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Abstract This paper addresses a practical method for minimizing a class of saddle functions f : R" -+ R1 
on a polytope. Function f is.continuous and possesses a rank-two property, i.e., the value of f is defined 
only by two linearly independent vectors. It is shown that a parametric right-hand-side simplex algorithm 
decomposes the problem into a finite sequence of one-dimensional subproblems. A globally c-optimal solution 
of each subproblem is obtained by using a successive underestimation method. Computational results indicate 
that the algorithm can solve fairly large scale problems efficiently. 

1. Introduction 
In this paper we will develop a practical algorithm for minimizing a class of saddle functions 
f : B" +B'? i.e., 

minimize{/ ( X )  1 r E D}, (1-1) 

where D C R" is a polytope. We assume that f is continuous and possesses the ran,k-two 
property with respect to two linearly independent vectors cl, c2 E R''. This means that 
there exists a continuous function g : IR2 + IR1 such that f (.K) = g(clT.r, c A r )  for all 
X E W [15], though we need not know g explicitly in our algorithm. Since f is a saddle 
function, g( ) cTx)  and g(clTx, ) are convex and (quasi)concave functions respectively 
for any fixed x R". Due to this convex-concave property of f ,  there are multiple locally 
optimal solutions in D. In contrast to (quasi)concave minimization problems, (1.1) might, 
have no globally optimal solutions among vertices of D.  

Saddle functions are well known in many literature in the context of minimax problems. 
In [l71 Muu and Oettli have solved a more general class of (1 . l ) ,  in which f is a full-rank 
saddle function. Muu has also considered a problem containing a full-rank saddle function in 
the constraint rather than in the objective function [l 61. However, the algorithms developed 
for the general purpose can usually handle only instances of a very limited scale. We will 
therefore exploit the rank-two property of f and show that a parametric simplex algorithm 
deconlposes (1.1) into a finite sequence of one-dimensional subproblems, which can be solved 
very efficiently. 

Rank-two nonconvex minimization problems are important in practical applications such 
as bicriterion decision making [4,8]. computational geometry [11, 141 or network flow prob- 
lems [25] to name only a few (see [24]). Many of them, involving linear multiplicative pro- 
grams [g, 18, 231 and certain d . ~ .  programs (minimizations of the difference of two convex 
functions hi ( r l T r )  - h2(r-/.r)) [22], belong t,o the class (1.1). 
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In Section 2 we will show that (1.1) can be solved by solving a sequence of one- 
dimensional problems of the same form as (1.1). The sequence can be generated by ap- 
plying a parametric right,-hand-side simplex algorithm to two linear programs associated 
with (1 . l ) .  Section 3 is devoted to the procedure for obtaining a globally e-optimal solu- 
tion of one-dimensional problems. By exploiting the convex-concave property of f we will 
construct a branch-and-bound algorithm based on a successive underestimation method [7]. 
Results of con~putational experiment on the algorithm are presented in Section 4. I11 Sec- 
tion 5 we will briefly discuss the average performance of the algorithin when we apply it to 
certain nonconvex quadrat,ic programs. 

2. Decomposition of the Problem into One-Dimensional Problems 
The problem we consider in this paper is as follows: 

minimize f i x )  
subject to Ax = b,  .c > 0 ,  

where A G Pxn, 6 G IRm, and f : IRn -+ R1 is a continuous function. There are two 
linearly independent vect,ors c l ,  c2 E R" which characterize f .  Namely, 

(2) Ranpk-two property: For any x  C IRn 

(ii) Convex-concave property: For any x  IRn 

d  E R", czTd = 0 + f ( x  + Ad) < ( 1  - A)f(.c) + A f ( r  + d ) ,  V A  E (0, I], (2.2) 
d ? R", c / d  = 0 ==Ã f (:c + Ad) 2 min{f(x). f ( x  + d ) } ,  V A  E [O ,  l ] .  (2.3) 

We assume in the sequel that the feasible region: 

is nonempty and bounded, which implies that (P) has a globally optimal solution. Figure 
2.1 shows a two-dimensional example, where c; = (0, I ) T ,  c; = (1, o ) ~  and f ( r  ) = -a-' +xi. 
It is easy to see that this function has three local minimum points A, B and C, anlong which 
C is the global one. 

