs to a 2-cycle C' = C;-. Let C: be another cycle in ( R i s a ,  p^()) 

that passes through z. Clearly, C>emains in (72, if), passing through X = zSt  instead of z. 
This implies that this C h i v e s  rise to  the bolckcactus representation (ei1 ifi), proving (ii). 
(iii) From {S, t }  C X, X # V&. Then, if^(Wi -xi) = X E B implies that  X = V, for 
some V, E B. ~h;, however, contradicts that (V,, F) C(N). 

By Lemma 7.1 (ii), we may assume without loss of generality that  (ki, @,), i = 1 , 2 ,  . . . , h, 
are renumbered so that 

if,' (Wi -xi) = V(ai,bi) for i = 1,2 ,  . . . , p, and 

3V, E B : ̂ '(Wi-xi) C V, for i = p+l ,p+2 , .  . . , h  

hold. Since @;'(Wi -xi), for i = p + l ,  p+2, . . . , h, is properly contained in a single element 
V, by Lemma 7.1 (iii), any representation in 

is complementary with the (S, t)-cactus representation (Rfsltl ,  pfs,t)) and represents min- 

cuts in C(N) - Ccomp(~(slt)).  In Fig. 8, we have five blockcacti 'R.l, . . . , k5 a t  x ,  where 

(*4? h), fR-5,  if5) 6 R ~ -  
We now proceed to the second decomposition stage for those blockcacti ail i = 1 , .  . . , p. 

For each i = l, 2 , .  . . ,p ,  let Ci be the cycle containing xi in q. Then, as discussed in 
Section 7.1, Ci yields a maximal circular MC-partition, 

over c(N). We decompose the blockcactus 'R-, into a collection of subcacti in 'R.,- - F(Ci)  
where F(Ci)  denotes the set of edges on Ci (see Section 3.2). Let us denote the subcacti in 
ki by TCilj = (Wi,,, F,,,), j = 0,1, . . . , bi-ai+l, and X,, be the node in Wilj n W (Ci), where 
W(Ci) denotes the set of nodes on Ci. Here, we denote the trivial cactus consisting of xi by 
'P.ilo. If some subcactus with j # 0 is trivial, it represents only one rnin-cut in (2, G), 
which is in Ccomp(~(s,q) and hence is already represented in the ( S ,  ̂ )-cactus representation 
(Rist), p(s7t}). We therefore consider only nontrivial subcacti, and, for each such subcactus 
kiIj, define its mapping : V --+ Wi,, by 

Then, any cactus representation in 

RA = {(ei,,, if,,)  1 1 <j < bi - ai + l, 2 = 1,2 ,  . . . , p, ei,, is nontrivial} 

is complementary with the (S, t)-cactus representation (RI,,t1, pislt)). In our running example 

of Fig. 8, we have three trivial subcacti (7?i,2, + i 1 2 ) ,  (7?2,1, @211), ( e 3 ] ~ ,  and RA = 

{(%l,l,  ̂ , l ) ,  (*l,3, @l ,3)1  (e3,Z) if3,2)}. 
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7.3. Grafting Procedure 
Making use of the sets RB and RA defined in Section 7.2, we can compute a cactus 

representation (R*, p*) for C(N) in N as follows: 

(R*,  V*) := (R(S,t), ^s,t)); 

R := RB U RA; 

while R # 0 do 

begin 

pick an element (R', p') from R; 

R := R- (R', p'); 

(R*,  ̂ ) := (R*, ̂ ) cl3 (R', p'). 

end. 

0 : empty node 

@ : non-empty node 

Figure 9: A cactus representation for C(Nl). 

It is easy to see that an intermediate (R*,  p*) constructed during the above procedure is 
complementary with any (W, p') remaining in R. Therefore, the successive union operations 
can be carried out and each (R*,  p*) is a cactus representation for some C' C C(N). Clearly, 
the final (R*, p*) represents the set of all min-cuts in C(N). Note that the cactus R* 
contains the nodes in {wi - xi 1 (ei, Gi) E RB} U {TVi,, - yi,j 1 G,,,) E RA}, and the 
rest of the nodes in R* correspond to the nodes in For example, Fig. 9 shows the 
cactus representation obtained by applying the above procedure to the representations in 
Figs. 7 and 8. 

