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Abstract Capacity design problems in a flexible manufacturing system (FMS) with a Poisson arrival
process and with limited system-capacity are formulated to determine the number of boxes to store arrival
jobs in a supplementary warehouse, called the “warehouse capacity,” and the number of pallets available in
the FMS. The throughput of the FMS is performed through an approximate closed queueing network model.
The limits, and the first- and the second-order properties of the throughput function with respect to the
warehouse capacity and the number of pallets available in the FMS are derived and exploited to develop
efficient solution methods for making the near-optimal capacity design.

1. Introduction

A typical flexible manufacturing system (FMS) consists of machining stations, a load-
ing/unloading station, a material handling system and a supplementary automatic ware-
house as shown in Fig. 1. The warehouse which is usually positioned adjacent to the load-
ing/unloading station is composed of a stacker crane and many small boxes (spaces) stacked
like shelves. In this paper, we focus on the capacity design of the FMS for determining the
number of boxes in the warehouse and the number of pallets available in the system.

The number of jobs simultaneously circulating in the FMS, which is usually called “work-
in-process” inventory, is limited to the sum of the number of boxes in the warehouse and
the number of pallets in the “shop” (from this point on, we refer to the FMS excluding the
warehouse as the “shop”). The local buffer capacity at each station in the shop is so large
that no blocking occurs at any station in the shop.

Consider a Poisson arrival process. Arriving jobs are permitted to enter the FMS when-
ever the supplementary warehouse is not fully occupied. These jobs, temporarily stored at
the warehouse, are immediately supplied to the shop (first, to the loading/unloading station)
whenever a pallet becomes available (empty). In other words, these jobs are blocked to enter
the shop and wait at the warehouse as long as the shop is full. On the other hand, if the
FMS is full, all arriving jobs are blocked and lost (or transferred to the other manufacturing
systems if possible). Increasing the number of available pallets and boxes will result in a
decrease in the “blocked-and-lost” probability, and hence an increase in the throughput of
the FMS.

Increasing the number of available pallets reduces the probability that each machining
station becomes idle due to shop congestion, and then results in increasing the throughput
of the FMS. However, it requires more horizontal spaces at each machining station and more
fixtures to palletize jobs. On the other hand, increasing the warehouse capacity by adding
another layer to the warehouse usually requires neither much more horizontal space nor much
more cost compared with increasing the number of pallets.
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Figure 1. A typical FMS with a supplementary warehouse
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The warehouse capacity and the number of pallets, therefore, should be carefully chosen
to maximize the throughput of the FMS. The optimal design of the FMS with respect to
these capacities will be addressed in this paper.

Up to now, there are numerous papers analyzing blocking phenomena occurring at each
individual station with finite local buffer [6] [7], but there is little literature dealing with the
blocking in this type of FMS with a supplementary warehouse. Shanthikumar and Stecke
[9] deal with the case in which the warehouse capacity is infinite. Yao [15] and Yao and
Shanthikumar [17] formulate some storage models for the FMSs as lot sizing models in
which a batch of jobs periodically arrive at the FMS. Since in our FMS model as well as
in the previous models the equilibrium probabilities of queue length at each station and the
throughput of the FMS can not be exactly calculated, we use an approximation similar to
the one given in these references [9] [15] [17].

In section 2, we formulate a mathematical model of the FMS using a closed queue-
ing network model and give a heuristic derivation of the equilibrium probabilities and the
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throughput of the FMS. Section 3 gives the limits, and the first- and the second-order prop-
erties of the throughput function with respect to both the warehouse capacity (the number
of boxes) and the number of pallets. In section 4, we propose solution methods to several
capacity design problems in the FMS model exploiting these properties.

2. Model formulation

Consider an FMS consisting of M machining stations, a material handling system (MHS),
a loading /unloading station and a supplementary automatic warehouse. A typical example
of this FMS is illustrated in Fig. 1. The conditions of this system are as follows:

(1) Each station has ¢; servers (¢ = 0,1,---, M + 1) and jobs are served in a first-come-
first-served (FCFS) order. Service times at each station are exponentially distributed
with queue-length dependent service rate, p;(n;i),i = 0,1,---, M + 1, where n; denotes
queue length at station 7;7 = 0 denotes the loading station (for palletizing/ refixturing
operations), 1+ = M + 1, the MHS, and 2 = 1,2,-.., M, the machining stations.

(2) Jobs follow a Markov routing with (4, j), i(or j) = —~1,0,1,---, M, denoting the prob-
ability that a job is routed from station i to station j. The notations r(z,0) and
r(i,—1) denote the routing probability from station ¢ to the loading station for pal-
letizing/refixturing operations and unloading station for depalletizing operations, respec-
tively. We model the loading/unloading station as the two stations: station 0 modeling
the loading operation and station—1 modeling the unloading operation. We assume that
the operational time at the unloading station is small enough to be negligible.

(3) There are Ng pallets simultaneously available in the shop and the number of local buffer
spaces at each station is unlimited (or there are Ng spaces). The warehouse has Vg boxes
(spaces) to store arriving jobs until a pallet becomes available. Define N = Ns 4+ Ny,
called the “maximum population in the FMS.” An accepted job will be temporarily
stored in the warehouse and supplied in the FCFS order to the shop whenever a pallet
becomes empty.

(4) Consider a Poisson arrival process with rate A. If an arriving job finds the number of
jobs in the FMS being just N, the job is refused entry and lost.

Although the FMS can be represented by a restricted open queueing network as shown
in Jackson [4], we construct an equivalent closed queueing network (CQN) as shown in Fig.
2, so that many results for CQNs can be directly applied. In Fig. 2, the notation “I/O”
represents the input/output process and is normally called the “input/output” station with
rate A. This I/O station in the CQN represents the “blocked-and-lost” mechanism because
the “service” (corresponding to the “arrival” process) at this station is not implemented
until any “customer” (corresponding to any “empty position” in the FMS) arrives at this
station. The notation “H” and the arc“——" denote the automatic warehouse and the
“blocked-and-hold 0” mechanism, respectively — the warehouse is considered as a station
with infinite service rate and we assume that the blocking occurs at service initiation (this
means “blocked-and- hold 0”). The arrow with “e” denotes the transportation through the

MHS (station M + 1).

The flow equations corresponding to Fig. 2 are given as follows:

M
(la) ei= > ejv(j1), i=1,2-, M,
J=0
M
(1b) eo =e_1+ 3 ¢7(),0),
J=1
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Figure 2. A queueing network model of the FMS with a supplementary warehouse

M
(1c) e-1 =Y ev(7,—1),
j=1
M
(1d) eM41 = D €,
—
(16) €1 = 1,
where e; denotes the visit ratio of an arriving job to station 7,7 = —1,0,---, M + 1.

Eqns (1a) through (1le) have the unique solution, denoted by ef,¢ = —1,0,+-- M + 1,
which represents the expected visit times of an arriving job to each station.

