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Abstract This paper deals with the shortest path problem on a network with time-windows. The concept 
of time-windows is recently introduced by Desrosiers et al. as a subproblem of the traveling salesman problem 
involving time constraints. Authors consider another type of time-windows, which we name the AGV-type 
time-window, and define the shortest path problem on the network with the AGV-type time-windows. We 
verify that  this problem has a structure similar to  the conventional shortest path problem without time- 
windows and propose several methods to  solve the shortest path problem with such time-windows. The 
method consists of two procedures: first, we divide the main problem into subproblems, and then solve these 
subproblems using the dynamic programming or the branch and bound method. Numerical experiments are 
carried out to compare the computational performance of the proposed algorithms. 

1. Introduction 
We can deal with a routing problem of automated guided vehicles (AGVs) in production 
system as a shortest path problem on a transfer network. A collision-free path of an AGV 
must be determined considering the whole traffic of other AGVs[6]. These traffic data can 
be expressed as the time constraints imposed on nodes and arcs of the network. When 
the AGV is passing through a node or an arc, the other AGVs cannot gain access to the 
same pla,ce. On the other ha,nd, during time periods when no AGV is occupying a place, 
every AGV is free to pass through there. When we call time periods the time-window, the 
routing problem of the AGV can be defined as the shortest path problem with time-windows 
(SPPTW) [7]. 

Desrosiers [2] a,nd Desrochers [4] investiga,ted the SPPTW as a subproblem in solving 
the traveling salesrna,n problem wit h time constraints a,nd Solomon[8] surveyed it from the 
view point of the vehicle routing. Characteristics of their time-windows were: (1) time- 
windows exist only on nodes, and (2) a time-window on node, say node 2 ,  has only one time 
interval, say [ci, di], and ci does not give any constraint on vehicle's arrival time. However, 
considering the traffic system of AGVs on the transfer network, it is clear that the time- 
window for such a, system must have the following characteristics: (1') time-windows may 
exist either on arcs or nodes, (2') time-windows generally consist of several time intervals, 
and (3') an AGV arriving at a node or an arc during a certain time interval of the time- 
window must leave there during the same time interval. In order to distinguish two types 
of time-windows, we term the la,tter type of time-windows the AGV- type time-windows. 
For the SPPTW with the former type of time-windows, Desrosiers et al.[3] developed a,n 
algorithm using the dynamic programming. Desrochers a,nd Soumis [4] proposed a more 
efficient method. However, when we discuss the collision-free shortest time route of the 
AGV on the transfer network, it is inevitable to consider not Desrosiers' time-windows 
but AGV-type time-windows. We[7] first introduced the AGV-type time-windows to the 
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routing control problem of AGVs in factories, which was problem-oriented. In this paper, 
we purified the AGV- type time-windows concept a,nd theoretically investigate the SPPTW 
on the network with AGV-type time-windows, where arcs are not necessarily of positive 
length. Furthermore, we propose three algorithms to solve the SPPTW, Bellman-Ford-like 
met hod, Yen-like met hod and Branch-and- Bound-like method. 

One of other examples with AGV-type time-windows is the traffic problem to find the 
shortest time route on the road, where the road has some places under construction and 
the time schedule of the construction is given as time-windows. Another field which the 
concept of the AGV-type time-windows could be aspplied to is the project scheduling prob- 
lem. Traditional PERT method was developed on a,n arrow dia,gram representing the detail 
of the project. If job elements on the diagram have pre-occupied schedules in advance, a. 
decision maker must make a plan which finishes the project as early as possible without 
intervening the original schedule. In this case, the project scheduling problem is considered 
as the SPPTW on the diagram with AGV-type time-windows. 

In the next section, we modify a,n original network a~nd formulate SPPTW on the mod- 
ified network. In Section 3, we propose three algorithms to solve the SPPTW, with their 
computationa,l complexities being eva,lua,ted. Numerical examples are given in Section 4 to 
compare the computational performances of three algorit hins proposed in this paper. 

2 .  Shortest Path Problem with AGV-Type Time- Windows 
2.1 AGV-type shortest path problem 
Let G(,N,A) be a network with the set of nodes *V a,nd the set of directed arcs A. An a,rc 
i . j )  is directed from node i to node j ,  with length 4 which is possibly negakive. Now, an 
AGV leaves a start node s  after time to and a,rrives a,t a. destination node e, satisfying the 
time-window constra,ints on its way. The time-windows given on node i and the entrance of 
arc (i ,  j )  are denoted as T( i )  and S( i ,  j ) ,  respectively. T ( i )  and 5(i ,  j )  a,re represented as a, 
set of line segments as follows. 

