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Abstract Capacity design problems in a flexible manufacturing system (FMS) with a Poisson arrival 
process and with limited system-capacity are formulated to  determine the number of boxes to store arrival 
jobs in a suppleinenta,ry wa,rehouse, called t8he "warehouse capacit,~," and the number of pallets available in 
the FMS. The throughput of the FMS is performed through a,n approximate closed queueing network model. 
The limits, and the first- a,nd the second-order properties of the throughput function with respect to the 
wa,rellouse ca,pa,cit,y a,nd t<he number of pallets ava.ila,ble in the FMS are derived a,nd exploited to  develop 
efficient solution methods for making the near-optima,l capacity design. 

1. Introduction 

A typical flexible manufacturing system (FMS) consists of machining stations, a load- 
ing/unloading st a,tion, a material handling system and a supplementary automatic ware- 
house as shown in Fig. 1. The warehouse which is usually positioned adjacent to  the load- 
ing/unloading station is composed of a stacker crane and many small boxes (spaces) stacked 
like shelves. In this paper, we focus on the capacity design of the FMS for determining the 
number of boxes in the warehouse and the number of pallets a,va,ila,ble in the system. 

The number of jobs simultaneously circulating in the FMS, which is usually called "work- 
in-process" inventory, is limited to the sum of the number of boxes in the warehouse and 
the number of pallets in t,he "shop" (from this point on, we refer to the FMS excluding the 
warehouse as the "shop"). The local buffer capacity at each station in the shop is so large 
that no blocking occurs a t  any station in the shop. 

Consider a Poisson arrival process. Arriving jobs are permitted to enter the FMS when- 
ever the supplementary wa,rehouse is not fully occupied. These jobs, temporarily stored at 
the waxehouse, a,re immedia,tely supplied to the shop (first, to the loading/unloading station) 
whenever a pallet becomes available (empty). In other words, these jobs are blocked to  enter 
the shop and wait a t  the wasrehouse a,s long as the shop is full. On the other hand, if the 
FMS is full, all arriving jobs are blocked and lost (or transferred to the other manufacturing 
systems if possible). Increa,sing the number of available pallets and boxes will result in a 
decrea,se in the "blocked-and-lost" probability, and hence an increase in the throughput of 
the FMS. 

Increa,sing the number of available pallets reduces the probability that each machining 
startion becomes idle due to shop congestion, and then results in increasing the throughput 
of the FMS. However, it requires more horizontal spa,ces at  each machining station and more 
fixtures to pa,lletize jobs. On the other haand, increming the wa,rehouse ca,pa,city by adding 
another layer to the warehouse usua,lly requires neither much more horizontal space nor much 
more cost cornparred with increasing the number of pallets. 
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Figure 1. A typical FMS with a supplementary warehouse 

The wa,rehouse ca,pa,city ancl the number of pallets, therefore, should be carefully chosen 
to ma,ximize the throughput of the FMS. The optimal design of the FMS with respect to 
these capacities will be addressed in this paper. 

Up to now, there are numerous pa,pers analyzing blocking phenomena occurring at  each 
individual station wit,h finite local buffer [6] [7], but there is little literature dealing with the 
blocking in this type of FMS with a supplementary warehouse. Shanthikumar and Stecke 
91 deal with the case in which the warehouse capacity is infinite. Yao [l51 and Yao and 
Shanthikumar [l71 formulate some storage models for the FMSs as lot sizing models in 
which a batch of jobs periodically arrive at  the FMS. Since in our FMS model as well as 
in the previous models the equilibrium probabilities of queue length a t  each station and the 
throughput of the FMS can not be exactly calculated, we use an approximation similar to 
the one given in these references [g] [l51 [17]. 

In section 2, we formula,te a, ma,thema,tica,l model of the FMS using a closed queue- 
ing network model a,nd give a heuristic derivahion of the equilibrium probabilities and the 
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throughput of the FMS. Section 3 gives the limits, and the first- and the second-order prop- 
erties of the throughput function with respect to both the warehouse capacity (the number 
of boxes) a,nd the number of pallets. In section 4, we propose solution methods to  several 
capacity design problems in the FMS model exploiting these properties. 