Lemma 7.2 The cycle-type normal cactus representation for C(N) in N can be obtained 
from the (S, t)-cactus representation and the cycle-type normal cactus repre- 

sentation (e, ift) for C(N) in O(IV]) time and O(IV1) space. 

Proof: A cactus representation (R*,  p*) obtained above represents all min-cuts in C(N),  
each of which is represented in a cactus representation (R', y/) C RB U RA or the (S& 

cactus representation (R^,!), That is, all min-cuts represented by (k, ip), except those 
represented by the circular MC-partitions in (7.1), are represented by (R*, p*). Since all min- 
cuts represented by circular MC-partitions in (7.1) are already represented in (Rist) ,  
by Lemma G.l(ii), the resulting (R*, p*) is a cactus representation for C ( N ) .  

We now analyze the time and space complexities. Note that 2 has O(IV1) nodes and 
edges by Lemma 2.1(iii) since (7?, < }̂ is a cycle-type normal cactus representation. Clearly, 
RB U RA can be prepared in O(1Vl) time and O(1V1) space (note that we do not have to 
update mappings in (7.2) and (7.3) for the purpose of constructing (R*, v*)).  Each time a 
union (R*, p*) (R', p') is formed, a joint node 2* in R* can be found in O(1) time by using 
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i f 1  and (z* is determined by p(s,t)(v) for any v E i f l ( .s ' )  after picking a 1-junction 

node z' of 'R. in R'), and a cactus of (R*,  ip*) @ (R', p') can be computed in O(IF'1) time, 
where F' is the edge set of R'. This ensures that  the total time for all union operations is 
a t  most the size of f t  i.e., O(1Vl). After the final cactus R* is obtained, its mapping p* 

can be easily computed by using i f 1  and as follows. Any node y except X in 7?. also 
appears in TV,  and hence p * l ( y )  = i f l ( ~ )  for such y. For each vertex v in i f l ( x ) ,  we see 
that ip*(v) = p(s,t)(v). From these, p* can be determined in O(lV1) time 

The other operations including the simplification of R* to  make R* cycle-type normal 
can be carried out in O(IV1) time and O(IV1) space. (See the proof of Lemma 3.3 in [l6]). 
n 

7.4. Complete Algorithm 
Putting everything together according to the approach stated in Section 4, we now present 

our algorithm for constructing a cactus representation for C(N). 

Algorithm NEWCACTUS {Input: a network N = (V, E, c). 
Output: a cactus representation ( R ,  p) for C(N) .} 

begin 
Compute A(N); N(^ := N ;  
for z = ~ V ~ , ~ V ~ - l ,  . . . ,  2 do 

begin 
Choose an edge (S('\ t(')) in N ^ ;  
~ ( i - l )  := (i) 

^l.)=,(.) 
end 

R(l' := (X, 0); p(1) (V) := X; 
for i = 2 ,3 , .  . . , lV[ do 

begin 
Compute an (S('), t('))-cactus representation (R(s(i),t(i)), vsvit(i))) over c(N(')); 
Compute a cycle-type normal cactus representation (R('), ŷ ) for c(N(')) 
from (TC(s(i) , t ( i)) ,  i/3(,(iit(i))) and (R^,  

end 
( R ,  p) := ('~.Il '"l), i/3(I'"l)) 

end. 

Theorem 7.3 Algorithm NEWCACTUS computes the cycle-type normal cactus represen- 
tation for C(N) in a network N = (V, E ,  c) correctly and runs in O(\V\ M(IV1, \E\)) 
time, where M ( V \ ,  \E\} is the time for computing a maximum flow between two vertices in 
N = (V, E, c). 

Proof: The validity of NEWCACTUS follows immediately from Lemma 7.2. It is known 
that A(N) can be determined in O(IV1 - M(\V\ ,E l ) )  time [g]. At each stage i ,  the (s , t )-  
cactus representation in N ^ )  can be found in O(lEl+jVl) time, after computing a maximum 
flow between arbitrarily chosen s and t in M ( l V ,  1 El) time. Then, NEWCACTUS runs in 

( V \  - M(\VI, IEI)) time. D 

The above theorem implies the already known fact [3, 81 that ,  for any network N, C(N) 
has a cactus representation. We finally discuss a special case of networks, where all edges 
have unit weights. 