Let (y = c lTx  for an arbitrary x  E D and consider a subproblem of (P) :  

minimize f {x} 
subject to x C D, c f i  = (. 

Then (P(()) is feasible and has an optimal solution which coincides with that of a linear 
i.e., either 

minimize cZTx  
subject to x C D, c l T x  = (Ã 

T maximize c2 x 
subject to x E D,  c l T x  = (y. 

be an optimal solution of (PLk(() )  ( k  = 1, 2 )  and define 
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Figure 2.1. Example of (P)  in R ~ .  

Lemma 2.1. If I, = clTx for some X E D, then X*(() i s  optimal t o  (P(()). 

Proof: B y  the rank-two property, f is a function of a single variable = c 2 . r  if the value 
cIT.r is fixed at  I,. The values cFxl(!"} and cZTx2(I,) are the minimum and the maximum 
of r]  respectively. It follows from (2.3) of property (ii) that the minimum of f is attained at  
either of the extreme points of the interval [cZTx1((). cFx2(() ] .  

Let 

T T Cmin = min{cl A- \ X E D}; (max = max{cl X 1 X E D}.  

It is obvious that a globally optimal solut,ion of (P) can be obtained by solving ( P ( ( ) )  for 
all I, E [Cmini I,max]- By Lemma 2.1, this can be done if we solve the two linear programs 
(PLi (I,)) and (PL2((;)) as varying the value over the interval [(nliIl, (nlax]. 

Theorem 2.2. There exists (, E [Cmin, Cmax] such that A-*( ( )  i s  a globally optimal solution 

o f P ) .  

Let us apply a parametric right-hand-side simplex method (abbreviated as PRSM) to 
(PLk(0) (k = 1, 2).  For the sake of simplicity we impose here t,he dual iiondegeneracy 
assumption: 

Assumption 2.1. Both (PL1(()) and (PL2(C)) have a un,ique optimal solution for any  
< E [(niin, (mix]. 
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Suppose we have a11 optimal basis B: E I R ^ + ~ ) ~ ( ~ " + ~ )  of (PLfc(Cmin)). Under the above 
assumption B; remains optimal even if the value of C slightly increases from Clinn. However. 
when is beyond some point, say (.k (< Cmas), some basic variable turns negative and the 
primal feasibility of B! is violated. Then we carry out a single dual pivot replacing the 
basic variable with an appropriate nonbasic one and obtain an alternative basis B;'. which 
is opt,imal to ( P L ~ ( ( ' ~ ) )  (see e.g. [2. 31 for further details). 

Applying these operations iteratively, we can generate a sequence of snbintervals [c. C,'], 
[c;', c], . . . , [<ii-i, GJ in the interval [(Ã£,il, where c = (Ã£l,n c = (;,,,as and C:+l > 
for each i. Simultaneously, we have the associated sequence of bases B:, B!. . . . . ~ k ~ - ~  6 

R ( ~ ~ + ~ ) ~ ( ~ + ~ )  such that B; is optimal to (PLk(())  for all ( 6 [c!, (L,]. We denote [c, (k1] 
by z,-' in the sequel. As well known, .̂'(G is an affine function over each Z, and can be 
expressed as 

If for every i we can compute 

k k kk k - k  
i (Zi) E argniin{f ( X )  1 1- = (1 - A ) r  (Ci ) + A X  ( L + ~ ) ,  A E [O, l]}. 

then Theorem 2.2 guarantees that 

is a globally optimal solution of (P). The procedure for computing .rk(z> will be presented 
in the next section. 

We summarize the algorithm below: 

Algorithm PRSM. 

S t ep  

S t ep  

S tep  

1. Solve a linear program: minimize{clTx 1 X E D} and obtain an optimal basis BO 
and the associated optimal solution xO. Initialize the incumbent: .r* = xO, v* = f ix*) .  
Let k = 1 and go to Step 2. 

2. Let C = c F x O  and B_ = BO. Solve a linear program (PLk(0)  pararnetrically by 
increasing c from - c: 

1' If (PLk(C)) is infeasible for ( > - C ,  then go t'o Step 3. 

