
Journal of the Operations Research
Society of Japan

Vol. 39, No. 1, March 1996

A SHORTEST PATH PROBLEM
ON THE NETWORK WITH AGV-TYPE TIME-WINDOWS

Ryusuke Hohzaki Susumu Fujii Hiroaki Sandoh
National Defense Academy Kobe University University of Marketing & Management Science

(Received February 28, 1994; February 16, 1995)

Abstract This paper deals with the shortest path problem on a network with time-windows. The concept
of time-windows is recently introduced by Desrosiers et al. as a subproblem of the traveling salesman problem
involving time constraints. Authors consider another type of time-windows, which we name the AGV-type
time-window, and define the shortest path problem on the network with the AGV-type time-windows. We
verify that this problem has a structure similar to the conventional shortest path problem without time-
windows and propose several methods to solve the shortest path problem with such time-windows. The
method consists of two procedures: first, we divide the main problem into subproblems, and then solve these
subproblems using the dynamic programming or the branch and bound method. Numerical experiments are
carried out to compare the computational performance of the proposed algorithms.

1. Introduction
We can deal with a routing problem of automated guided vehicles (AGVs) in production
system as a shortest path problem on a transfer network. A collision-free path of an AGV
must be determined considering the whole traffic of other AGVs[6]. These traffic data can
be expressed as the time constraints imposed on nodes and arcs of the network. When
the AGV is passing through a node or an arc, the other AGVs cannot gain access to the
same pla,ce. On the other ha,nd, during time periods when no AGV is occupying a place,
every AGV is free to pass through there. When we call time periods the time-window, the
routing problem of the AGV can be defined as the shortest path problem with time-windows
(SPPTW) [7].

Desrosiers [2] a,nd Desrochers [4] investiga,ted the SPPTW as a subproblem in solving
the traveling salesrna,n problem wit h time constraints a,nd Solomon[8] surveyed it from the
view point of the vehicle routing. Characteristics of their time-windows were: (1) time-
windows exist only on nodes, and (2) a time-window on node, say node 2 , has only one time
interval, say [ci, di], and ci does not give any constraint on vehicle's arrival time. However,
considering the traffic system of AGVs on the transfer network, it is clear that the time-
window for such a, system must have the following characteristics: (1') time-windows may
exist either on arcs or nodes, (2') time-windows generally consist of several time intervals,
and (3') an AGV arriving at a node or an arc during a certain time interval of the time-
window must leave there during the same time interval. In order to distinguish two types
of time-windows, we term the la,tter type of time-windows the AGV- type time-windows.
For the SPPTW with the former type of time-windows, Desrosiers et al.[3] developed a,n
algorithm using the dynamic programming. Desrochers a,nd Soumis [4] proposed a more
efficient method. However, when we discuss the collision-free shortest time route of the
AGV on the transfer network, it is inevitable to consider not Desrosiers' time-windows
but AGV-type time-windows. We[7] first introduced the AGV-type time-windows to the

© 1996 The Operations Research Society of Japan

78 R. Hohzaki, S. Fujii & H. Sandoh

routing control problem of AGVs in factories, which was problem-oriented. In this paper,
we purified the AGV- type time-windows concept a,nd theoretically investigate the SPPTW
on the network with AGV-type time-windows, where arcs are not necessarily of positive
length. Furthermore, we propose three algorithms to solve the SPPTW, Bellman-Ford-like
met hod, Yen-like met hod and Branch-and- Bound-like method.

One of other examples with AGV-type time-windows is the traffic problem to find the
shortest time route on the road, where the road has some places under construction and
the time schedule of the construction is given as time-windows. Another field which the
concept of the AGV-type time-windows could be aspplied to is the project scheduling prob-
lem. Traditional PERT method was developed on a,n arrow dia,gram representing the detail
of the project. If job elements on the diagram have pre-occupied schedules in advance, a.
decision maker must make a plan which finishes the project as early as possible without
intervening the original schedule. In this case, the project scheduling problem is considered
as the SPPTW on the diagram with AGV-type time-windows.