(2.1) T ( i )  = {T; = [ t k l , t g ;  k = l ,  - - - , nri}, 

(2 .2)  S ( ^ , ^ )  = { S ? =  [sÂ¥lJ.,s,l,] k- 1 , - - - ,m , , } .  
where 
(2.3) t h  2 t a .  k = 1,.--,ni, tfc-i2 < tkl, k = 2,-- . ,n , , i ,  

. . it i j 
(2.4) s,l1 5 S;, k = 1, . - - , m i j ,  sk_l,  < ski, k = 2 ,  - - -  .nzi,. 
The intervals Tf, a.nd S? a,re referred to as open time periods. If the AGV arrives at node 
i  a,t time t ,  leaves there at time ( '(2 t )  a,nd goes through arc (1,  j ) ,  t  a,nd t  must sa,tisfy 
t h  <: t 5 t' 5 G, a,nd S $  < t' < S $  for some k a,nd k'. The sta,rt time to is assumed 
to belong to an open time period of node S .  The AGV-type SPPTW is the problem of 
finding the optimal route tha.t gives the ea,rliest arrival time of a,n AGV to the destination 
node e, tha,t is, finding the minimum arrival time ui a,t node e achieved by the sequential 
lines of nodes {ro = S ,  rl , - - - , ri = e} a,nd the time schedule {uk, V;.} a,ttached to node r;. 
satisfying uo = to,  U ,  6 T(e)  a,nd [ut, ~ t ]  C T(ris}, v;. C S( , r i s ,~&~) ,  W+I = v,: + drk rnl 

for k = 1 ,  - - , l -  1. We assume tha,t the network has no cycle of nega,tive length for the 
SPPTW to be non-trivial. 

2.2 Definitions of operators on time-windows 
Let K be the family of the sets of line segments defined by equa,tions (2.1) a,nd (2.2), 
a,nd R denotes the set of real numbers. For an r  E R, empty set 0 a,nd two elements 

k k X = { [ x i ,  :t2]; k = 1 ,  - .  , p }  and t J  = {[Â¥U? M$]; h, = 1 ,  - - - .  (;} of K, opera,tors MI:V, @. 0, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Shoitcst Path with AGV-Type Time- Windo wx 

and @ are defined as follows. 

(2.5) MIN X = x\ E R 
(2.6) M I N  0 = 00 

k 
(2.7) A ' @ r  = { [ a - ,  + r , ^  +r] ;  k = l , - - , p }  E K 

k k (2.8) X Q r = { [ x l - r , x 2 - r ] ;  k = l , - - - , p } â  K 

(2.9) X S U =  { [x~a -k \n \u~ ,uh \ ;  k = 1 , - - - , p ,  h =  l , - - - , g }  E K 
Relakion is defined by the following equivalence relakion. 
(2.10) U Ã X 4=4- U; < a-; 
For r E R and X E K, r e X means that r e [a-?, X;] for a certain 1 <, k <, p. 

2.3 Modification of the original network 
Let us modify the structure of original network G ( N ,  A) by the following procedure. 

(1) For node z E N ,  create ni copies of this node, where ni is the number of open time 
periods on node i as shown in equation (2.1). The resulting nodes are denoted as 
t't , k = 1, - - - , ni, and we associate the time-window Tl of equa,tion (2.1) with node i t .  

(2) For directed arc ( i ,  j) E A, if for 1 5 k <: ni and 1 <, l 5 n j  

(2.11) W = T; 8 Â § ( Ã ˆ ,  8 (T/  9 d y )  # 0, 
we add a new directed arc from node zk to jl, and assign the time-window W to the 
ent,rance of the arc. 