2 Determine a value C of C such that B_ is an optimal basis for all C E Z = [C, - C]. 
Using a dual pivot operation, obtain an alternative basis B which is optimal to 

(PLk (0 - 
3' Compute .rk(Z) E argrnin{f(i) 1 .K = (1 - A),xk((,) - + A.rk(<), A E [O, l]}. If 

/ (xk(z))  < v* ,  then update the incumbent: a;* = xk (z ) ,  v' = / ' ( . E * ) .  

4' Let - c = C, B = B  and go to 1'. 

3. If k = 2, then terminate. Otherwise, let k = 2 and go to Step 2. 

Under Assumption 2.1, the above algorithm terminates after finitely many iterations yielding 
an optimal solution X* of (P) if Step 2.3O can be done in finite time. In the case of degeneracy. 
we have to use a suitable pivoting rule to avoid cycling (see e.g. [2]). 
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3. Successive Underestimation Method for One-Dimensional Problems 

In this section we consider the problem to be solved in Step 2. 3' of algorithm PRSM. i.e., 
for each k = 1. 2. 

minimize fo 
subject to i = (1 - A ) . r k ( ( )  + A r k ( < ) .  A 6 [O. I], - 

where rk (O - and .x i . (<)  are optimal solutions of (PLi.(()) and ( P L , + ( ~ )  respectively. and 
Z = [c, c] is a subinterval of [Lnn, cmax] such that a basis _B is opt,imal to (PLk( ( ) )  for all 
( E Z. The difference between (Pk(Z))  and (P)  is that the feasible region of the former: 

Di.(Z) = {.I: E B" 1 .r = (1 - A).ci.(<) - + A J ? ( ~ ,  A E [o, I]} 

is only a line segment. Hence, if f is either convex or concave over Dfc (Z ) ,  we can compute 
a minimum p ( Z )  very efficiently by using any one of ordinary methods. This involves the 
case in which either c z x  or c F x  is a constant for any x E Dk(Z). Although both the values 
are affine functions of A over D k ( Z ) ,  they are not constants in general. We will therefore 
propose a successive underestimation method for obtaining a globally c-opt>iinal solution of 

(Pk(Z)). 

3.1. LOWER BOUNDS OF THE OBJECTIVE FUNCTION VALUE 

We first define a vector ?l E R'' below: 

Then we have clTtl > 0 and = 0 by noting that cl and c2 are linearly independent. 
Hence by (2.2) of property (ii) function / is convex with respect to the direction Cl. We can 
compute the following by using convex minimization: 

Ll.(Z) = argniin{f(.r) 1 .r = X'-(<) + A(t(Z)F1, A E [O, l]}. 
- 
L@) = argnlin{f ( . r )  1 .c = - Att(Z)Fl. A E [O, l]}. 

where 

Let 

ni.(z) = m i i ~ { f ( ~ ' )  1 x E U Z )  U Li.(z)} 

Lemma 3.1. For a n y  subinterval Z' = [ ( l ,  - C} C Z th,e following relationsh,ip holds: 

^'(z) ̂  *zf). 

Proof: Choose an arbitrary X' .&.(Zi). Then there exists A' E 10, l] such that X' = 
Â¥c^(' - + A'a(Zf)tl. By linearity of x k ( O  over Z and definition of o (Z)  we have 

Hence X' is written as 
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where /3 = ((l - - () / (< - c)  and 7 = (7' - [ l )  / (< - c). Let - - - 

Then (3.6) is reduced to the following: 

Since clTxk([) = [ and clTxk(<) = 7 by definition, we see that - 

by noting (3.4). We can also check t,hat @ + YA' E [0, l] if Z' C Z. Hence by (2 -3) of property 
(ii) and definition of ,uk(z) we obtain 

Similarly, we have f (X)  2 uk(Z) for any X E xk (z'). 0 

As a corollary of this lemma, we can show that ,uk(z) gives a lower bound of the opti~nal 
value f (xk (Z)) of problem (Pk (Z))  : 

Lemma 3.2. For any X E Dk(Z) the following holds: 

Proof: For any .r E Dk(Z) there exists some [l E Z such that .I; = .ck(('). Hence (3.7) is 
derived by applying Lemma 3.1 to Z1 = [c1, (l]  C Z. U 

Note that uk(Z)  is the optimal value of a relaxed problem of (Pk(Z)): 

minimize f (X)  

subject to :c E B (3 Dk(z)), 

where R is a rectangle with vertices xk([) and xk(C) in the plane spanned by cl and c2. Each 
side of R is collinear with either El or G ,  and hence by c~uasiconcavity of f with respect to 
c2 the minimum is achieved at  some points, say Lk (Z) or (Z) ,  on the sides collinear with 
El. 