If eqn. (le) is removed, the remaining equations provide a set of solutions, denoted
by e;,1 = —1,0,---, M + 1, called the “relative visit ratio” of an arriving job. In this
case, multiplication by an arbitrary constant does not affect the solution. For instance, the
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Figure 3. A simplified queueing network model of the FMS

following relative visit ratios, denoted by ¢;,7 = —1,0,---, M + 1, also satisfy eqns (la)
through (1d) (eo corresponds to gp + ¢_1 in this case):
M M
(2&) 4 = Z 6]7(.7’2)/{2 6]} = 6i/6M+1,i - 1527 T 71M7
j=0 =0
M M
(2b) go=_e;7(5,0)/{>_¢j} = {eo — e-1}/enr1,
M M
(2¢) g-1= ) 70, =1)/{D_ ¢} = e-1/enrs,
j=1 7=0
(2d) qm+1 =1
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M
Using these ratios which satisfy > ¢; = 1, we can transform the original FMS model
i=—1

shown in Fig. 2 to the equivalent one shown in Fig. 3. This simplified CQN is helpful to
intuitively understand the behavior of the FMS because the MHS (station M +1) is explicitly
represented and there is a one-to-one relationship between the stations in the model and the
physical system. In Fig. 2, there is no loop at each station, that is, the destination of
each transportation through the MHS cannot be the just departing station. However, the
simplified CQN shown in Fig. 3 permits a loop through the MHS at station ¢,z = 0 ~ M,
that is, any job can return to the just departing station through the MHS, denoted by M +1
in Fig. 3. This is no problem for performing the equilibrium probability of any queue lengths
and then the throughput of the FMS, because eqns (2a) through (2d) provide the relative
visit ratios satisfying eqns (1a) through (1d); these equations hold for eq = (g9 + q_1)epr41
and €; = giepry1,t # 0. Similar CQN models for an FMS with no warehouse are presented
by Solberg [14] and Nagasawa, Jeong and Nishiyama [5].

Since the I/O station has the same visit ratio as station —1 has and since station —1 has
an infinite service rate, we combine these two stations to make a single station with service
rate A and visit ratio e_;. The station is enclosed by the dashed line in Figs 2 and 3. The
“blocked-and-lost” mechanism in the arrival process is completely represented by this 1/0
station.

The difficulty in obtaining the equilibrium probability of the queue lengths at each station
lies in incorporating the “blocked-and-hold 0” mechanism at the warehouse. Unfortunately,
we can not give an exact formulation of the equilibrium probability in this case but derive
an approximation.

First, we consider the case Ny = 0, that is, there is no warehouse and no “blocked-
and-hold 0” mechanism. The equilibrium probability of the queue lengths denoted by P(n),

where n = (n_1,n9, - -,na41), is exactly derived as follows:
1 M+1
= hi(n),
(3a) P(n) GOT T3 N Zl'—_'[l 1i(n;)
M+1
(3b) G(M +3, N, e, /\) = Z Z hi(”i)?

S ey i1
€
pi (i)

where e = (e_y1, €9, -+, epr41) and p_1(k) = Amin(k, 1) for & > 0.

It should be noted that the ¢;” s in these equations are relative visit ratios so that the
efficient computational algorithms provided by Buzen [2] can be exploited for calculating
the value of G(M + 3, N, e, A); Dubois [3], and Buzacott and Yao [1] use the unique value e
(instead of ¢;), which makes it hard to tune the value of ¢;’s in order to avoid overflow and
computational error.

The throughput of station 7,7 H;(N, A), the throughput of the FMS, THpr5(N, \), and
the throughput of the CQN, THegn (N, A) are derived as follows:

(3¢) hi(n;) = hi(n; —1),h;(0) =1,7 =~1,0,---, M +1,

N
(4a) TH;(N,A = Z pi(B)P{n; = k}
k=1
G(M+3,N—1,e A
(4b) = ¢; (M +3, & ),i:~1,0,---,1\1+1,

G(M +3,N,e )\
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M
(5a) THpyms(N,XN) =Y THi(N, \)~(i,—1)
1=1
(5b) =TH_1(N,A)
| G(M +3,N —1,e )
(5¢) TN T GM 3 N,e, )
M+1
(6&) THCQN(N, /\) = Z TH,’(N,/\)
1=-—1
M+l G(M +3,N —1,e,))
b — Z_ Y v
(6b) {z.;le I EE AN
(6¢) _GM +3,N—1,8&))
 G(M +3,N,e )\
where the relative visit ratios, denoted by e, are scaled as &€ = (é_j,€é, -, éy41) and
M+1 M+1
&g =ei/{ D ej}sothat > & =1 holds.
j=-1 1=—1
Therefore, we get-
(7) THryms(N,\) =e_1THcon(N,A),

that is, the throughput of the FMS is €_; times as large as the throughput of the CQN.
We shall provide another representation of the FMS model using the following function:

(8&) TH(TL) = /\hm THFMS(”, /\)
—00
G(M +2,n—1,e)
(b) - et G(M +2,n,e) ’
where
M+1

(8¢c) G(M +2,ne)= Y, II Ri(ns).

2M+1 ni=n 1=0

i=0

The function T H (n) denotes the throughput of the FMS provided that the population
in the FMS is always n(in this case, Ng = 0 and therefore the population in the shop is
always n). Using this function, we can simplify the FMS model as shown in Fig. 4, where
stations in the FMS are aggregated into a single station with service rate governed by the
expression of min{T H(n), TH(Ns)}.

From the product form solution given by eqns (3a) through (3c), the equilibrium prob-
ability that the number of jobs in the FMS is exactly n, denoted by P(n), is given by

A . )
(Qa) P(n): {TH(n)P(n_l), lfn_<__N,
0, N >,

N n ~1
(9b) P(O):{1+ZHT;U€)} .

n=1 k=1

Similar results have been derived by Buzacott and Yao [1] and Shanthikumar and Stecke
[9]; the only difference is that they defined the function TH(n) as the throughput of the
CQN instead of the throughput of the FMS.
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min{TH(n),TH(Ns)}

Figure 4. A simplified expression of the FMS with Ng =0

Since P(N) denotes the probability that the I/O station is idle, the throughput of the

FMS is also given by
THpMs(N,)\) = )\{1 —P(N)}, (10)

which is equivalent to the expressions in eqns (5a) through (5c¢).

Let us consider the case Ny > 0, next. It is intractable to formulate the “blocked-
and-hold 0” mechanism exactly. There are numerous approximation methods dealing with
various blocking phenomena between each connected pair of stations with limited local buffer
capacities [6] [7]. In our case, blocking occurs only at the warehouse when the population in
the shop reaches the limit Ng and no blocking occurs at any station in the shop because of
the unlimited local buffer capacities. This type of blocking has not been dealt with by any
researcher.

We present the following approximation, denoted by P(n), to get the equilibrium prob-
ability P(n) for the case of Ny > 0:

(11a) P(n) =14 7% P(n - 1) if Ng <n < Ng+ Ng;
0, if Ng+ Ny < n,

) P {1+Nij1 ) TH [N1;[

n=1 k=1

ol lrmml

Using p(n), we define the approximate throughput of the FMS as
(12) THrus(Ns, Ny, ) = M1 - P(Ns + Ng)}.