The newly generated network by the above procedure is referred to as the modified network. 
Now we prove the equivalence of the modified network to the original one with respect to 
SPPTW. Depa,rture of a,n AGV from node t during open time period Tl and arrival of the 
AGV at node j during on the original network correspond to the movement from node i k  

to node j i  on the modified network. The movement is subject to the time-windows T( i )  and 
S{i, j) imposed on node z and an entrance of arc (6 respectively. Furthermore, in order 
to a,rrive a.t node j during T( j } ,  the AGV must depart from node z during time periods 
T ( j )  0 dzj. The rela,tion (2.11) implies tha,t the AGV can travel from node to node 5 on 
the modified network. However, it is impossible for the AGV to move from node zk to node 
& ( A  # I ) ,  which is sta,ted as the characteristic (3') of the AGV-type time-window in Section 
1. Thus, there exists no arc between node zk and & ( k  # 1) on the modified network. Only 
an open time period belongs to ea,ch node. 

The total number of nodes on the modified network is identical to that of open time 
periods attached to the nodes of the original network. With respect to the total number of 
arcs, we obtain the next theorem. 
Theorem 1. T h e  total number  of arcs between node a.nd ji (k Â¥- 1, - - - , ni, l = 1, . - - , n^} 
o n  the  modified network is a t  m o s t  n.i + n, - 1. Therefore,  the  maximum number  of arcs o n  
th,e m,odified network i s  given by 
(2.12) (n . i+n , j - l ) .  

' iJ)<=A 

Proof: See Appendix. D 
In the procedure of generating the modified network from the original one, (2.1 1) is re- 

pea,tedly evalua,ted for all arcs ( Ã ˆ  .)') of the original network. Binary operation @ or â‚ include 
the axithmetic of compa,rison or subtraction, respectively. Consequently, the computa,tional 
complexity of generaking the modified network is O( G f i A ( n r i  + my + h,.)) ). 
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2.4 Transformation of AGV-type SPPTW into subproblems 
From the arguments in the previous section, the original AGV-type SPPTW is able to be 
transformed into the following problem on the modified network. 

Assume tha,t to E Tf, 1 < p 5 n,,. The original SPPTW is equivalent to the problem of 
finding the route which allows the AGV to depart from node S, after time to and arrive as 
early as possible at either one of the nodes ek for 1 < k < ne, on the modified network. This 
problem is decomposed into n,e subproblems with destination nodes ek, k = 1, - - - , ne. Each 
subproblem is the SPPTW with one open time period on' each node. Since time periods 
Tf, - , T;'t on destination node e of the original network satisfy TT < T; < - . - < T:, all 
Tie subproblems need not to be solved. Namely, we solve the subproblem with destination 
node ek on the modified network sequentially for k = 1, - - - , ne and the solution we find first 
gives the optimal route to the origina,l problem. 

From now on, we discuss how we solve the subproblem with time-window constraints of 
one open time period at ea,ch node. For the modified network, we use the following notations 
wit,hout loss of generality, which appearred in the original network also. We denote the total 
number of nodes of the modified network by n, and number all nodes from 1 to n, of which 
node 1 indicates the sta,rt node a,nd n the destination node. And let the set of nodes, the 
set of arcs, the time-window on node i and the time-window on arc (6 j) be denoted a,s 
AT, A, T(2) and S(i, , j ) ,  respectively. Furthermore, we specify the time period of T(i)  by an 
open time period 
(2.13) T(i) = [a,, b.\. 

3. Algorithms to Solve the Subproblems 
3.1 Loops and subroutes of an optimal route 
For the subproblem on the modified network , discussed in the previous section, the following 
theorems can be obtained. 
Theorem 2. If there exists an optimal route, there also exists an optima,l route without 
loop. 
Proof: Let the sequence of nodes of an optimal route with loop at node j be {l1 = 

1, 12, - .  - , lk = Ji - - - , lk' = ji . - - , lt = n},  and let the arrival time and departure times at 
node lh of the route be, respectively, (uhl vh). From (2.13) and the non-negativeness of the 
length of loops, we obtain 
(3.1) a , < : u k < v k $ a k ~ < v k ~ < b , .  
Then, the new route {ll = 1, 12, - - - , lk = j, lkl+l, - - - , lt = n,} is optimal too, with the ar- 
rival and departure times being (ul = to, v1), ('0.2 , v2), - - e , (uki W'). ( ~ k ' + l ,  <uk1+l) , e - - , (ut , *). 
Thus, an optimal routes with no loops can be obtained from the one with loops. 

Theorem 3. For an arbitrary optimal route, any of the subroute from start node 1 is 
optimal. 