In the next section, we modify a,n original network a~nd formulate SPPTW on the mod-
ified network. In Section 3, we propose three algorithms to solve the SPPTW, with their
computationa,l complexities being eva,lua,ted. Numerical examples are given in Section 4 to
compare the computational performances of three algorit hins proposed in this paper.

2 . Shortest Path Problem with AGV-Type Time- Windows
2.1 AGV-type shortest path problem
Let G(,N,A) be a network with the set of nodes *V a,nd the set of directed arcs A. An a,rc
i . j) is directed from node i to node j , with length 4 which is possibly negakive. Now, an
AGV leaves a start node s after time to and a,rrives a,t a. destination node e, satisfying the
time-window constra,ints on its way. The time-windows given on node i and the entrance of
arc (i , j) are denoted as T(i) and S(i , j) , respectively. T (i) and 5(i , j) a,re represented as a,
set of line segments as follows.

(2.1) T (i) = {T; = [t k l , t g ; k = l , - - - , nri},

(2 .2) S (^ , ^) = { S ? = [sÂ¥lJ.,s,l,] k- 1 , - - - ,m , , } .
where
(2.3) t h 2 t a . k = 1,.--,ni, tfc-i2 < tkl, k = 2,-- . ,n , , i ,

. . it i j
(2.4) s,l1 5 S;, k = 1, . - - , m i j , sk_l, < ski, k = 2 , - - - .nzi,.
The intervals Tf, a.nd S? a,re referred to as open time periods. If the AGV arrives at node
i a,t time t , leaves there at time ('(2 t) a,nd goes through arc (1, j) , t a,nd t must sa,tisfy
t h <: t 5 t' 5 G, a,nd S $ < t' < S $ for some k a,nd k'. The sta,rt time to is assumed
to belong to an open time period of node S . The AGV-type SPPTW is the problem of
finding the optimal route tha.t gives the ea,rliest arrival time of a,n AGV to the destination
node e, tha,t is, finding the minimum arrival time ui a,t node e achieved by the sequential
lines of nodes {ro = S , rl , - - - , ri = e} a,nd the time schedule {uk, V;.} a,ttached to node r;.
satisfying uo = to, U , 6 T(e) a,nd [ut, ~ t] C T(ris}, v;. C S(, r i s ,~&~) , W+I = v,: + drk rnl

for k = 1 , - - , l - 1. We assume tha,t the network has no cycle of nega,tive length for the
SPPTW to be non-trivial.

2.2 Definitions of operators on time-windows
Let K be the family of the sets of line segments defined by equa,tions (2.1) a,nd (2.2),
a,nd R denotes the set of real numbers. For an r E R, empty set 0 a,nd two elements

k k X = { [x i , :t2]; k = 1 , - . , p } and t J = {[Â¥U? M$]; h, = 1 , - - - . (;} of K, opera,tors MI:V, @. 0,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Shoitcst Path with AGV-Type Time- Windo wx

and @ are defined as follows.

(2.5) MIN X = x\ E R
(2.6) M I N 0 = 00

k
(2.7) A ' @ r = { [a - , + r , ^ +r] ; k = l , - - , p } E K

k k (2.8) X Q r = { [x l - r , x 2 - r] ; k = l , - - - , p } â K

(2.9) X S U = { [x~a -k \n \u~ ,uh \ ; k = 1 , - - - , p , h = l , - - - , g } E K
Relakion is defined by the following equivalence relakion.
(2.10) U Ã X 4=4- U; < a-;
For r E R and X E K, r e X means that r e [a-?, X;] for a certain 1 <, k <, p.

2.3 Modification of the original network
Let us modify the structure of original network G (N , A) by the following procedure.

(1) For node z E N , create ni copies of this node, where ni is the number of open time
periods on node i as shown in equation (2.1). The resulting nodes are denoted as
t't , k = 1, - - - , ni, and we associate the time-window Tl of equa,tion (2.1) with node i t .