2 .  Model formulation 

Consider an FMS consisting of M ma,chining sta,tions, a, material ha,ndling system (MHS), 
a loading/unloading station and a supplementary automatic warehouse. A typical example 
of this FMS is illustrated in Fig. 1. The conditions of this system are as follows: 

Each station has c, servers (i = 0,1, - - . ,  M + 1) and jobs are served in a first-come- 
first-served (FCFS) order. Service times at each station are exponentially distributed 
with queue-length dependent service rate, ^(ni), i = 0,1, - - , M + 1, where ni denotes 
queue length at station i = 0 denotes the loading station (for palletking/ refixturing 
operations), i = h4 + 1, the MHS, and i = 1,2 ,  . , M, the machining stations. 

Jobs follow a Ma,rkov routing with r( i ,  j), i(or j) = -1,0,1, - - , M ,  denoting the prob- 
ability that a job is routed from station i to  station j. The notations r( i ,  0) and 
r ( i ,  -1) denote the routing probability from station i to the loading station for pal- 
letizing/refixturing operations and unloading station for depalletizing operations, respec- 
tively. We model the loa~ding/unloacling station as the two stations: station 0 modeling 
the loa,ding operation and station-1 modeling the unloa.ding operation. We assume that 
the opera,tiona,l time a,t the unloading station is small enough to  be negligible. 
There axe NS pallets simult,a,neously a,va,ila~ble in tJhe shop a,nd the number of local buffer 
spaces a t  each sta,tion is unlimited (or there are Ns spaces). The warehouse has NH boxes 
(spaces) to store arriving jobs until a pallet becomes available. Define N = NS + N H ,  
called the "ma,ximum population in the FMS." An accepted job will be  temporarily 
stored in the warehouse a,nd supplied in the FCFS order to the shop whenever a pallet 
becomes empty. 
Consider a Poisson arrival process with rate A. If an arriving job finds the number of 
jobs in the FMS being just AT, the job is refused entry and lost. 
Although the FMS can be represented by a restricted open queueing network as shown 

in Jackson [4], we construct an equivalent closed queueing network (CQN) as shown in Fig. 
2, so that many results for CQNs can be directly a.ppliec1. In Fig. 2, the notation "1/07' 
represents the input/output process a,nd is normally called the "input/output7' station with 
rate A. This I/O station in the CQN represents the "blocked-and-lost" mechanism because 
the "service" (corresponding to the "a,rrivalV process) a t  this station is not implemented 
until any "customer" (corresponding to any "empty position" in the FMS) arrives at  this 
station. The notation "H" a n d  the arcLL+'" denote the automatic warehouse and the 
"blocked-and-hold 0" mechanism, respectively - the warehouse is considered as a station 
with infinite service rate and we assume that  the blocking occurs at service initiation (this 
means "blocked-and- hold 0"). The arrow with "m" denotes the transportation through the 
MHS (station M + 1). 

The flow equa.tions corresponding to Fig. 2 axe given a.s follows: 
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Figure 2. A queueing network model of the FMS with a supplementary warehouse 

where ei denotes the visit ratio of an arriving job to station i , i  = - 1 , 0 ,  - - , M  + 1. 
Eqns ( l a )  through (Ie) have the unique solution, denoted by e:, i = - 1 , O ,  - . , M + 1, 

which represents the expected visit times of an arriving job to  each station. 
If eqn. (Ie) is removed, the remaining equations provide a set of solutions, denoted 

by ei, i = -1,0, - - - , M + 1, called the "rela,tive visit ra,tio" of an arriving job. In this 
case, multiplication by an a,rbitrary constant does not affect the solution. For instance, the 
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Figure 3. A simplified queueing network model of the FMS 

following relative visit ratios, denoted by qi, i = -1,0, - - , A4 + 1, also satisfy eqns ( l a )  
through (Id)  (eo corresponds to qo + q-1 in this case): 
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h4 
Using these ratios which sa,tisfy q; = 1, we ca,n transform the original FMS model 