While these equations give the approximate values for the equilibrium probabilities and
the throughput of the FMS, the exact values are also obtained through these equations in
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Table 1. Accuracy of the approximation compared with the SIMAN simulation run

(MM e/ oM (€3 /1)) =0.T)

(M, S22 ) (c1,Cay-.., Car) (Ns, Ny SIMAN CQN Error
(5, 0) 0.293 0.296 0.9

(1, 5) (5) (10,20) 0.347 0.350 0.9
(15,30) 0.347 0.350 0.9

(10, 0) 0.641 0.645 0.7

(1,10) (10) (15,20) 0.697 0.700 0.5
(20,30) 0.697 0.700 0.5

(20, 0) 1.367 1.358 —0.6

(1,20) (20) (30,20) 1.385 1.400 1.1
(40,30) 1.385 1.400 1.1

(5, 0) 0.260 0.259 —0.1

(3, 5) (1,2,2) (10,20) 0.348 0.349 0.3
(15,30) 0.350 0.350 -0.1

(10, 0) 0.589 0.589 0.0

( 3,10) (1,1,8) (15,20) 0.701 0.699 —-0.2
(20,30) 0.699 0.700 0.1

(20, 0) 1.312 1.318 0.4

('3,20) (3,7,10) (30,20) 1.390 1.400 0.7
(40,30) 1.392 1.400 0.6

(10, 0) 0.548 0.549 0.2

( 5,10) (1,1,1,1,6) (15,20) 0.697 0.692 —0.7
(20,30) 0.693 0.700 0.9

(20, 0) 1.261 1.263 0.1

( 5,20) (1,2,3,4,10) (30,20) 1.384 1.399 1.1
(40,30) 1.407 1.400 —0.5

(20, 0) 1.271 1.276 0.4

( 5,20) (4,4,4,4,4) (30,20) 1.408 1.400 —0.6
(40,30) 1.390 1.400 0.7

(10, 0) 0.473 0.475 0.5

(10,10) (1,1,1,1,1,1,1, (15,15) 0.620 0.618 —0.2
1,1,1) (20,30) 0.677 0.677 0.0

(20, 0) 1.119 1.124 0.4

(10,20) (1,1,1,1,1,1,1, (30,20) 1.377 1.376 —-0.1
1,1,11) (40,20) 1.388 1.398 0.7

(20,0) 1.156 1.155 —0.1

(10,20) (1,1,1,2,2,2,2, (30,20) 1.386 1.383 —0.2
3,3,3 (40,20) 1.398 1.398 0.0

Error=100 x (CQN-SIMAN)/SIMAN [%]
SIMAN : the throughput of the FMS obtained by the simulation run

CQN : the approximate throughput of the FMS calculated using eqn.(12)
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Table 2. Accuracy of the approximation compared with the SIMAN simulation run

(M e/ S (e /)y =0.9)

45

(M, Z£1 c:) (c1,¢2,..., Car) (Ns, Ng) SIMAN CQN Error
(5, 0) 0.340 0.341 0.3

(1, 5) (5) (10,20) 0.445 0.447 0.6
(15,30) 0.445 0.449 0.9

(10, 0) 0.743 0.749 0.8

( 1,10) (10) (15,20) 0.887 0.895 1.0
(20,30) 0.900 0.899 —0.1

(20, 0) 1.589 1.603 0.9

(1,20) (20) (30,20) 1.777 1.796 1.1
(40,30) 1.775 1.799 1.4

( 5, 0) 0.283 0.283 0.0

(3, 5) (1,2,2) (10,20) 0.406 0.406 0.0
(15,30) 0.435 0.432 —0.7

(10, 0) 0.648 0.646 -0.3

(3,10) (1,1,8) (15,20 0832 | 0829 | —0.4
(20,30) 0.877 0.870 -0.8

(20, 0) 1481 1483 0.1

(3,20) (3,7,10) (30,20) 1.761 1750 | —0.7
(40,30) 1.793 1.788 -0.3

(10, 0) 0.586 0.587 09

( 5,10) (1,1,1,1,6) (15,20) 0.749 0.751 0.2
(20,30) 0.808 0.808 0.0

(20, 0) 1.369 1.374 0.4

( 5,20 (1,2,3,4,10) (30,20) 1.672 1663 | —0.5
(40,30) 1.751 1.744 | —0.4

(20, 0) 1.392 1.395 0.3

( 5,20) (44,44 4) (30,20) 1.674 1671 | —0.2
(40,30) 1.756 1748 | —0.5

(10, 0) 0.494 0.495 0.2

(10,10) (1,1,1,1,1,1,1, (15,15) 0.623 0.625 0.4
1,1,1) (20,30) 0.688 0.690 0.2

(20, 0) 1174 1176 0.2

(10,20) (1,1,1,1,1,1,1, (30,20) 1.447 1.452 0.4
1,1,11) | (40,20) 1.569 1.574 0.3

(20,0) 1.212 1.213 0.0

(10,20) (1,1,1,2,2,2,2, | (30,20) 1.465 1476 | 0.7
3,3,3) (40,20) 1.587 1.589 0.1

Error=100 x (CQN—SIMAN)/SIMAN [%]
SIMAN : the throughput of the FMS obtained by the simulation run

CQN : the approximate throughput of the FMS calculated using eqn.(12)
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Table 3. Accuracy of the approximation compared with the SIMAN simulation run

(M{ZE e/ M (e /u)} =1.0)

(M, 0 ) (c1,c9,..., car) (Ns,Ng) | SIMAN CQN Error
(5, 0) 0.353 0.358 1.2

(1, 5) (5) (10 20) 0.478 0.482 1.0
(15,30) 0.485 0.489 0.6

(10, 0) 0.778 0.785 1.0

(1,10) (10) (15,20) 0.966 0.966 0.0
(20,30) 0.966 0.978 1.2

(20, 0) 1.666 1.682 1.0

(1,20) (20) (30,20) 1.931 1.945 0.7
(40,30) 1.946 1.964 0.9

(5, 0) 0.289 0.291 0.7

(3,5) (1,2,2) (10,20) 0.409 0.409 -0.1
(15,30) 0.436 0.437 0.3

(10, 0) 0.665 0.663 —0.3

( 3,10) (1,1,8) (15,20) 0.840 0.838 —0.2
(20,30) 0.875 0.884 1.0

(20, 0) 1.532 1.524 —0.5

( 3,20) (3,7,10) (30,20) 1.805 1.800 -0.3
(40,30) 1.851 1.864 0.7

(10, 0) 0.599 0.598 —0.2

( 5,10) (1,1,1,1,6) (15,20) 0.751 0.752 0.1
(20,30) 0.808 0.810 0.2

(20, 0) 1.397 1.400 0.3

('5,20) (1,2,3,4,10) (30,20) 1.669 1.677 0.5
(40,30) 1.769 1.768 ~0.1

(20, 0) 1.418 1.422 0.3

('5,20) (4,4,4,4,4) (30,20) 1.681 1.686 0.3
(40,30) 1.766 1.773 0.4

(10, 0) 0.499 0.500 0.2

(10,10) (1,1,1,1,1,1,1, (15,15) 0.625 0.625 -0.1
1,1,1) (20,30) 0.687 0.690 0.4

(20, 0) 1.182 1.188 0.5

(10,20) (1,1,1,1,1,1,1, (30,20) 1.443 1.452 0.7
1,1,11) (40,20) 1.577 1.577 0.0

(20,0) 1.221 1.226 0.3

(10,20) (1,1,1,2,2,2,2, (30,20) 1.473 1.476 0.2
3,3,3) (40,20) 1.590 1.592 0.1

Error=100 x (CQN—-SIMAN)/SIMAN [%]

SIMAN :

Figure 1. A typical FMS with a supplementary warehouse

the throughput of the FMS obtained by the simulation run
CQN : the approximate throughput of the FMS calculated using eqn.(12)
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the following cases: (1) the FMS model which consists of only one machining station with
rate g;(n) = min{p;(n), i(Ns)}, provided that a loading/unloading station and a MHS
have infinite service rates; (2) the FMS model in which the number of available pallets Ng
is infinite (or very large); (3) the FMS model with Ny = 0 (no supplementary warehouse).