(2) For directed arc (i , j) E A, if for 1 5 k <: ni and 1 <, l 5 n j

(2.11) W = T; 8 Â § (Ã ˆ , 8 (T/ 9 d y) # 0,
we add a new directed arc from node zk to jl, and assign the time-window W to the
ent,rance of the arc.

The newly generated network by the above procedure is referred to as the modified network.
Now we prove the equivalence of the modified network to the original one with respect to
SPPTW. Depa,rture of a,n AGV from node t during open time period Tl and arrival of the
AGV at node j during on the original network correspond to the movement from node i k

to node j i on the modified network. The movement is subject to the time-windows T(i) and
S{i, j) imposed on node z and an entrance of arc (6 respectively. Furthermore, in order
to a,rrive a.t node j during T(j } , the AGV must depart from node z during time periods
T (j) 0 dzj. The rela,tion (2.11) implies tha,t the AGV can travel from node to node 5 on
the modified network. However, it is impossible for the AGV to move from node zk to node
& (A # I) , which is sta,ted as the characteristic (3') of the AGV-type time-window in Section
1. Thus, there exists no arc between node zk and & (k # 1) on the modified network. Only
an open time period belongs to ea,ch node.

The total number of nodes on the modified network is identical to that of open time
periods attached to the nodes of the original network. With respect to the total number of
arcs, we obtain the next theorem.
Theorem 1. T h e total number of arcs between node a.nd ji (k Â¥- 1, - - - , ni, l = 1, . - - , n^}
o n the modified network is a t m o s t n.i + n, - 1. Therefore, the maximum number of arcs o n
th,e m,odified network i s given by
(2.12) (n . i+n , j - l) .

' iJ)<=A

Proof: See Appendix. D
In the procedure of generating the modified network from the original one, (2.1 1) is re-

pea,tedly evalua,ted for all arcs (Ã ˆ .)') of the original network. Binary operation @ or â‚ include
the axithmetic of compa,rison or subtraction, respectively. Consequently, the computa,tional
complexity of generaking the modified network is O(G f i A (n r i + my + h,.))).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

2.4 Transformation of AGV-type SPPTW into subproblems
From the arguments in the previous section, the original AGV-type SPPTW is able to be
transformed into the following problem on the modified network.

Assume tha,t to E Tf, 1 < p 5 n,,. The original SPPTW is equivalent to the problem of
finding the route which allows the AGV to depart from node S, after time to and arrive as
early as possible at either one of the nodes ek for 1 < k < ne, on the modified network. This
problem is decomposed into n,e subproblems with destination nodes ek, k = 1, - - - , ne. Each
subproblem is the SPPTW with one open time period on' each node. Since time periods
Tf, - , T;'t on destination node e of the original network satisfy TT < T; < - . - < T:, all
Tie subproblems need not to be solved. Namely, we solve the subproblem with destination
node ek on the modified network sequentially for k = 1, - - - , ne and the solution we find first
gives the optimal route to the origina,l problem.

From now on, we discuss how we solve the subproblem with time-window constraints of
one open time period at ea,ch node. For the modified network, we use the following notations
wit,hout loss of generality, which appearred in the original network also. We denote the total
number of nodes of the modified network by n, and number all nodes from 1 to n, of which
node 1 indicates the sta,rt node a,nd n the destination node. And let the set of nodes, the
set of arcs, the time-window on node i and the time-window on arc (6 j) be denoted a,s
AT, A, T(2) and S(i, , j) , respectively. Furthermore, we specify the time period of T(i) by an
open time period
(2.13) T(i) = [a,, b.\.