Corollary 7.1 A cactus representation for the set C(G) of all min-cuts in a multigraph 
G = (V, E) can be constructed inO(1 E 1 + A(G) u2) time and 0(\V\ + \E\) space. 
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Proof: The edge-connectivity A(G) of G can be determined in O(1 E 1 +A(G) lV12) time and 
O ( ~ V ~ + ~ E ~ )  space [14]. We first find a subset E' C E with \E'\ < (A(G)+l)lVl such that 
the graph G' = (V, E') satisfies A(G') = =(G) and has exactly the same set of min-cuts as 
G. It is known that such E' can be found in O ( ~ V ~ + ~ E ~ )  time and O(lVl+l El) space [6, 151. 
By applying NEWCACTUS to this sparse graph G', a cactus representation for C(G) can 
be computed in O ( ~ E ~ + ~ V ~  \E'\) 5 0 ( ~ E ~ + A ( G ) ~ V ~ 2 )  time and O ( ~ V ~ + ~ E ~ )  space because 
a maximum flow between a pair of vertices can be found in linear time [13]. This completes 
the proof. 

The currently best time bound for constructing a cactus representation in a multigraph 
G = (V,E) is O ( ~ E ~ + A ( G ) 2 ~ V ~ l o g W } )  [8]. When G has so many edges that \{G) 2 
lVl/ log IVI holds, the time bound in the above corollary is slightly better than 'this bound. 
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Appendix 1. Proof of Lemma 3.6 

Let 7 ~ ( , , )  = (Vi,V2,. . . , V,) be the (S, t)-MC-partition over C ( N ) .  Assume that a cut 
{X, X }  E C ( N )  crosses ~ r ( ~ , ~ ) .  By Lemma 3.4, any min-cut separating s and t never crosses 
T ( ~ , ~ ) ,  and hence, we can assume X n {S, t }  = 0. Then there are two subsets Vk and V in 

such that X f~ Vk # 0 # X f~ Vk and X n V # 0. Without loss of generality, assume 
k < I (the case k > I can be treated analogously), as shown in Fig. 10. Since the min-cut 
{Ylk) ,  Yfc+i,r)} crosses {X, X } ,  by Lemma 3.1 (i), we have 

Clearly E(Y1,k) -X, V,î  -X)  -E(^(1,k) - X ,  % n X )  = E(vl ,k) ,  V(&-1,~)) -E(V(l,k) X ,  
ViwT)  n X) holds (see Fig. 10). 

Figure 10: Cut {X, V -X) crossing the ( S ,  t)-MC partition TT;,,,). 
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Therefore, from these equalities, we have 

implying that {V(l,k) - X, bjW -X} is a min-cut separating S and t. This contradicts 
Lemma 3.4. 

Appendix 2. Proof of Lemma 3.7(ii) 

Let {X,-X"} E C(N) be a min-cut compatible with T ^ ( ~ ~ ~ )  which does not separate S and t ,  
i . e .  {s,t} C X holds without loss of generality. Then Vl U V, C X holds since {X,- 
is compatible with T ^ ( ~ , ~ ) .  We first show that X must have the form V(i7j) for some i,  j 
(1 < i <, j < r ) .  Assume that there are i, k with 2 < i < k < r- l such that 

V,-1 X, V, C X ,  and Vk C X (see Fig. 11). 

Figure 11: Cut {X, V-X} compatible with the (S, t)-MC partition T^($,Q.  

Since the min-cut {hG1), Yi,,)} c C(N) crosses the cut {X, X } ,  we have, by Lemma 3.1 (i), 
c ( ^ ( ~ , ~ ~ )  n X ,  YiT)  n X) = A(N)/2,  or equivalently, 

since n X = 0 (see Fig. 11). Edge ( S ,  t ) ,  which has a positive weight, belongs to  
E ( ~ I , ~ - I ) ,  h) -E(yl,i-l) n X, b 7 r )  n X ) .  Therefore, we have 

From this and C ( V ; ~ , ~ - ~ ) ,  V;,,,.)) = A(N) (resp. c(&.), V^,)) = A(N) ) ,  we see that 

holds. This means c(K, E) < \ (N) ,  contradicting the definition of \(N). 
Next, we first show that {Vk,K} is a min-cut for each k such that i < k < j with 