Lemma 3.2 enables us to discard Dk(Z) in the course of locating a globally optin~al 
solution of (P) in PRSM when 

holds for the best feasible solution X* obtained by that time. In this case we cannot update 
the incumbent better than .c* by any point of Dk(Z). 

3.2. BRAYCH-AND-BOUND PROCEDURE 

Let us suppose that (3.8) does not hold. When some point X' in the set: 

is found to be a feasible solution of (P) ,  we may discard Dk(Z) and proceed to the next step 
after revising the incumbent X* by X'. If such an X I  cannot be found, i.e.? Lk(Z) n D = 0: 
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Minimization of a Saddle Function 69  

we have to search Dk(Z) for a better feasible solution than X*. 
Let us bisect the interval Z = [c. <] into Zll = [cl CO] and Z12 = [co. <l. where CO = 

(c + c) / 2. Then the value f (xk(c0))  is an upper bound of the optinlal value of (Pk(Z) ) .  
IF f ( . E ~ ( ( ~ ) )  < f(x*). then we need to update the incunlbent as X *  = xk(c0). Kote that we 
can compute xk(co) without, performing any pivot operations, since xk(()  is affine over the 
interval Z. We next construct) the problems (Pk (Z l l ) )  and (Pk(Z12))  associated wit11 the 
intervals Zll and Z12 respectively-, and compute lower bounds rk (z l1 )  and d ( Z I 2 )  of their 
optimal values. It is obvious that Dk(Zll)  U Dk(Z12) = Dk(Z) and Dk(Zl l )  n Dk(Z12) = 
{xk(c0)}. Let us define a piecewise constant function on Dk(Z):  

Then by Lemma 3.1 we see that 

A further bisection of Zlt with tik(zlf) = m i ~ l { v ~ ( z ~ ~ ) ,  cik(z12)] at2 its middle point Cl can 
generate an alternative function 92, which underestin~ates f over Dk(Z) more exactly than 

g1 - 
If we iterate the above operations as selecting one subinterval of Z giving the least lower 

bound among them, we will obtain a sequence of piecewise constant functions gj's such that 

Note that xk(cj) is a minimizer of gj and a jumping point of g j + ~ .  The incumbent .E* is 
updated by xk(cj) when necessary. If 

happens to holdl then two cases are possible: (i) X* is an optimal solution of (Pk(Z)) if 
X* E Dk(Z), (ii) there are no globally optimal solution of (P) in Dk(Z) otherwise. In either 
case we can terminate the procedure. Figure 3.1 illustrates the procedure when uTe apply it 
to the example shown in Section 2. Here Dk(Z) corresponds to the edge B-C of D in Figure 
2.1. 

The procedure is summarized as the following branch-and-bouncl algorithnl. Here E 2 0 is 
a given tolerance, X* and U* are the incumbent and its objective function value respectively. 

Procedure BBP(k, X*, ,o*, Z). 

1Â Compute uk(z) and Lk(Z) according to (3.1) - ( 3 . 5 )  and (3.9). If uk(z)  2 f (X*)? then 
terminate. Otherwise, let 2 = {Z} and j = 0. 

2' Select an interval Zj = [c ,  l Cj] E 2 with the least uk(zj) and let 2 = 2 \ {Zj}. If 
-J 

Lk(Zj) n D # @ l  then terminate after revising the incumbent: X* = :r f1 zi* = f ( . ~ * )  for 
an arbitrary- X' E Lk(Zj) n D. 

3' Let cj = ( c .  +cj) / 2. If f(xk(sj))  < U * ,  then update the incunlbent: .X* = xk([j)l 
-3 

E* = f(x*).  If 
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Figure 3.1. Illustration of BBP. 

then terminate. 