3. Algorithms to Solve the Subproblems
3.1 Loops and subroutes of an optimal route
For the subproblem on the modified network , discussed in the previous section, the following
theorems can be obtained.
Theorem 2. If there exists an optimal route, there also exists an optima,l route without
loop.
Proof: Let the sequence of nodes of an optimal route with loop at node j be {l1 =

1, 12, - . - , lk = Ji - - - , lk' = ji . - - , lt = n}, and let the arrival time and departure times at
node lh of the route be, respectively, (uhl vh). From (2.13) and the non-negativeness of the
length of loops, we obtain
(3.1) a , < : u k < v k $ a k ~ < v k ~ < b , .
Then, the new route {ll = 1, 12, - - - , lk = j, lkl+l, - - - , lt = n,} is optimal too, with the ar-
rival and departure times being (ul = to, v1), ('0.2 , v2), - - e , (uki W'). (~ k ' + l , <uk1+l) , e - - , (ut , *).
Thus, an optimal routes with no loops can be obtained from the one with loops.

Theorem 3. For an arbitrary optimal route, any of the subroute from start node 1 is
optimal.

Proof: As in Proof of Theorem 2, let {l1 = 1, 12, - - - , lt = n} be an optimal route with the ajr-
rival ajnd departure times at node h, being (uh, vh). Assume thatt an optimal route from node
1 to an arbitrary node lk of the route is {!.[= 1, l;, - - . , I,' = lk} with the a,rrival and departure
times at node l' being (U , , v'). Since U; <, uk, a route {l[= 1, l;, - - - , l;, lk+l, - - .,It = n}
with the arrival and departure times (4 = to, v'-,}, (U^ v 2 - - - ,
(U;, vk), (u ~ + ~ , u ~ + ~) ? . - - , (U;, *) is optimal either. D

By Theorems 2 and 3, it suffices to search for an optimal route only a,mong the set of
routes without loops and with all subroutes being optimal. The a,bove theorems suggest a
method to solve subproblems. Na,mely, from Theorem 2, we know tha,t an optimal route is

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Shortcut Path with AGV- Type Time- Windows 8 l

ma,de up of at most n nodes. Theorem 3 points out tha,t an optimal route to a certain node
can be found by seaxching for optimal routes to its adjacent nodes.

3.2 Algorithms
By theorems in the previous section, we present algorithms to find a shortest path such that
an AGV sta,rts from node 1 after time to, runs through it and arrives, as early as possible,
at node n on the modified network. Concerning the shortest path problem on a traditional
network without any time-windows, there are some famous algorithms such as Bellman-Ford
method and Yen method. We show tha,t the similar algorithms could be proposed for the
AGV-type SPPTW.

(1) Bellman-Ford-like method
We can find a shortest pa,th to node 2 by using the shortest paths to node k where

(k? 2) E A. Assume that the earliest arrival time and the departure time at node k, (k, i) E A
a,re uk and vk, respectively. The value vk is at least as la,rge as uk a,nd located within the
time-windows T(k) and S(k, i } . Departure from node k a,t time vk implies a(rriva1 a,t node 2

at time vk + dki. Thus, the earliest arrival time ui at node 7; is determined by the following
equation.
(3.2) ui = min {min{vk + dki E T(2); vk E S(k, z) , uk < ut 5 bk}}

(k , i)â ‚

= min { M I X Bki+&}
(k,t)â‚

where Bki is defined by

(3.3) Sf(k , 2) = (T(2) 0 dk,) (8 S(k, 2)
(3.4) B i .=Sf (k , i) (8 [~k ,bk] .
Equation (3.2) gives the earliest arrival time U, as well as a shortest pa,th which is obta'ined
by adding node 2 to the shortest path to node k with ui = MIN Bki + dkz.

Now, we are ready to state an algorithm ba,sed on a, recursive relation.
(i) Initialize variables as follows.