It is hard to investigate the accuracy of this approximation for all cases of the FMS.
Instead, we provide some comparison with the SIMAN simulation run, where the conditions
are the same as given in this section except that the process route of arriving jobs are
previously given randomly so that each job visits all stations only once (therefore, ef = 1,: =
1~ M). Weset po(n) = ppr+1(n) = oo, p—1(n) = Amin{n, 1} and p;(n) = gy min{n, ¢;},7 =
1 ~ M, where ] [(pic;) = €] /(pticj), 1 # j,2,j = 1 ~ M, for balancing workload. The arrival

M M
rate A takes the following values: )\/{Z ¢/ Z 3/15)} = 0.7, 0.9 and 1.0, where the term
=1 7=1

M M
> il Z(e;/pj) represents the limit value of the throughput of the FMS because the \*

M M
defined in Theorem 1 can not exceed the value of ) ¢;/ Z 7/15) for any configuration of
=1 7=1
M
¢; and for any loading €}/s;, given the total number of machines »_ ¢; and the total work
=1

M
load Z ¥/ui). The throughput of the FMS is calculated through the SIMAN simulation

run by d1V1d1ng 10,000 [jobs| by the time interval between the arrival of the 1,001st job and
the departure of the 11,000th job. Tables 1 through 3 summarize the results, maklng it clear
that the approximation gives the precise values (only 1.2% error at most) for the throughput
of the FMS with balanced loading. We also investigated the accuracy for some cases of the
FMS with unbalanced loading. The results, omitted here, are similar to the case of balanced
loading (we cannot generalize the results because we can not perform all cases of the FMS).

Similar approximation methods have been presented by Shanthikumar and Stecke [9] for
the case Ny = oo and suggested by Yao [15] and Yao and Shanthikumar [17] for the case
Ng > 0.

3. Properties of the throughput

We derive properties of the throughput of the FMS given in section 2. These properties
are exploited for making optimal design as will be shown later.

Theorem 1. Consider the FMS model with the warehouse defined in section 2. Suppose
service rate of each station satisfies p;(n) = pi(c) for n > ¢ and pi(n) < wi(c) for
n < cje=0,1,--- M+ 1. Then, the approzimate throughput of the FMS defined in eqn.
(12) has the following limits:

(i) Jim THrums(Ns, Ny, X) = TH(NS);
(i) leigloo Jim THraps(Ns, Ny, \) = \*;

(i1) hm THFMs(Ns, Ny, ) = min(A, \Y);

(iv) hm fHFMS(NS,NH,/\):min{/\,TH(NS)},

N}]—‘OO

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



48 11, Nagasawa

where eX,i = —1,0,---, M + 1, is the unique solution to eqns (1a) through (1e) and

* : N *
A= ngsllﬂf}ﬂ{ﬂz(cz)/ez}-

(Proof)

Property (i) holds because P(Ns 4+ Ng) — 1 and P(n) — 0(n # Ng + Ng) as A — oo,
that is, there are always Ng jobs in the shop when A is very large.

Substituting property (i) into property (ii) yields

lim TH(Ng) = A*,

ANs—,*OO

or equivalently,

lim e’ G(M +2,Ns — 1,e7) = min {M(Ci)}
Ne—oo ~' G(M +2,Ng,e*) 0<i<M+1' e

where e* | = 1 (Theorem A in appendices shows that this equation is valid).
From the definitions of P(n) and p(n), we have, for any A,
lim P(n)= lim P(n),

NS-POO NS—.‘OO

and then -
lim THppys(Ns,Ng,A) = lim THpys(Ns,A).
Ns—oo Ng—oo

It is noticeable that the limit of T\IJJFMS(NS, Ny, ) with respect to Ng does not depend
on Ng.

Therefore, to prove property (iii), it suffices to show

lim THpys(Ng,A) = min(A,A*).
Ns—oo

Consider the equivalent CQN without warehouse where station —1 has service rate A and
the expected visit times e* ;. Applying Theorem A to the equivalent CQN yields

G(M +3,Ns —1,e*,})

G(M + 3, Ng,e", \)
A o pi(c)
min

e* 1 0<i<M 41 el

THFMS'(NS, /\) = 6*_1

— min{ } = min(\, A*) as Ng — oo.

To prove (iv), from the definitions of mFMS(NS, Ny, ), P(n) and TH(n), we get

— Ns+Np-1
THryms(Ns, Ny, )\) = Z P(n)
n=0
TSy ATIG(M 4 2,m,et) + ANSTIG(M 42, N et) S )

SNSTIARG(M + 2,n,e%) + ANSG(M + 2, Ng,et) 28 ol
where pg = A\/TH(Ny).

If ps =1, then mpMs(Ns,NH,/\) — AM=TH(Ng)) as Ny — oo;
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if pg <1, then mFAlS(NS,NH,A) — A< TH(Ng)) as Ny — oo;
if pg > 1, then mpMs(Ns,NH,/\) — /\/,05(: TH(Ns) < /\) as Ny — oo.

Therefore, for any ps, TH pars(Ns, Ni, \) — min{\, TH(Ns)} as Ng — oo. Q. E. D.

Although the exact throughput of the FMS is not analytically tractable, considering the
practical and physical meaning of these limits, we can verify that the exact throughput of
the FMS approaches these limits shown in Theorem 1. It is therefore important to note that
both the approximate and exact throughputs of the FMS have the same limits as given in
Theorem 1. This remark implies that the approximation provides a precise measure for the
throughput of the FMS if at least one of the following conditions holds: (1) very large arrival
rate; (2) a sufficiently large amount of pallets available in the shop; or (3) sufficiently large
capacity of the warehouse.

The limiting behavior of the throughput with respect to Ng and Ny can be determined
using the first- and second-order properties given as follows:

Theorem 2. Consider the approzimate FMS model defined in section 2. Suppose that
service rate of each station, u;(n;), is nondecreasing and concave in the queue length n;,i =
0,1,--«, M + 1. Then,

(z) ﬁFMS(NS,NH,A) 18 nondecreasing concave in Np;

(1) mFMS(NS,N — Ng, M) is nondecreasing concave in Ng;

) ﬁFMS(Ns,NH,/\) 18 nondecreasing in Ng.

(Proof)

Consider a CQN which consists of two nodes. Node 1 is the approximate FMS with
mean service rate y(n) such that y(n) = min{TH(n),TH(Ng)} for any n > 0. Node 2 is
the I/0 node with service rate A. This two-node CQN represents the approximate CQN with
Ny > 0, where the equilibrium probability is defined by eqns (11a) and (11b).

Consider, first, two networks (p = 1,2) such that N} = N2% and N}, < N} = N} +1, that
is, N' = N} + N}, < N2+ N4} = N? = N! 4+ 1. The queue-length dependent service rates
at node 1 in these networks are the same, i. e., v!(n) = v*(n) = v(n), because N} = NZ.
The two networks differ only in job population.

Since all stations in the FMS have service rates, p;(n),z = 0,1,---, M + 1, which are
nondecreasing concave in n, the throughput of the FMS with population n, denoted by
TH(n), is also nondecreasing concave in n as shown in Shanthikumar and Yao [12] [13].
That is, v(n) is nondecreasing concave in n. Hence, the throughput of the CQN under
discussion is also nondecreasing concave in N.

The throughputs of nodes 1 and 2 in the CQN are the same and equal to a half of the
throughput of the CQN - “throughput of a CQN” is usually defined as the sum of through-
puts of all nodes included in the CQN like the definition given in eqn. (6a). Therefore, the
throughput of node 1 in the CQN, corresponding to TT{FMS(NS, Npg, ), is nondecreasing
concave in Ng.