X = yi,j). Obviously, i = J implies that {X, X} = {Vk, K} is a min-cut for i = k = j. Since 
and , are min-cuts crossing each other, {V,, F} and {%l,j), 

are also min-cuts by Lemma 3.1. Analogously, by repeating a similar argument for X = 
X = y w ,  . . . ,  the rest of {Vk, K} (i+1 5 k < j) can be shown to be a min-cut. Q 
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Appendix 3. Proof of Lemma 6.1(ii),(iii) 

We first show that (ii-a) the o-partition TA- of V defined in (ii) is a circular MC-partition 
in N. Then, after showing (iii), we prove that  (ii-b) TA. is a maximal circular MC-partition 
over C (N) . 

(ii-a) It is sufficient to  show that,  for each Ai = {Vail Vai+l1 . . . A,}, i = 1,2 ,  . . . , p ,  any 
cut {V(k,;), V(k,;)} with a, 5 k < 1 <: bi, is a min-cut, because the other cuts belonging 
to T A  are min-cuts that separate s and t by the definition of circular MC-partitions. In 
the case where either k = a; or k = I, by the definition of A;, E C ( N ) .  In 
the remaining case where ai < k < I, the min-cut {h,k-l)l ^(17k-l)} separating s and t 
crosses the cut {V(ai7l), which is a min-cut by the definition of A;. By Lemma 3.1, 

{Vk,;) = V(l,~)-V(17k-l), is also a min-cut in C(N). 
(iii) Assume that there is a min-cut {X, X }  ? Ccomp(~(s,i)) that  does not belong to  any of 

MC-partitions, ~ g , ,  . . . , TB,, or circular MC-partitions, TA,, . . . , T A .  Clearly, any min-cut 
separating S and t belongs to  a t  least one of those MC-partitions or circular MC-partitions, 
Then, the cut { X 7 x }  does not separate S and t ,  and hence has the form X = (1 < 
k < I < r )  by Lemma 3.7. In analogy with the proof of Lemma 3.7(ii), we see that each 
{K^} with k <  ̂ z <  ̂ I is a min-cut in C(N), from which we have {Vk, V&, . . . , L$} A. 

From the above discussion, there is an Ai with a, < k < bi, where bi < l ,  because, 
otherwise, {V^, V^} would belong to  TA. . Here we show that  {V(k7bi+l), V(k 7 b.+l)} l______________ is a 
min-cut in C(N). This is clear if b i + l  = l. If bi+2 5 l, then min-cut {V(l,bi+l)7 V(l,bi+l)} 
crosses min-cut {V(k,;), V^,;)}, from which we see that  {V(k,bi+l), V(k7bi+l)} is a min-cut by 
Lemma 3.2. This means a, < k from the maximality of Ai. In this case, however, the 
min-cut {yai V(ai7bi) } crosses this min-cut {V(k,b,+l), V(k7bi+l)), and, again by Lemma 3.2, 
we have a min-cut {V(ai,bi+l), V(ai,bi+l)}. This contradicts the maximality of Ai. 

(ii-b) Assume that a circular MC-partition over C(N) for an Ai (1 < z < p )  is not 
maximal. Since no min-cut crosses T A  by Lemma 3.6, any o-partition of V of the form 
(\\,ai-l)l Vai, . . . , P X ,  X, . . . , V ,̂ V(bi+l,~)) (ai j <: hi) cannot be a circular MC-partition 
over C(N). Assume that C(N) has a circular MC-partition of V of the form 

(the case where X C V(bi+l,r) can be treated analogously). It follows from this that {&,ai-l)- 

X, - X} is a min-cut separating S and t. By Lemma 3.7(i), V(17ai-l)-X and X must 
be of the form hi;) and V(̂ 7 a.-l)l I respectively. Thus, {V(n-i,bi), where V(tfl,bi) = 
X U Va LJ . U hi, is a min-cut which belongs to  Q, and is compatible with the (S, ̂ )-MC- 
partition T T ( ~ , ~ .  From (iii) of this lemma, such a min-cut G i b , ) }  must belong to  
the MC-partition in (i) or (ii) of this lemma. However, there is no such MC-partition, a 
contradiction. 0 
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