4' Let E; = [c ., (j] alld Z; = [cj, cj]. Compute tlk(zj)? Lk(Zj)? tlk(Zj) and Lk(Zj). 
-1 

5' Let 2 = 2 U {&? z;}. Let j = j + 1, and go t,o 2'. 

Theorem 3.3. Procedure B B P  t e m z n u t e s  ujler finztely m a n y  zterutzons i f  E > 0 .  If c = 0 
and B B P  does not temznwte ,  zt generates a n  znfinzte sequenxe of poznts x k ( c j ) ' s ,  every 
uccumulutzon p o d  of whzch zs a globully optzmul solutzon~ of ( P h ( Z ) ) .  

Proof: Suppose the procedure does not terminate. Then an infinite sequence of intervals 
Z; = [c;, - cj]'s is generated in Z. We can take a subseq~lence Zjtls such that (Z  =) Z,,, 2 
Zjl 2 Zj2 2 -. Since Z j  is divided by the middle point cj = ( c .  + cj) / 2, we can assume 

-J 

that - c .  = 2(cjt+, - c .  ) for every P. Hence we have 
-3 t -Jt!+1 

by linearity of xk(() over Dk(Z). 
Now we assume that there exists some positive constant 0 such that 

By continuity of f there is some positive value 6(0-) such that if 

llxf - xffll < 6(0), (3.13) 

then 1 f (X') - f (X") 1 < 0. It follows from (3.11) that (3.13) holds for any X' ,  2;" E Dk(Zjf) 
when l is beyond a n~~mber :  
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,Winirnization o f  a Saddle Function 71 

hqoreover, we can see froin (3.2) - (3,5) and (3.9) that, if .rl E Lk(Zjt ), i.e.. f ( . r l )  = clk(zjC), 
then 11.r' - < 6 ( 0 )  for any X E Dk(ZJt ) .  Therefore we have f ( ~ ~ ( < ~ ~ ) )  - tlk(z1[) < GJ for 
! > i (o ) ,  which contradicts assumption (3.12). If E > 0. tlien (3.10) holcls after finitelj- 
many iterations and BBP terniinates. 

Suppose c = 0. Then we have linif-x( f (.rk(cjt)) - ttk(Zjl)) = 0. Since we choose Zjt 
with the least uk(Zjt) from Z7 we obtain 

To save the memory needed by BBP we can einploy the depth first rule in clloosing Zj 
from 2 instead of the best bound rule. Although the convergence is son~ewhat slo~ver, this 
modification causes no trouble if E > 0. However, if E = 0, the sequence xk(<,)'s might 
converge to some locally but not globally optimal solution of (Pk(Z)) .  

4. Computational Experiment 
We will report, the results of computational experiment on algorithm PRSM incorporating 
procedure BBP. We solved the following two subclasses of (P) :  

T T minimize (cl T ~ :  - cl0)' - (cl X - clo)(c2 - rz0) 
subject to Ax 5 b, .X 2 0, (4.1 1 

ckTx 2 rho, k = 1, 2, 

minimize (clT.c - clo)2 - (clT.c - clo) exp(c20 - cZT.1:) 
subject to Ax 5 b, .r 2 0, 

T 
(4.2) 

Ck X 2 Ck0, k = l>  2, 

where ck E IRn, eh0 R', A lRmxn and b E Etm.  All data of exanlples were randomly 
generated between -1.000 and 1.000. Problem (4.1) is a so-called linear multiplicative 
progranl, whose objective function can be expressed by the product of two affine functions, 
say clTx - c10 and (cl - c2)Tx - c10 + c20. If the p r o d ~ ~ c t  is cluasiconcave on the feasible 
region, we can solve the problem efficiently by using the algorithms proposed in [g, 10, 131. 
Unfortunately, the objective function of (4 .l) is neither convex nor quasiconcave because 
(cl - c2ITx - c10 + c20 can have both positive and negative values on the feasible region (see 
e.g. [g]). Hence the available algorithms do not work for (4.1). 

In procedure BBP we employed the depth first rule in choosing Z j  from 2. Also, among 
two subintervals zj and zj of Z j  we took out the one giving the less lower bound from 2 
before the other. The program was coded in C language and tested on a SUN SPARCstation 
ELC coinputer (20.5 inips) . 