(3.5) m = 0, ay) = to> Ui0) = oo (Ã # 1)

(ii) For all 2 e !V,

(3.6) U. uirn), min (M I N BP + dti)
(k,i)?A

where

(3.7) BL. ' S*, Ãˆ (8 [aim), bk]

(iii) Let m = m + 1 a,nd go back to (11).
Variable u im denotes the earliest arrival time a,t node 2 through directed paths with at most
m + 1 nodes. The a,bove recursive algorithm terminates if none of the variables u im, i N
change any longer. At that time, not only the earliest arrival time at the de~tina~tion node,
but also those a,t a,ll nodes have been found. By Theorem 2, the algorithm stops in at most
m =- n - 1 steps. Comparison a,nd a,ddition a,re all a,rithmetic needed in (3.6). Therefore,
the computational complexity of this algorithm is 0(2mon3), where m0 is the maximum
number of time intervals on each arc.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

A special case of
(3.8) T(i) = [-oo,+oo], Z E N ,

gives a situakion in which all nodes and arcs are always open to AGVs, tha,t is there is no
time-windows constra,ints. In this case? the SPPTW is reduced to the classical shortest path
problem. Then, (3.6) becomes

(3.10) U. (m+1) = min u : ~) , mill (uim) + dkt) } f (k . i) â ‚
which is nothing but the Bellman-Ford method[l] [5]. For this reason, we name the proposed
algorithm (3.5)-(3.7). the Bellman-Ford-like method or the B-F-like method for short.

(2) Yen-like method
For the classical shortest pa,th problem without time-window constraints, Yen[9] im-

proved the Bellman-Ford method to construct an algorithm with sma,ller memory and com-
puta,tional time requirements. His improvement can be applied directly to the above B-F-like
method. Thus, we derive the following algorithm.

(i) Initialize variables as follows.
(0) (3.11) m=0, ui - to, U,") = oo (i # 1)

(ii) If m is even, calculate the following for i = 1, - - , n.

(3.12) dm+') = min + dki)

Otherwise, calculate the following for i = - - - , l .

(iii) Let m = m + 1 and go back to (ii).
We name the above algorithm the Yen-like method because it becomes exactly the Yen
method if we substitute uim) for MLV BP of equations (3.12) a,nd (3.13). The condition
for termina,tion of the Yen-like method is the sa,me a.s tha,t for the B-F-like method, a,nd its
computational complexity is eva.lua.ted as O(mon3/2).

(3) Branch and bound-like method
In the RF-like or the Yen-like methods, the earliest arrival time at each node is revised

recursively by the fundamental relation (3.2). The process converges in finite steps. Taking
an alterna,tive path, we can devise another algorithm.

In two algorithms proposed in the previous section, the revision of the ea,rliest axrival
time a,t node i is carried out by using aim) on its backwaxd adjacent nodes k, (k, i) A. In
the following algorithm, a certa,in node i* is selected first and for a forward a,djacent node
k , (i* , k) E A, the earliest time on that node is revised by u p . Namely, for node i* , the
following updating is ca,rried out.
(3.14) ak ("+l) = m i n { @ , m B̂ + d,.,.}.

If is revised by the second term of the right-ha,nd side of (3.14), we call it as the tram-
portation of the earliest arrival time at node i* to node k . Such sequentia,l tra,nsportation
from the initial state of (3.11) produce an optimal route, which is the same as the a,bove
two methods.

If a selected U!? is known to stay uncha,nged a,fterward, mea,ning tha,t f l is the true
eaxliest arrival time at node i*, it is enough to calculate (3.14) only once. When the des-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Shortest Path with A GV- Type Time- Windows 83

tination node is selected as such a node, the shortest path problem ha,s been solved. The
so-called A* algorithm is available as a method of selecting such a node i*.

Consider a real valued function f : N X R Ã‘ R with the following properties:

(3.15) f (i , t) < f (I , t + di,), for (i, j) e A,
(3.16) f^t} < f{i,tl), f o r t < t ' .
The following could be used to select i*.
(3.17) f (i*, U?) = min f(j, u p)

TSN

The value U!? of a selected node i* is never revised by (3.14). That can be proved by the
reductive absurdity as follows. Assume that u p is revised by sequential transportations
of U . Let the sequence of nodes, through which this transportation is made, be L =

{j, l d 2 , - - - , lp, i*}. The transportation is carried out by the second term of equation (3.14).
Since
(3.18) MIN B̂ + dt; > ~1") + dkL,
for arbitrary nodes k and I, the transportation along L gives the following inequalities.

uiy+l) = M I N B? +djLl 2 U',"" +djl l l

Thus, by the whole transportation, a certain earliest arrival time la,rger than u:.~) + dj;, +
rf;l;a + - - - + di,* is realized. Since the earliest arrival time revises u f z

(3.19) U;? > U:"" + djll + dLIL2 + - - . + dip,*.
Furthermore, from (3.15) and (3.16), the following is derived.