Proof: As in Proof of Theorem 2, let {l1 = 1, 12, - - - , lt = n} be an optimal route with the ajr- 
rival ajnd departure times at node h, being (uh, vh). Assume thatt an optimal route from node 
1 to an arbitrary node lk of the route is {!.[ = 1, l;, - - . , I,' = lk} with the a,rrival and departure 
times at node l' being ( U , ,  v'). Since U; <, uk, a route {l[ = 1, l;, - - - , l;, lk+l, - - .,It = n} 
with the arrival and departure times (4 = to, v'-,}, (U^ v 2  - - - , 
(U;, vk), ( u ~ + ~ ,  u ~ + ~ ) ? .  - - , (U;, *) is optimal either. D 

By Theorems 2 and 3, it suffices to search for an optimal route only a,mong the set of 
routes without loops and with all subroutes being optimal. The a,bove theorems suggest a 
method to solve subproblems. Na,mely, from Theorem 2, we know tha,t an optimal route is 
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ma,de up of at most n nodes. Theorem 3 points out tha,t an optimal route to a certain node 
can be found by seaxching for optimal routes to its adjacent nodes. 

3.2 Algorithms 
By theorems in the previous section, we present algorithms to find a shortest path such that 
an AGV sta,rts from node 1 after time to, runs through it and arrives, as early as possible, 
at node n on the modified network. Concerning the shortest path problem on a traditional 
network without any time-windows, there are some famous algorithms such as Bellman-Ford 
method and Yen method. We show tha,t the similar algorithms could be proposed for the 
AGV-type SPPTW. 

(1) Bellman-Ford-like method 
We can find a shortest pa,th to node 2 by using the shortest paths to node k where 

(k?  2) E A. Assume that the earliest arrival time and the departure time at node k, (k, i )  E A 
a,re uk and vk, respectively. The value vk is at least as la,rge as uk a,nd located within the 
time-windows T(k) and S(k, i } .  Departure from node k a,t time vk implies a(rriva1 a,t node 2 

at time vk + dki. Thus, the earliest arrival time ui at node 7; is determined by the following 
equation. 
(3.2) ui = min {min{vk + dki E T(2); vk E S(k, z ) ,  uk < ut 5 bk}} 

(k , i )â ‚  

= min { M I X  Bki+&} 
(k,t)â‚ 

where Bki is defined by 

(3.3) Sf(k ,  2) = (T(2) 0 dk,) (8 S(k,  2)  
(3.4) B i .=Sf (k , i ) (8 [~k ,bk ] .  
Equation (3.2) gives the earliest arrival time U, as well as a shortest pa,th which is obta'ined 
by adding node 2 to the shortest path to node k with ui = MIN Bki + dkz. 

Now, we are ready to state an algorithm ba,sed on a, recursive relation. 
(i) Initialize variables as follows. 

(3.5) m = 0, ay) = to> Ui0) = oo (Ã # 1) 

(ii) For all 2 e !V, 

(3.6) U. uirn), min ( M I N  BP + dti) 
(k,i)?A 

where 

(3.7) BL. ' S*, Ãˆ (8 [aim), bk] 

(iii) Let m = m + 1 a,nd go back to (11). 
Variable u im denotes the earliest arrival time a,t node 2 through directed paths with at most 
m + 1 nodes. The a,bove recursive algorithm terminates if none of the variables u im,  i N 
change any longer. At that time, not only the earliest arrival time at the de~tina~tion node, 
but also those a,t a,ll nodes have been found. By Theorem 2, the algorithm stops in at most 
m =- n - 1 steps. Comparison a,nd a,ddition a,re all a,rithmetic needed in (3.6). Therefore, 
the computational complexity of this algorithm is 0(2mon3), where m0 is the maximum 
number of time intervals on each arc. 
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A special case of 
(3.8) T(i) = [-oo,+oo], Z E N ,  

gives a situakion in which all nodes and arcs are always open to AGVs, tha,t is there is no 
time-windows constra,ints. In this case? the SPPTW is reduced to the classical shortest path 
problem. Then, (3.6) becomes 

(3.10) U. (m+1) = min u : ~ ) ,  mill (uim) + dkt) } f ( k . i ) â ‚  
which is nothing but the Bellman-Ford method[l] [5]. For this reason, we name the proposed 
algorithm (3.5)-(3.7). the Bellman-Ford-like method or the B-F-like method for short. 