To prove (ii), consider two networks (p = 1,2) such that N} < N% = N} +1 and
Ny > N} = Nj; — 1, that is, N! = N} + N} = N%+ N% = N?. These networks differ
from each other only in the queue-length dependent service rates. If we set TH(n) = ng,
that is, y(n) = pmin(n, Ns), then we can find that the throughput of the CQN, and hence
THrpys(Ns, N —Ng, A) is nondecreasing concave in Ng as shown in Shanthikumar and Yao
[11]. Based on the proof of this special case, we can derive the same result for the general
case y(n) = min{T H(n), TH(Ng)}. The proof is given in Theorem B in appendices.
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ﬁFMS(NS;.N +1— Ng, /\)
THppus(Ns, N — Ns, A)

e ﬁFMS(N&N—l_w
THrms(Ns, Ni, A) |

—

Apvproximate throughput of the FMS, THpps(Ns, Ny, A)

IF THrms(Ns, A)

N—Ng—1 N-Ng N—-Npg+l N-1 N N+1

The number of available pallets, Ng

Figure 5. Tlustration for explaining the second order property of THru s(Ns,Ng,A)
with respect to Ng

Property (iii) is directly obtained from (i) and (ii). That ‘is,
THrms(Ns, Ny, A) < THpys(Ns +1,Ng — 1,A) < THpys(Ns + 1, N, A),

where the first and second inequalities are due to properties (ii) and (i), respectively.
Q. E. D.

We can show that the concavity of TT{FMS(NS, Npg,A) in Ng is not likely to hold. As
illustrated in Fig. 5, the concavity is expressed by the concavity of the curve G — E — C.
From Theorem 2 (i) and (ii), the curves A— B—C, D — E — F and G — H — I are all
concave, and AD < DG,BE < EH and CF < FI. Therefore, if AD > BE > CF holds,
the curve G — F — C becomes concave. If Ny is small enough and N is large enough, then
the relation AD > BE > CF, and therefore, the concavity of TH ppr5(Ng, Ng, A) in Ny is
likely to hold. However, if Ny is very large and Ng is very small, the relation does not hold
any more.

Combining Theorems 1 and 2 yields the following corollary:

Corollary 1. Consider the approzimate FMS model with the warehouse defined in section

2. Suppose that service rate pi(n;) is nondecreasing concave in n; and pi(n;) = pi(c;) for
n; > c,t=0,1,--, M+ 1. Then,
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A* - - -

Z ﬁFMS(NS)O)/\)

Approximate throughput of the FMS, TH pprs(Ng, Ngr, A)
S

The number of available pallets, Ng

Figure 6. Relationships between the approximate throughput of the FMS and its bounds
(A > )

(1) mFMS(NS, Ng,A) is nondecreasing concave in Ny and converges to min{A\, TH(Ng)}
as Ng — oo;
(i) THras(Ns,0,A) < THras(Ns, Ny, A) < min{TH ppr5(Ns + Nig,0,A), TH(Ns)};
) ﬁFMS(NS,NH,A) s nondecreasing in Ng and converges to min(A, \*) where A* =
mino<i<ar+1{pi(ci)/ef}.
The relationship between the throughput of the FMS and its bounds in illustrated in
Figs 6 and 7. In these figures, the horizontal and vertical axes represent the number of pallets
available in the shop and the throughput of the FMS, respectively. TH pprs(Ns+ Ng,0, ),

expressed by a dotted curve, is obtained by translating the curve of ﬁ]FMS(NS, 0,X) (or
equivalently, THpps(Ng, A)) to the left by the quantity Ngy. The hatched area represents

the region where the value of TH pprs(Ng, Ng, A) can be determined (as specified in Corol-
lary 3 (ii)).
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>~
*

Approximate throughput of the FMS, THpps(Ns, Ng, A)

The number of available pallets, Ng

Figure 7. Relationships between the approximate throughput of the FMS and its bounds
(A* < A)

4. Capacity design problems

We provide solution methods to a few examples of capacity design problems for determin-
ing warehouse capacity, Ny, and the number of pallets available in the shop, Ng. Suppose
that the service times of both the loading/unloading station and the MHS are small enough
to have a negligible effect on the throughput of the FMS. Machining station ¢ has ¢;-parallel
servers (machines) with queue-length dependent service rate p;(n) = pmin(n,¢;),i =1~ M.

We consider the two cases of the FMS: a single-station FMS with one machining station
and a multiple-station FMS with several machining stations. The equilibrium probability
given by eqns (11a) and (11b) is.approximation for the multiple-station FMS but exact for
the single-station FMS. Therefore, the following differences between the single- and multiple-
station FMSs are important in developing the solution methods: (1) The throughput of the
F'MS defined by TT]FMS(NS, Ny, A) is exact for the single-station FMS but approximate for
the multiple-station FMS; (2) The function T'H(n) defined by eqns (8a) and (8b) does not
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have any break point except at n = Ng in the multiple-station FMS while in the single-station
FMS the function TH(n) = pmin(n,c) has the break point at n = ¢ and TH(n) = TH(c)
for any n > ¢ if ¢ < Ng, where ¢ denotes the number of parallel servers at the machining
station in the single-station FMS.

In both cases, Theorems 1 and 2 and Corollary 1 are very useful for obtaining the optimal
solution efficiently.

4.1 A single-station FMS

Consider- first the single-station FMS. Note that P(n) given by eqns (11a) and (11b)
provide the exact value for P(n) in this case. Substituting TH(n) = pmin(n,c) to eqns
(11a) and (11b), we get the exact expression for P(n) as

E’%P(n—l), if 0 < n < min(Ng,¢);

(13a) P(n) = FnT]I(\mP(n —1), if min(Ng,¢) <n < Ng+ Np;
0, if Ng+ Ny < n,
N.—1 o ch Ns+Ny—N. p ky -1

W e (E N ey

(13b) P(0) nX—_—:O n! t N! k};() N,

where N. = min(Ng,¢) and p = A/p.
Then, the exact expression for the throughput of the FMS is also obtained as

THFrps(Ns,Ng,A) = M1 —P(Ns + Ng)}

Ty " /nl+ (pNe/NY ypg MVl (p/ N ¥
Yo’ ot nl+ (o [Nt =g e (o) Nk

(14) =)

Note that in this case we use THrps(Ns, Ny, A) instead of using mFMS(NS,NH,)\)
because the eqn. (12) gives the exact values for the throughput of the FMS. It is obvious
that the throughput of the FMS expressed by this THpys(Ng, Ng, A) satisfies Theorems 1
and 2 and Corollary 1. From Corollary 1 (ii), the lower and upper bounds of the throughput
are obtained as follows:

THpps(Ng,0,A) <THpps(Ng, Ny, A)
(15) < min{T Hrprs(Ns + Nu,0,A), pNe}.

In this single-station FMS, we consider the following design problems:

P1: max {THrus(Ns, Ng,A) | Ns + Ng < N and Ns > 0, Ng > 0},
S,iVH

P2 : ax {THpys(Ns,Ng,\) | aNg+ bNyg < A and Ng > 0, Ng > 0}.
S,IVH

Constraints in these two design problems represents the two kinds of tradeoff between the
warehouse capacity and the number of available pallets. The constraint in the first problem
means the space tradeoff under the fixed total spaces N, and the constraint in the second
one, the cost tradeoff under the fixed total available investment A for installing the spaces.

On the basis of Theorems 1 and 2 and Corollary 1, we provide solution methods to these
problems below.