Table 4.1 shows the comput,ational results when t,he tolerance is fixed a t  c = low' and 
the size of problems ranges from (m, 72) = (200. 150) to (350, 300). It cont8ains the average 
n ~ ~ n l b e r  of pivot operations (including prinlal ones for the linear program solved in Step 
l of PRSM)> branching operations and the average CPU time in seconds (and also their 
respective standard deviations in the brackets) needed for solving ten exaillples. Note that 
both problems (4.1) and (4.2) require the same nunlber of pivot ~pera t~ions  because their 
feasible regions are identical. Table 4.2 shows the results when ( m ,  (2) is fixecl a t  (200, 150) 
and c ranges from I O - ~  to 10-'. The average number of branching operations and CPV 
time of ten examples are listed in it. 
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Table 4.1. Computational results when = 1 0 - ~  

n 150 200 200 250 250 300 300 
Total number of pivots. 

226.4 362.5 385.8 352.5 385.1 463.3 452.1 
(30.124) (96.225) (98.238) (90.155) (120.45) (160.515) (209.555) 

Total number of branchings. 
(4.1): 138.7 182.8 160.8 152.7 195.9 200.2 153.0 

(78.411) (100.152) (83.244) (98.105) (82.440) (122.173) (102.326) 
(4.2): 151.3 118.2 163.0 189.3 134.6 217.3 14*5.7 

(82.002) (94.448) (94.043) (140.644) (9-4.291) (106.39) (121.598) 
CPU time in seconds. 
(4.1): 46.040 83.130 124.515 117.942 174.678 233.958 279.792 

(5.897) (24.615) (26.276) (30.304) (55.837) (66.787) (132-336) 
(4.2): 46.305 82.972 124.525 118.463 173.562 234.020 279.613 

(6.310) (24.795) (26.236) (30.646) (54.174) (66.834) (132.489) 

We see from Tables 4.1 and 4.2 that algorithm PRSM can solve fairly large scale problems 
of both the classes (4.1) and (4.2) with enough accuracy when they are randomly generated. 
There is not much difference in the results between the two classes. It should be noted 
that the number of branching operations depends only upon the tolerance but notJ upon 
the size of (m, n).  However, since the branching involves no hard operations such as a 
simplex pivot, it has a little influence on the computational time as shown in Table 4.2. 
The total computational time is consequently clominated by the number of iterations of 
the parametric simplex algoritllm. Also its variance is reasonably small compared with the 
usual global optimization algorithms using cutting W planes. 

5. Average Performance of the Algorithm for Some Instances 
As shown in Section l, problem (P) involves numerous subclasses. Among them are the 
following two doncoIivex quadratic programs: 

Table 4.2. Computational results when (m,  n )  = (200, 150). 

Total number of branchings. 
(4.1): 36.4 138.7 255.9 373.7 

(24.577) (78.411) (139.543) (203.150) 
(4.2): 34.4 151.3 286.7 423.7 

(18.597) (82.002) (141.017) (200.655) 
CPU time in seconds. 
(4.1): 45.778 46.040 47.403 47.537 

(6.140) (5.897) (6.298) (6.739) 
(4.2): 45.767 46.305 47.413 47.650 

(6.212) (6.310) (6.092) (6.587) 
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T T minimize f i ( . r ) = ( ~  . r - ~ ~ ) ( c ~  X - C ~ O )  

subject to .r G D.  

T T minimize f&-) = cl x - (c2 .c - cw ) 2 

subject to x D, 

where c;. 6 K", C;.@ 6 E1 ( k  = 1. 2) and D C Er' defined by (2.4). Linear multiplicative 
programs ( P i )  appear i11 many applications such as microeconoinics [G]. bond portfolio 
optimization [8], and computational geometry [ l l ,  141 and so forth (see [10. 181). If every 
feasible solution x E D satisfies c z x  > ~ ( - 0  for k = 1. 2, tlwn ( P I )  is a quasiconcave 
minimization [g] and can be solved by the algorithms proposed in [g, 131 as well. Problem 
(P2) is a concave quadratic program, whose objective function f a  has only one negative 
eigenvalue. In their recent article [l91 Pardalos and Vavasis have proved the NP-hardness 
of (P2) by converting a clique problem on a graph to (5.2). Quadratic programs are known 
to be in NP [26], and hence (P2) is a NP-complete problem. 