(2) Yen-like method 
For the classical shortest pa,th problem without time-window constraints, Yen[9] im- 

proved the Bellman-Ford method to construct an algorithm with sma,ller memory and com- 
puta,tional time requirements. His improvement can be applied directly to the above B-F-like 
method. Thus, we derive the following algorithm. 

(i) Initialize variables as follows. 
(0) (3.11) m=0, ui - to, U,") = oo (i # 1) 

(ii) If m is even, calculate the following for i = 1, - - , n. 

(3.12) dm+') = min + dki) 

Otherwise, calculate the following for i = - - - , l .  

(iii) Let m = m + 1 and go back to (ii). 
We name the above algorithm the Yen-like method because it becomes exactly the Yen 
method if we substitute uim) for MLV BP of equations (3.12) a,nd (3.13). The condition 
for termina,tion of the Yen-like method is the sa,me a.s tha,t for the B-F-like method, a,nd its 
computational complexity is eva.lua.ted as O(mon3/2). 

(3) Branch and bound-like method 
In the RF-like or the Yen-like methods, the earliest arrival time at each node is revised 

recursively by the fundamental relation (3.2). The process converges in finite steps. Taking 
an alterna,tive path, we can devise another algorithm. 

In two algorithms proposed in the previous section, the revision of the ea,rliest axrival 
time a,t node i is carried out by using aim) on its backwaxd adjacent nodes k, (k, i) A. In 
the following algorithm, a certa,in node i* is selected first and for a forward a,djacent node 
k ,  (i* , k )  E A, the earliest time on that node is revised by u p .  Namely, for node i* , the 
following updating is ca,rried out. 
(3.14) ak ("+l) = m i n { @ , m  B̂ + d,.,.}. 

If is revised by the second term of the right-ha,nd side of (3.14), we call it as the tram- 
portation of the earliest arrival time at node i* to node k .  Such sequentia,l tra,nsportation 
from the initial state of (3.11) produce an optimal route, which is the same as the a,bove 
two methods. 

If a selected U!? is known to stay uncha,nged a,fterward, mea,ning tha,t f l  is the true 
eaxliest arrival time at node i*, it is enough to calculate (3.14) only once. When the des- 
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tination node is selected as such a node, the shortest path problem ha,s been solved. The 
so-called A* algorithm is available as a method of selecting such a node i*. 

Consider a real valued function f : N X R Ã‘ R with the following properties: 

(3.15) f ( i ,  t) < f ( I ,  t + di,), for  (i, j) e A, 
(3.16) f^t} < f{i,tl), f o r t  < t ' .  
The following could be used to select i*. 
(3.17) f (i*, U?) = min f(j, u p )  

TSN 

The value U!? of a selected node i* is never revised by (3.14). That can be proved by the 
reductive absurdity as follows. Assume that u p  is revised by sequential transportations 
of U .  Let the sequence of nodes, through which this transportation is made, be L = 

{j, l d 2 ,  - - - , lp, i*}. The transportation is carried out by the second term of equation (3.14). 
Since 
(3.18) MIN B̂ + dt; > ~1") + dkL, 
for arbitrary nodes k and I, the transportation along L gives the following inequalities. 

uiy+l) = M I N  B? +djLl 2 U',"" +djl l l  

Thus, by the whole transportation, a certain earliest arrival time la,rger than u:.~) + dj;, + 
rf;l;a + - - - + di,* is realized. Since the earliest arrival time revises u f z  

(3.19) U;? > U:"" + djll + dLIL2 + - - . + dip,*. 
Furthermore, from (3.15) and (3.16), the following is derived. 

(3.20) f{f,u{?) > f ( i * , ~ ~ ~ ) + d ~ ~ ~  + - - - + d i , * )  

> f( lp,~{.m) + dfll + + d,p-llp) 

2 /W") 
This contradicts (3.17). 

Once a node i* is selected by (3.17) and (3.14) is calculated for k, (i*, k) <E A, we do 
not need transportations (3.14) from node i* any more. For example, we may take the next 
function as f (-, e ) .  

(3.21) .f (2, t )  = t + p( i ,  n) 
where p(i+) is the shortest path length from node 7; to node n without taking account of 
time-window constraints. This is given by the Yen's method in computational complexity 
0 (n3 /4). 

Summarizing the above arguments, we propose an algorithm, which is different from two 
other methods, namely the B-F-like method and the Yen-like method. In what follows, E 
denotes the set of nodes selected by (3.17). 