Solution to P1
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Since THrps(Ng, Ny, A) is nondecreasing in both Ng and Ny from Theorems 2(i)
and 2(iii), the optimal values for Ng and N, denoted by N¢ and N}, respectively, satisfy
N& 4+ N} = N. Hence, we can transform the original problem P1 to

P17 max{THrys(Ns, N — Ns,A) | 0 < Ng < N}.
ivVg

IFrom Theorem 2(ii), N§ = N is clearly one of the optimal solutions to P1/ and then
P1. On the other hand, when ¢ < Ng < N, substituting N, = ¢ to eqn. (14), we get for any
Ns € [¢, N]

o7k o™ fnl + (p¢fel) SNsHNE=e1 () o)k
b on/nl + (pe/et) SN HNE=C () [ c)k
(16b) =THppys(Ns+ Ny,0,X).

(16a) THppys(Ns, Ng, ) = A

This equation implies that any Ng € [c, N] is also optimal.
If N <c, then Ng < c. Substituting N = Ng to eqn. (14), we get

Sasy ! o/l + (o /Ns!) S o/ Ns)*
Sasa ! ot Inl 4 (Ve [Nt iy (p/ Ns)*

This equation shows that the useful relation represented by eqn. (16b) does not hold
in this case. We know, however, that THppys(Ns, N — Ng, A) is nondecreasing in Ng.
Therefore, we get N§ = N.

~ In conclusion, we get the optimal solution to P1, denoted by N§ and N}, as any Ng
and Ny satisfying

(17) THryms(Ns, Ng,A) = A

min(¢, N) < Ng < N and Ng = N — Ng.

Solution to P2

Using an approach similar to that used for solving P1, we get Nf; = [(A — aNg)/b|
where |2| denotes the maximal integer being less than or equal to . Hence, the original
problem can be transformed to

P2/ . I%[E;X{THFMS(NSa |(A—aNs)/b],A) |0 < Ng < |A/a]}.

There are three possible cases:
(i) a=b

In this case, the constraint aNgs + bNy < A is equivalent to Ng + Ng < |A/a]. From
the results obtained for P1 we get N§ and N}; as any Ng satisfying

min(¢, N) < Ng < N and Ng = N — Ng, where N = | A/a].

(i) a<b v

In this case, Ns+ Ng = Ns+ [(A—aNg)/b] < N =|A/a] and Ns = N (and Ng = 0)
is a feasible solution. From the upper bound of the throughput given in eqn. (15) and the
nondecreasing property of THp (N5, 0, A) in Ny, we get T Hpyrs(Ns, [(A—aNs)/3),\) <
THrpms(Ns + [(A — aNg)/b],0,A) < THpps(N,0,)), the bounds being satisfied with
equality when Ng = N (and Ny = 0). Therefore, we get N§ = N and Nj; = 0.
(iii) a > b

In this case, the total space Ng + Ng is maximized when Ny = |A/b] and Ng = 0.
However, Ng = 0 implies that the throughput of the FMS is zero. On the other hand, while
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the maximal value of Ngis |A/a](< |A/b]) and then Ny = 0, the total space Ng+ Np can
be increased by sacrificing the space of pallets Ng. This fact implies that the throughput of
the FMS may be increased in this manner.
Consider the case ¢ < |A/a] first.
For ¢ < Ng < |A/a], eqn. (16b) holds and Ng + Ng < ¢+ |(A — ac)/b| with equality
when Ng = ¢ and Ny = [(A — ac)/b]. Hence, we get
THpMs(Ns, I_(A - aNS)/b_],)\) =THpys(Ns + [(A— aNS)/b_],O,)\)
< THpus(e+ (A — a)/b],0, )
with equality when Ng = ¢ and Ny = [(A — ac)/b].
For 0 < Ng < ¢, we do not know whether the throughput THpprs(Ng, [(A—aNg)/b], )
is less than T Hpprs(c, | (A—ac)/b],A). However, from eqn. (15) we get for any Ng < Ny —1
THpys(Ns|(A—aNs)/b],A) < u(Ny —1)
< THrus(c, [(A—ac)/b],A),

where Ny = |THpps(c+ [(A—ac)/b],0,A)/p] + 1.
It is clear that Ng exists on [Ny, ¢] and is obtained by solving

P2 . rrjl\gx{eqn.(ﬂ) | Ny < Ng <cand Ny = |(A —aNg)/b}.
S
Consider the case |A/a] < ¢. Obviously, Ng < |A/a] < ¢ and from eqn. (15), for any
Ng > Ny — 1, we get
THpys(Ns, [(A—aNg)/b,A) < u(Ns —1)
< THrus(|A/a],0,A),

where No = |THppys(|Afa],0,A)/p] + 1.
It is also clear that N§ exists on [Na, |A/a]] and is obtained by solving

P2 H]l\,acx{eqn.(l'?) | Ny < Ng < |A/a] and Ny = [(A —aNg)/b]}.

Combining P2/ and P21/, we get the optimal solution to problem P2 by solving the
following reduced problem:

RP2 : n}vasx{eqn.(ﬂ) | N3 < Ng < Nyand Ny = |(A—aNg)/b]}
where Ny = min(|A/a],c) and N3 = |[THpars(Na + |(A —aNg)/b],0,A)/p] + 1.

The value of THrprs(Ns, Ni, A) defined by eqn. (17) is easily calculated from the fol-
lowing recursive equations:

uNs
THpys(Ns, Ng +1,)) =X
Fus(Ns,Ng +1,1) iNg + X —THpps(Ng, N, )
(18) ~for Ngp 20, and Ns > 1,
and
p(Ns +1)
THpps(Ns+1,0,A) =X
Fus(Ns ) (#(Ns+ 1)+ X —=THpps(Ns,0,))
(19) for Ng > 0,
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where T Hppr5(0,0,A) = 0.

These recursive equations are stable in the sense that computational error is not increased
by the successive iterations as shown in Theorem C (see appendices: TH(n) in Theorem C
should be replaced with g n in this case). The optimal solution to problem RP2 is obtained
efficiently by calculating the values of THpprs(Ng, [(A — aNg)/b], A) using these recursive
equations for each value of Ng on [N3, Vy].

4.2 multiple-station FMS

We consider, next, the following capacity design problems in the multiple- station FMS,
denoted by MP1 and MP2 similar to P1 and P2, respectively:

MP1 : max {THpms(Ns, Ny, A) | Ns + Ny < N and Ng > 0, Ny > 0},
s,Nu

MP2 . ﬁn%( {ﬁpMs(Ns,NH,)\) | aNg + bNy < A and Ng > 0, Ng > 0}.
Sy4YH
In these case, it should be noted that eqns (11a), (11b) and (12) provide the approximation
for the throughput of the FMS, and that T'H(n) given by eqns (8a) and (8b) does not have

any break point except at n = Ng. Considering these facts, we provide solution methods to
problems MP1 and MP2 below.

Solution to MP1
For problem MP1, the optimal solution is N§ = N and N = 0; in the multiple-station
FMS, from the above fact (2), we can not get any relation similar to that shown in eqn.

(16b) for ¢ < Ng < N.

Solution to MP2
There are three cases to consider:
(i) a=b
From the argument similar to that in case (i) of P2 and the result to MP1, we get
Nt = N and Nj; =0 where N = |A/a].
(il) a < b
The derivation of the optimal solution to the case (ii) of P2 is also applicable to this
case as well. We get N§ = N and Nj; =0 where N = |A/a].
(i) a> b
Since there is no break point in the function TH(n) for n < Ng, we can not specify
the upper bound of N¥ less than |A/a] unlike case (iii) of P2. Using Corollary 3(ii) in
determining the lower bound of N¢ yields
N5 = min{Ns | TH(Ns) > THpps(|A/a],0,)) and 0 < Ng < |A/a}.