(3.20) f{f,u{?) > f (i * , ~ ~ ~) + d ~ ~ ~ + - - - + d i , *)

> f(lp,~{.m) + dfll + + d,p-llp)

2 /W")
This contradicts (3.17).

Once a node i* is selected by (3.17) and (3.14) is calculated for k, (i*, k) <E A, we do
not need transportations (3.14) from node i* any more. For example, we may take the next
function as f (-, e) .

(3.21) .f (2, t) = t + p(i , n)
where p(i+) is the shortest path length from node 7; to node n without taking account of
time-window constraints. This is given by the Yen's method in computational complexity
0 (n3 /4).

Summarizing the above arguments, we propose an algorithm, which is different from two
other methods, namely the B-F-like method and the Yen-like method. In what follows, E
denotes the set of nodes selected by (3.17).

(i) Calculate p(i, n) for 2 E N using the Yen's method[9], and set

(3.22) m = 0, u p = to, u p - oo (i # l) , Â - B, I = {l}.

(ii) If I - E = 0, then stop. The problem is infeasible.
Otherwise, find a node i* satisfying the following for the function f of (3.21).

(3.23) f (i* , U!?)

If i* = n, then stop. The shortest path has been obtained.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Otherwise, revise uim) by (3.14) for all nodes k, (i * , k) E A, k 6 E. If the revision
changes uim* from oo to a finite value, add node k to I.

(iii) Let E = E U { i * } a,nd m = m + 1. Go back to (ii).
In the above algorithm, the revision of u~"') and the evaluation (3.23) by the function f
can be regarded respectively as the branching procedure and the bounding procedures of
the branch and bound method. For this reason, we name the algorithm the BAB-like
method. The computational complexity of this method is evaluated as O(mon2 + n3/4).
This algorithm terminates when i* = n occurs in (ii), at this moment all the earliest arrival
times at every nodes are not necessarily obtained. This makes the BAB-like method more
efficient than other methods.

4. Numerical Example
In the previous section, we elucida,ted the computation complexity of three methods, theo-
retically. In this section, we evaluate the practical performances of them by some examples.

We apply the proposed methods to various networks, in which not only the number of
nodes or arcs but also the number of open time periods in a time-window vary, and measure
CPU-time of a computer. Hitachi main-fra,me computer S-3600/120A and FORTRAN lan-
guage were used. We change the number of nodes from 20 to 100 by 20. For each number of
nodes, say n , the number of directed arcs, say m, are determined according to three types
of formulas; n X 5, n X 10 and n X 15. That is, three formulas make a nodes have 5, 10 and
15 directed a r c , respectively. The number of open time periods in a node's time-window,
say p, changes from 2 to 6 by 2 a,nd the same number of open time periods are given on a
directed arc's time-window. For given numbers of nodes, arcs and open time periods, we
generate a random network with time-windows a,s follows.

(i) In a square having area L X L, n points are located randomly and assigned to n nodes.
(ii) For each node, n - 1 Euclidea,n distances between this node and all other nodes are

sorted in the decreasing order. Arcs with the 5 , 10- or 15-th shortest distances are
adopted according to formulas n X 5, n X 10 and n X 15, respectively. The lengths of
arcs a,re the same as their distances.

(iii) For the given number of open time periods, say p periods, 2 X (p - 1) time points
are picked up randomly in [O, d m] , where dm corresponds to the length
of the diagonal of the square. Denoting these time points by t i < tz < - - < t2(0-1)5
[O, ti], [ta, ta], - - - , [tqpW9, oo] are adopted as p open time periods.