Here we will discuss the average performance of algorithm PRSM when we apply it to 
those nonconvex quadratic programs (Pi) and (P2). 

Recall that (Pk(Z))  solved by BBP is a minimization of f over the line segment D;.(Z). 
If f is a quadratic function such as f l  and f 2 ,  we can calculate a rigorous solution of (P;.(Z)) 
analytically without calling procedure BBP. Hence the total number of arithmetic oper a t '  ions 
needed for solving (PI) and (P2) can be bounded only by that of dual pivot operations. 
Moreover. we can solve them even if the feasible region D is unbounded. In this case the 
parametric right-hand-side simplex algorithm would generate a basis B_ which is optimal to 
(PLk(0)  ( k  = 1, 2) for all C E Z' = [C,  +m) for some (. At. the same time it generates some - 
direction vector d E W, and we have 

Dkfz') = {X ? R" 1 x = xk(() + Ad, A 2 O } .  

It is easy to check whether fl (fa)  is bounded from below on D;.(Z1). If we find it unbounded. 
the original problem has no globally optimal solutions. 

Let us again consider the linear programs ( P L k ( 0 ) ,  k = 1, 2. Denote by gk(C) the 
objective function value of (PLfc(C)), i.e., 

gl(C) = min{caTx 1 a- E D,  clTx = C}; g2Ã‡ = i n a ~ { c ~ ~ . r  1 .r E D,  clTx = C}. 
Lemma 5.1. Let Cinf = inf{clTx 1 x E D} and CSup = sup{clTx 1 x E D}. Then, ( i )  
function g1 is piecewise linear convex on  the interval (cnf, Csup) (G) function g2 is  piecewise 
linear concave on the interval (Cinf, Csup). 

Proof: Follows from. a well-know result on linear programming (see e.g. 121). D 

We can regard PRSM as a method which generates the analyt,ic form of g;. and compute 
a global minimum- of f over the line segment corresponding to each linear piece of g& 
Under Assumption 2.1 the number of linear pieces of g c s  coincides with that of dual pivot, 
operations of PRSM. 

If we take the partial dual with respect to the constraint clT.r = ( of (PLl ( ( ) ) ,  then 

Letting 
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hl(q) = min{t1cIT.r + c 2 x  1 i E D}.  

we have 

Similarly, 03 can be reduce to 

where 

The following lemma is analogous to Lemma 5.1: 

Lemma 5.2. (i) Function hl is piecewise hnear concave on El1 ,  (G) function h2 is piece- 
wise linear convex on IR1. D 

Thus we can see from (5.3) and (5.4) that if the analytic form of hk is given, we can obtain 
that of gk in O(Ifc) time, where Ik represents the number of linear pieces of h^. The number 
of linear pieces of g^ is obviously W). 

Adler and Haimovich have proved in [l, 51 that the average number of linear pieces Ik 
is bounded by O(min{m, n}} under sign-invariant probabilistic assunlptions imposed on 
the data (A, 6, c l ,  c2). (Readers are referred to an excellent survey article by Sharnir [21] 
or a book by Schrijver [20] for the results proved in the unpublished manuscripts [l, 51.) 
In their probabilistic model, Assumption 2.1 is fulfilled with probability one. This implies 
that the average number of dual pivot operations required by PRSM is also bounded by 
O(min{m, n}). On the other hand, the linear program to be solved in Step 1 of PRSM is a 
standard linear program, which is well known to be solved in polynomial time. Consequently. 
the average number of arithmetic operat,ions needed for solving (P I )  and (P2) is lower-order 
polynomial relative to the size of A. A similar result for a certain class of bilinear programs 
has been proved in [12]. 

The key of the above discussion is the polynomial solvability of (Pk(Z)).  If f is quasi- 
concave on D, either of the extreme points A ' ^ ( )  - and ^(<) of Dfc(Z) is optimal to (Pk(Z)).  
Hence we can also solve such instances of (P)  in polynomial time on the average. 
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