Then, the original problem is transformed into

MP2/ : mNasx{TTJFMS(N ,L(A—aNs)/b,],\) | Ns < Ns < |Afal}.

The value of ﬁ‘IFMS(NS, Ny, A) is easily calculated by the following recursive equations:

TH(Ns)
TH(Ns)+A—THrppys(Ns,Ng, )
for Ny > 0 and Ng > 1,

(20) THpys(Ns, Nip +1,)) = A
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TH(Ns +1)
TH(Ns+1)+ X ~THpys(Ns,0,))
for Ng > 0,

(21) THpys(Ns+1,0,)) =

and T\HFMS(O,O, A)=0.

The function T'H(n) is defined in eqn. (8b) and the value of G(M + 2,n,e) in TH(n) is
efficiently obtained by Buzen’s algorithm [2] using any scaling for e;,7 = —1,0,---, M + 1.
The above recursive equations are stable as shown in Theorem C(see appendices). The
optimal solution to problem MP2/ is obtained by the efficient manner similar to that used
for solving problem RP2.

5. Conclusions

We extended the existing FMS models through the addition of a supplementary auto-
matic warehouse with finite capacity. Since the equilibrium probabilities of queue lengths at
each station and the throughput of the FMS can not be exactly formulated in this case, we
provided approximate expressions for the probabilities and the throughput, using a closed
queueing network model. We showed the condition that the approximations yield the exact
values. Comparing with the SIMAN simulation run, we also made clear that the accuracy of
the approximation is very high especially in the FMS with balancing workload. We derived
the limits, and the first- and second-order properties of the throughput with respect to both
the warehouse capacity and the number of the pallets available in the shop. Exploiting these
properties, we proposed efficient solution methods to several capacity design problems.

Capacity design problems presented here are essential ones and can be applied to various
versions of these problems; for instance a design problem to maximize a profit function
involving both the warehouse capacity and the number of available pallets. Furthermore,
the following capacities should be modeled to be determined in design problems: (1) capacity
at each station; the number of machines at each machining station, the number of carts in the
MHS, and the number of machines (or labors) and fixtures at the loading/unloading station;
(2) capacity of local buffer spaces at each station. Solution methods to design problems with
these capacities will be topics of future research.

Appendices

Theorem A. Consider o closed queueing network (CQN ) with M stations at which
service times are exponentially distributed with service rates, pi(n;), i =1,2,---, M, where
n; denotes the queue length at station 1. Jobs follow a Markov routing with 7(1 ]) (or j) =
0,1,---, M, where station 0 denotes a dummy station representing an input/ output station
with an inﬁnite service rate. The ezpected visit times of each job, €f,1 = 1,2, M, are
obtained as a unique solution to the ﬂow equations such that

Ze]'y], yfori=1,2,---, M.

Define the system throughput as

— . ) = G(M’N-—.l’e*)
= ETHz(N)’Y(%O) ~ T G(M, N, e")

where N and TH;(N) are the population in the CQN and the throughput of station i,
respectively, and

G, = - Z NHI{ I (uz(k)>}'
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If pi(n) = pi(N;) for n > N, and pi(n) < pi(N;) forn < Niyi=1,2,---, M, then

lim ﬁ(N): min {M(Ni)}.

N—-oo 1<i<M el

(Proof)

Schweitzer [8] has proved the above result for the special case of p;(n) = p; for ¢ =
1,2,--., M. We shall generalize his result below.

Consider two networks, denoted by superscript p = 1,2, with service rates xf(n)’s such
that

pi(n) = pi(Ny)H{n > Ni} and pf(n) = pi(N;),1=1,2,- -+, M,

where 1{z} is an indicator function; 1{z} = 1 if = is true and 0 otherwise.

Since for any n < m, p}(n) < pi(m) and pi(n) < p2(m), i = 1,2, +, M, the corre-
sponding system throughputs are related as follows according to the results given by Shan-
thikumar and Yao [10]:

TH'(N) < TH(N) < TH (N).
We clearly have fTJQ(N) — min {p;(N;)/ef} as N — oo because u;(N;)’s are all

1<i<M
constant.
M
When N > ZNi — M, the throughput of network 1 is equivalent to that of network
=1
M 1 9 M
2 with the population N — Y  N; + M, that is, TH (N) = TH (N — Y_ N; + M) for
: =1 =1
M 1 2
N > 3" N; — M. This relation implies that Nim TH (N) = lim TH (N).
=1 — 00 IV —00
Therefore, TH(N) — min {ui(N;)/el} as N — oo. Q. E. D.
1<i<M

Theorem B. Consider a CQN with M stations at which service times are exponentially
distributed with queue-length dependent service rates v;(n;), ¢ = 1,2,---, M. Suppose the
Yi(ni)’s are all nondecreading concave in ni and v1(ny) = min{u1(n1), p1(c)}, where py(ny)
15 also nondecreasing concave in ni. Then, the throughput of the CQN, THegn(c), is
nondecreasing concave in c.

(Proof)

Shanthikumar and Yao [11] proved Theorem B for the case of v1(n1) = pmin(ni,c), i.
e., p1(n1) = pny. We shall prove Theorem B along a way similar to their proof below.

Without loss of generality, consider a two-node CQN with N jobs and visit rations v; =
vy = 1/2. Since min{p;(n), p1(c)} < min{ui(n), p1(c + 1)}, THeon(c) < THegn(c+ 1)
follows directly from the results derived by Shanthikumar and Yao [11]. We shall prove the
concavity of THegn(c) i. e., THogn(c) + THegn(c+2) < 2T Hegn(c+ 1).

Construct four networks (p = 1 ~ 4) such that r¥(ny) = min{g;(n1),u1(c)} for p =
Lymin{pi(n1), p1(c+ 1)} for p = 2,3; min{p1(n1), p1(c +2)} for p = 4, and the other con-
ditions in these networks are all the same. Let Zf(t) be a random variable which represents
the queue length at node j of network p, and Df(t) be a random variable which denotes the

number of departures from node j of network p in (0,%). Since the throughput of node j
2

is THj(c) = tl_lgl() E{Df(t)}/t and the throughput of the CQN is THegn(c) = > THj(c),
=1
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it suffices to prove D1(¢) + D*(¢) <! DZ(¢t) + D3(¢), where D?(¢) = (D}(t), D}(t)) and
ZP(t) = (Z7(t), Z3(t)) for p=1 ~ 4.

We shall construct the process {Z?(t),D?(¢)}(p = 1 ~ 4) on a common probability space
(Q,F,P) such that
(i) {Zz°(1),D ()}=3f {Z7(t),D"(t)}, p
(ii) Zl( ) < Z3}(t) < Z}(t) and Z1(t) 1(t) for t > 0; this implies

Z3(t) > 23(t) > Z3(t) and ZA(t 3(¢) for t > 0;

(i) D}(t) + D}(t) < D3(¢) + D3(1) 0and j=1,2%
(iv) 27(0) = (V,0) and DP(0) = (0,0),p = 1 ~ 4

Let 0 = 79 < 71 < --- be the event epochs of a Poisson process with rate 27, where
n = max{7y1(c+2),72(N)}, and (ug)g2, be a sequence of i. i. d. uniform random variables
with support on (—7,7n). These two processes {71} and {ux} are independent of each other
and are both defined on a common probability space (€2, F, P). Consider a path w € (2, and
denote 7 (w) and uy(w) simply as 7 and wy. |

When t = 75 = 0,Z?(0) = (N,0) and D?(0) = (0,0) satisfies (ii) ~ (iv). Suppose
ZP(1g_1), DP(15_1)) has been specified for all p and (i) ~ (iv) are valid at t = 74_1. For
t € (tk_1,71), set (Z2(t),DP(t)) = (ZP(13_1), DP(r_1)) for p = 1 ~ 4.