For the network constructed by the above procedure, we make an AGV-type SPPTW by
selecting a start node and a destination node randomly, and setting starting time to = 0.
About the above time- windows construction (iii) , we should note that open time periods
before starting time point to = 0 are of no use and time-windows consisting of only finite
time points makes the SPPTW to be likely infeasible. This is the reason that the time-
window is generated so as to include only positive time points and an infinite time point in
the last open time period.

We generated 10 random networks for one case of the given number of nodes, arcs and
open time periods, and provided 10 SPPTWs for a network by selecting a pair of the start
node and the destination node 10 times. In consequence, we solve 100 SPPTWs for a case of
the given number of nodes, arcs and open time periods setting L = 100, and measured mean
values and standard deviations of CPU-time. In Table 1-a,, we compare the performance of
three methods, B-F-like, Yen-like and BAB-like methods for the case of 2 open time periods'
time-windows. Figures represent the mean CPU-time while figures in parentheses do the

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Shortest Path with A(%- Type Time- Windows

standard deviation.
As seen by Table 1-a and the theoretical discussion in the previous section, it is clear that

the Yen-like method is always superior to the B-F-like one from the point of computational
efficiency. Therefore, the computational results about the B-F-like method are omitted to
be displayed and discussed hereafter. For the case of 4 and 6 open time periods, the results
were obtained in Table 1-b and -c.

Table 1-a. CPU-time(msec) for the case of 2 open time periods

No. of arcs

Ta,ble 1-c. CPU-time(1nsec) for the case of 6 open time periods

Table 1-b. CPU-time(msec) for the case of 4 open time periods

Methods

No. of arcs

From Tafble 1, we obtain some remarks.

(1) For two method, the Yen-like a.nd BAB-like method, their CPU-time grow up by the
proportional rate between the 1-st power and 2-nd power of the number of nodes n.

No. of nodes (n)

20 40 60 80 100

Methods

No. of nodes (n)

20 40 60 80 100

7(1) 17(4) 26(5) 39(5) 49(5)

l(0.5) 2(1) 4(2) 7(4) 9(5)
13(2) 30(4) 48(3) 73(9) 99(9)

l(0.5) 3(2) 5(3) 8(4) 11(7)
17(2) 40(4) 60(8) 97(11) 133(17)

l(0.5) 4(2) 6(2) 9(5) 12(7)

No. of arcs

O x n

10 X n

15 X n,

No. of nodes (n)

20 40 60 80 100

Methods

Yen-like

BAB-like
Yen-like

BAB-like
Yen-like

BAB-like

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

R. Hohzaki, S. Fujii & H. Sandoh

This rate increases by the number of arcs m. For the Yen-like method, the increase
of the rate by the number of open time periods p, can be recognized too. However, it
is not true for the BAB-like method. The increase of p hardly produces any effect on
CPU-time for the BAB-like method.

With keeping n and p constant, CPU-time increases with the proportional rate below
the 1-st power of m for both methods. In detail, the rate of the BAB-like method is
lower than one of the Yen-like method.

The increase of p raises CPU-time for the Yen-like method but not for the BAB-like
met hod.

The standard deviation of CPU-time synchronizes with the mean value. In the same
condition, it is larger for the Yen-like method than for the BAB-like method. There-
fore, the BAB-like method has more constant efficiency than the Yen-like method.

In consequence, we may conclude that the BAB-like method is most preferable in all aspects,
which has been estimated by the theoretical evaluation of the computational complexity in
the previous section. The theoretical evaluation is executed for the worst case. As known
in the above remarks, the practical efficiency by numerical examples indicates more better
result than the theoretical evaluation. The superiority of the BAB-like method comes from
the fact that the BAB-like method terminates its algorithm as soon as the arrival time on
the destination node is recognized to be optimal, which can be easily checked by using the
classical shortest distance without considering any time- windows.