(i) Calculate p(i, n)  for 2 E N using the Yen's method[9], and set 

(3.22) m = 0, u p  = to, u p  - oo (i # l) ,  Â - B, I  = {l}. 

(ii) If I - E = 0, then stop. The problem is infeasible. 
Otherwise, find a node i* satisfying the following for the function f of (3.21). 

(3.23) f (i* , U!?) 

If i* = n, then stop. The shortest path has been obtained. 
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Otherwise, revise uim) by (3.14) for all nodes k, ( i * ,  k) E A, k 6 E. If the revision 
changes uim* from oo to a finite value, add node k to I. 

(iii) Let E = E U { i * }  a,nd m = m + 1. Go back to (ii). 
In the above algorithm, the revision of u~"') and the evaluation (3.23) by the function f 
can be regarded respectively as the branching procedure and the bounding procedures of 
the branch and bound method. For this reason, we name the algorithm the BAB-like 
method. The computational complexity of this method is evaluated as O(mon2 + n3/4). 
This algorithm terminates when i* = n occurs in (ii), at this moment all the earliest arrival 
times at every nodes are not necessarily obtained. This makes the BAB-like method more 
efficient than other methods. 

4. Numerical Example 
In the previous section, we elucida,ted the computation complexity of three methods, theo- 
retically. In this section, we evaluate the practical performances of them by some examples. 

We apply the proposed methods to various networks, in which not only the number of 
nodes or arcs but also the number of open time periods in a time-window vary, and measure 
CPU-time of a computer. Hitachi main-fra,me computer S-3600/120A and FORTRAN lan- 
guage were used. We change the number of nodes from 20 to 100 by 20. For each number of 
nodes, say n ,  the number of directed arcs, say m, are determined according to three types 
of formulas; n X 5, n X 10 and n X 15. That is, three formulas make a nodes have 5, 10 and 
15 directed a r c ,  respectively. The number of open time periods in a node's time-window, 
say p, changes from 2 to 6 by 2 a,nd the same number of open time periods are given on a 
directed arc's time-window. For given numbers of nodes, arcs and open time periods, we 
generate a random network with time-windows a,s follows. 

(i) In a square having area L X L, n points are located randomly and assigned to n nodes. 
(ii) For each node, n - 1 Euclidea,n distances between this node and all other nodes are 

sorted in the decreasing order. Arcs with the 5 ,  10- or 15-th shortest distances are 
adopted according to formulas n X 5, n X 10 and n X 15, respectively. The lengths of 
arcs a,re the same as their distances. 

(iii) For the given number of open time periods, say p periods, 2 X (p - 1) time points 
are picked up randomly in [O, d m ] ,  where dm corresponds to the length 
of the diagonal of the square. Denoting these time points by t i  < tz < - - < t2(0-1)5 
[O, ti], [ta, ta], - - - , [tqpW9, oo] are adopted as p open time periods. 

For the network constructed by the above procedure, we make an AGV-type SPPTW by 
selecting a start node and a destination node randomly, and setting starting time to = 0. 
About the above time- windows construction (iii) , we should note that open time periods 
before starting time point to = 0 are of no use and time-windows consisting of only finite 
time points makes the SPPTW to be likely infeasible. This is the reason that the time- 
window is generated so as to include only positive time points and an infinite time point in 
the last open time period. 

We generated 10 random networks for one case of the given number of nodes, arcs and 
open time periods, and provided 10 SPPTWs for a network by selecting a pair of the start 
node and the destination node 10 times. In consequence, we solve 100 SPPTWs for a case of 
the given number of nodes, arcs and open time periods setting L = 100, and measured mean 
values and standard deviations of CPU-time. In Table 1-a,, we compare the performance of 
three methods, B-F-like, Yen-like and BAB-like methods for the case of 2 open time periods' 
time-windows. Figures represent the mean CPU-time while figures in parentheses do the 
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standard deviation. 
As seen by Table 1-a and the theoretical discussion in the previous section, it is clear that 

the Yen-like method is always superior to the B-F-like one from the point of computational 
efficiency. Therefore, the computational results about the B-F-like method are omitted to 
be displayed and discussed hereafter. For the case of 4 and 6 open time periods, the results 
were obtained in Table 1-b and -c. 

Table 1-a. CPU-time(msec) for the case of 2 open time periods 

No. of arcs 

Ta,ble 1-c. CPU-time(1nsec) for the case of 6 open time periods 

Table 1-b. CPU-time(msec) for the case of 4 open time periods 

Methods 

No. of arcs 

From Tafble 1, we obtain some remarks. 