To simplify notations for all p, let z? = Z”(Tk,l), d? = DP(r_y), ’7;7 = 7;-’(2;-’(776_1)),
34

NN |

1 ~4:
<SZ3) <2
) > Z3(t) > Z3(t
for ¢

| V

v12 = min(~{, 43), ¥** = min(y}, 1¢), R® = max(1, 73) and R** = max(+%, 1)

Set ZP(ri) = z? + (A — A2 AP — AD) DP(r},) = dP + (A?, AD), where
Al = 1{0 < ug < 712} + 1{RY — 4] + 4'2 <uyp < RV},
A; =1{0<u; < 73} + I{RT: - 'ylz + 721 <wup < Rj‘;},
Ai:1{0§uk<73 }+ H{RY —~f +v°* <up < RV},
At = 1{0 < up < ¥3} + YR — 4 + 4% <y < R},
where 1{z} is the indicator function; 1{z} = 1 if z is true and 0 otherwise.

Since P{A? = 1} = ~7/(2n) for all nodes j of network p, the transition rates of the
constructed processes from a state (z?, d”) to states (z” + (—1,1),d? + (1 + 0)) and (2? +
(=1,1),d? + (0,1)) are 2977 /(2n) = 47 and 2945/(2n) = 72, respectively. These rates
coincide with those of the original processes.

Hence, {Z?(t),D?(t)} =% {ZP(t), D”(t)},p =1~ 4 at t = 7, that is, (1) is satisfied. We
can prove that (ii) is satisfied at ¢t = 7 using an approach similar to that in Shanthikumar
and Yao [9].

We shall prove (iii) at t = 7, that is, d; + d‘} < d? + d:;- + A? + A? — A; - A‘;,j =1,2.
Consider 7 = 1 first. There are the following possible cases:

(a) 71 <77 and 7 > 7}; then v'? = 4], and 4** =7}, and hence A > A{, A} < AY;

(b) 71 > 7} and 4} < ~7; then 4% = 47 and 4** =4}, and hence A} < A}, A} > AL;
(c) 7 <% and 4} < 743; then 412 = 4] and 43* = ¢, and hence A? > AL A3 > AY;
(d) 7§ >~% and ~vf > ~3.

Case (d) is impossible because if 23 > ¢+ 2 then ¢+ 2 < zl, zl,zl, that i 1s 7 = /.Ll( ) <
7 =7 = pmle+1) <9l = p(c+2), andif 24 < o+ 1 then 7} = 71(21) <% = 4i(2f) and
73 = 4}(23) (consider that v#(z) is nondecreasing in z and that zf < zl,zf)

In case (c), (A2 —=AD+(A3—A}) >0, and hence d} +d} < 2+ d3+ A2+ A3 - Al - AY,
provided that di + d} < d? + d3.

In cases (a) and (b), (A2 — A+ (A} —AD) > —1. If d} + d? < d? + d3, then d} +df <
d2+d3 1< &+ d3+ A2+ A3 - Al - A} fd} +di = &3 +d3(and d} + d3 < dj +d3), then
zl +2f = (N- d1+d()) (N d4+d4) (N B+ d3)+(N—d3+d3) = 22 +2}. Provided that

1< < z%, < zi’ < 71, z] +z‘11 < 22423 and /Ll( ) is nondecreasing concave in n, we can
show that 71+71 < A +935if 2§ > e+ 2then v{ +4¢ = p1(e)+p1(c+2) < 2u1(ct+1) = Y43,
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2

and if 2§ < c+1then v} — % = 41(2]) —~3(=
7i(21) (1 + (o1 = 2) = (D < 4E(e)
Therefore, we get
(a) AT+ AT - Af— A}
= 1{R™ — (7{ —7]) S up < R*} = 1{R* — (4} — 4}) < ux < R¥*} > 0;
(b) Af+ A7 = Af - A}
= H{RY — (97 =) Sux < RP} — 1{RY — (v —f) Swp < RP} 2 0;
These results imply that d} + d} < d? + d} + A2 + A} — Al — Al for cases (a) and (b).
For j = 2, we can prove d} + d4 < d% + d3 + A3 + A3 — A} + A} in the same manner as
in Shanthikumar and Yao [11].
We have thus completed the induction. Q. E. D.

L 357

(=1

) < vil=1)
(1) =7

7

[ =i

Theorem C. Define THrys(Ns, Ng,\) = M1 — B(Ns, Ng)} and

(Hgil T}?(k)) (THE\NS))NH
B(Ng,Ny) = Nl o ) Ns Ny \ i
1+ :2 gl THFE T (,El TH(k)> ; (m>
Then we get
TH(Ns)

(Z) j:HpMs(Ns,NH + 1,/\) = )\

TH(Ns)+ A —THpps(Ns,Ng, )
for Ng > 0 and Ng > 1;

TH(NS + 1)

X TﬁFMS Ns+1,0,A) =X —
) ( ) TH(Ns+1)4+ X —THpys(Ns,0,A)

for Ng¢ > 0

and TH pp5(0,0,A) = 0;

(i) | A(Ns, Nir) |<] A(Ns, Ny — 1) |<| A(Ns,0) |<] A(Ns —1,0) |
|AWs. Np) | [ AWNs,Ng—D| _ _|ANs0)]|
THpyus(Ns,Nu,\)  THpys(Ns, N —1,0) ~ THpyrs(Ns,0,))
| A(Ns ~1,0) |
THrpys(Ns —1,0,1)
where “*” and A(Ng,Ng) denote the ezactﬂvvalue without computational error and the
computational error from the calculation of THpps(Ns, Ny, A), respectively.

and

for N¢ > 1 and Ny > 1,

(Proof)

We show the proof in an argument similar to that in Yao and Shanthikumar [16]. From
the definition of B(Ng, Ng), we get

1 _ 1 TH®)
B(Ns,Ng +1)  B(Ns,Ng) X ’
and TH(N
1 1 1
_ (Ns+1) L1

B(Ns+1,0) B(Ns,0) A
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Substituting ﬁFMS(N&NH,/\) = M1 — B(Ng, Ng)} into these equations yields (i)
and (ii).

Define A(Ns, Ni) = THpys(Ns, Niz, A) — THpprs(Ng, Ni, A) = A B*(Ng, Ni) —
B(Ns, Np)}. Since both B(Ng, Ni) and B*(Ng, Ny ) satisfy the above equations, we get

A(Ng, Ng) B A(Ng,Ng — 1) 1
B*(NS,JVH) - B*(Ns,NH -1+ AB(Ng, Ny — 1)/TH(Ng)

and

A(Ns,0)  A(Ns—1,0) 1
B*(Ng,0)  B*(Ng—1,0)1+ AB(Ng —1,0)/TH(Ng)’

Since TE}MS(NS,NH, M) (and then B*(Ng,Np)) is nondecreasing (nonincreasing) in
both Ng and Np, we can show that (iii) holds. Q. E. D.
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