5. Concluding Remarks
In this paper, the shortest path problem on the network with AGV-type time-windows is
in~estiga~ted. The problem can be decomposed into subproblems, each of which has the
similar structure to the classical shortest path problem with no time-window. Due to this
fact, algorithms similar to those of Bellman-Ford and Yen are developed. Another algo-
rithm, called the BAB-like method, is also proposed and it is clarified that it is the most
efficient method for the computational complexity, theoretically and practically. Originally,
the problem is motivated by the routing problem of the automated guided vehicle in man-
ufacturing system. Furthermore, this problem and the proposed algorithms are able to be
applied to other fields, such as the transportation system, the project scheduling and so on.

References
Bellman, R,.E. : On a Routing Problem. Quart. Applied Math., Vol.l6(1958), 87-90.
Desrosiers, J., Pelletier, P. and Soumis, F. : Plus Court Chemin avec Contraintes
d'horaires. R. A. I. R. 0 Recherche Opera,tionnelle, Vol. 17(1983), 357-377.
Desrosiers, J., Soumis, F. and Desrochers, M. : Routing with Time Windows by Column
Generation. Networks, Vol. l4(1984), 545-565.
Desrochers, M. and Soumis, F. : A Generalized Permanent Labelling Algorithm for
the Shortest Pa,th Problem with Time Windows. Information Systems a,nd Operational
Research, Vol.26(1988), 191-212.
Ford, Jr., L.R. : Network Flow Theory. The RAND Corp., P-923(1956).
Fujii, S., Sandoh, H. and Hohzaki, R. : Routing Control of Automated Guided Vehicles
in FMS. Proc. of 1988 U. S. A. - Japarn Symposium on Flexible Automation, Vol. l(1988),
629-636.
Hohzaki, R,., Fujii, S. and Sandoh, H. : A Routing Method of Automated Guided
Vehicles in FMS by the Time-Windows Constrained Shortest Pa,th. Proc. of 1990 Japan-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Shortest Path with 11 (3'-Typc Time- Windows 87

U. S. A. Symposium on Flexible Automaltion, Vol. 2(1990), 485-492.
Solomon, M. and Desrosiers, J. : Time Window Constrained Routing and Scheduling
Problems. Tra,n,sportation Scien,ce, Vol. 22 (1988), 1-13.
Yen, J.R. : An Algorithm for Finding Shortest Routes from All Source Nodes to a
Given Destination in General Network. Quart. Applied Math., Vol.27(1970), 526-530.

Appendix : Proof of Theorem 1
From equation (2.11), we obtain

Therefore, it suffices to prove that the above inequality is valid for at most n, + n, - 1
combinations of k and l .

T (i) = {Et; k = 1. - . - , n,} and T (j) 0 d., = {TJi 0 d.,} consist of n, and n, intervals,
respectively. Now, assume there are the set of m, intervals and the set of n intervals. Let
K[m, n} be the number of intervals which the product set of these sets contains. The
following inequality is to be proved.

K[m,n] < m t n - 1 (A. 2)

In the case of m = 1, n = 1, (A-2) is clearly valid. Assume tha,t (A.2) is valid in the case
of m 5 M a,nd n < N. K [M, N + l] becomes the maximum in such as Fig. l.

Fig.1 Product set of intervals

Therefore, we have
K[:W,.V+l] < max { K [m ' , ~ V] + K [M - m I 1 + 1 , 1 J }

1-M

5 max {(;V +m' - l) + (M -m' + l)}
\<m'<M

= M + (N + l) -1.
Likewise, K[M + 1, ,'V] 2 (M + 1) 4- ;V - 1. In consequence, (A.2) is valid for arbitrary
integers m and n.

Ryusuke HOHZAKI:
Department of Applied Physics,
National Defense Academy,
1- 10-20 Hashirimizu, Yokosuka,
Ka,na,gawa 239, J apa.n
E-mail: hozakK&c.nda,.ac.j p

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