(1) For two method, the Yen-like a.nd BAB-like method, their CPU-time grow up by the 
proportional rate between the 1-st power and 2-nd power of the number of nodes n. 

No. of nodes (n) 

20 40 60 80 100 

Methods 

No. of nodes (n) 

20 40 60 80 100 

7(1) 17(4) 26(5) 39(5) 49(5) 

l(0.5) 2(1) 4(2) 7(4) 9(5) 
13(2) 30(4) 48(3) 73(9) 99(9) 

l(0.5) 3(2) 5(3) 8(4) 11(7) 
17(2) 40(4) 60(8) 97(11) 133(17) 

l(0.5) 4(2) 6(2) 9(5) 12(7) 

No. of arcs 

O x n  

10 X n  

15 X n, 

No. of nodes (n) 

20 40 60 80 100 

Methods 

Yen-like 

BAB-like 
Yen-like 

BAB-like 
Yen-like 

BAB-like 
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This rate increases by the number of arcs m. For the Yen-like method, the increase 
of the rate by the number of open time periods p, can be recognized too. However, it 
is not true for the BAB-like method. The increase of p hardly produces any effect on 
CPU-time for the BAB-like method. 

With keeping n and p constant, CPU-time increases with the proportional rate below 
the 1-st power of m for both methods. In detail, the rate of the BAB-like method is 
lower than one of the Yen-like method. 

The increase of p raises CPU-time for the Yen-like method but not for the BAB-like 
met hod. 

The standard deviation of CPU-time synchronizes with the mean value. In the same 
condition, it is larger for the Yen-like method than for the BAB-like method. There- 
fore, the BAB-like method has more constant efficiency than the Yen-like method. 

In consequence, we may conclude that the BAB-like method is most preferable in all aspects, 
which has been estimated by the theoretical evaluation of the computational complexity in 
the previous section. The theoretical evaluation is executed for the worst case. As known 
in the above remarks, the practical efficiency by numerical examples indicates more better 
result than the theoretical evaluation. The superiority of the BAB-like method comes from 
the fact that the BAB-like method terminates its algorithm as soon as the arrival time on 
the destination node is recognized to be optimal, which can be easily checked by using the 
classical shortest distance without considering any time- windows. 

5. Concluding Remarks 
In this paper, the shortest path problem on the network with AGV-type time-windows is 
in~estiga~ted. The problem can be decomposed into subproblems, each of which has the 
similar structure to the classical shortest path problem with no time-window. Due to this 
fact, algorithms similar to those of Bellman-Ford and Yen are developed. Another algo- 
rithm, called the BAB-like method, is also proposed and it is clarified that it is the most 
efficient method for the computational complexity, theoretically and practically. Originally, 
the problem is motivated by the routing problem of the automated guided vehicle in man- 
ufacturing system. Furthermore, this problem and the proposed algorithms are able to be 
applied to other fields, such as the transportation system, the project scheduling and so on. 
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Appendix : Proof of Theorem 1 
From equation (2.11), we obtain 

Therefore, it suffices to  prove that the above inequality is valid for at most n, + n, - 1 
combinations of k and l .  

T ( i )  = {Et; k = 1. - . - , n,} and T ( j )  0 d., = {TJi 0 d.,} consist of n, and n, intervals, 
respectively. Now, assume there are the set of m, intervals and the set of n intervals. Let 
K[m,  n} be the number of intervals which the product set of these sets contains. The 
following inequality is to be proved. 

K[m,n]  < m t n - 1 (A. 2) 

In the case of m = 1, n = 1, (A-2) is clearly valid. Assume tha,t (A.2) is valid in the case 
of m 5 M a,nd n < N. K [M, N + l] becomes the maximum in such as Fig. l. 

Fig.1 Product set of intervals 

Therefore, we have 
K[:W,.V+l] < max { K [ m ' , ~ V ] + K [ M - m I 1 + 1 , 1 J }  

1-M 

5 max {(;V +m' - l) + ( M  -m' + l)} 
\<m'<M 

= M +  ( N +  l) -1. 
Likewise, K[M + 1, ,'V] 2 (M + 1) 4- ;V - 1. In consequence, (A.2) is valid for arbitrary 
integers m and n. 
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