i=-l 
shown in Fig. 2 to the equiva,lent one shown in Fig. 3. This simplified CQN is helpful to 
intuitively understand the beha,vior of the FMS because the MHS (station M +  l )  is explicitly 
represented and there is a one-to-one relationship between the stations in the model and the 
physical system. In Fig. 2, there is no loop at  each station, that is, the destination of 
each transportation through the MHS cannot be the just departing station. However, the 
simplified CQN shown in Fig. 3 permits a loop through the MHS at  station i, i = 0 M ,  
that is, any job can return to the just departing station through the MHS, denoted by M + 1 
in Fig. 3. This is no problem for performing the equilibrium probability of any queue lengths 
and then the throughput of the FMS, because eqns (2a) through (2d) provide the relative 
visit ratios satisfying eqns (la) through (Id);  these equations hold for e~ = (qQ + q-l)eM+l 
and ei = q m + l ,  i # 0. Similar CQN models for an FMS with no warehouse are presented 
by Solberg [l41 a,nd Naga,sa,wa, Jeong a,nd Nishiyama [S]. 

Since the 110 station has the sa,me visit ratio as station -1 has and since station -1 has 
an infinite service rate, we combine these two stations to ma,ke a single station with service 
rate A a,nd visit ra,tio e-1. The station is enclosed by the dashed line in Figs 2 and 3. The 
(blocked-a,nd-lost" mechanism in the a,rriva,l process is completely represented by this 1/0 
station. 

The difficulty in obta,ining the equilibrium proba,bility of the queue lengths a t  each station 
lies in incorporating the "blocked-a,nd-hold 0" mecha,nism at the warehouse. Unfortunately, 
we can not give an exact formulation of the equilibrium probability in this case but derive 
a,n approximation. 

First, we consider the ca,se NH = 0, trha,t is, there is no warehouse a,nd no "blocked- 
and-hold 0" mechanism. The equilibrium probability 
where 11 E ( 1 2 - ~ ,  HO, - - , 1 7 , ~ - f + ~ ) ,  is exa,ctly derived a,s 

of the queue lengths denoted by P ( n ) ,  
follows: 

where e (e-1, eo, - - , and (k) A min(k, l )  for k 2 0. 
It should be noted that the ei7 S in these equa,tions axe relative visit rakios so that the 

efficient computat iona,l algorithms provided by Buzen 121 can be exploited for calculating 
the value of G ( M  + 3, N, e, A); Dubois [3], and Buzacott and Yao [l] use the unique value e* 
(instead of ei), which makes it hard to tune the value of ei's in order to avoid overflow and 
computational error. 

The throughput of station i ,  TH;(N, A ) ,  the throughput of the FMS, THFMs(N, A), and 
the throughput of the CQN, THcQn( N,  A )  are derived as follows: 
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where the relative visit ratios, denoted by e, are scaled as E go, , EM+l) and 
hl+l M+l 

E ei/{ V e j }  so that Ei = 1 holds. 
j=-l %=-l 

Therefore, we get 

that is, the throughput of the FMS is Ll times as large as the throughput of the CQN. 
We sha,ll provide mother representation of the FMS model using the following function: 

where 

The function T H ( n )  denotes the throughput of the FMS provided that  the population 
in the FMS is always ?%(in this case, N H  = 0 a,nd therefore the population in the shop is 
always 12). Using this function, we can simplify the FMS model as shown in Fig. 4, where 
stations in the FMS are a,ggregated into a single sta,tion with service rate governed by the 
expression of min{TH(n), TH (Ns)}. 

From the product form solution given by eqns (3a) through (3c), the equilibrium prob- 
ability that the number of jobs in the FMS is exactly 12, denoted by P(n ) ,  is given by 

Similar results have been derived by Buzacott and Yao [l] a,nd Shanthikumar and Stecke 
[g]; the only difference is that  they defined the func.t,ion TH{n) as the throughput of the 
CJQN instead of the throughput of the FMS. 
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Figure 4. A simplified expression of the FMS with = 0 

Since P ( N )  denotes the proba,bility tha,t the 1/0 station is idle, the throughput of the 
FMS is also given by 

THFMs{N, \)=\{l - P(N)}, (10) 

which is equivalent to the expressions in eqns (5a) through (5c). 
Let us consider the case NH > 0, next. It is intractable to  formulate the "blocked- 

and-hold 0" mechanism exa,ctly. There a,re numerous approximation methods dealing with 
various blocking phenomena between each connected pair of stations with limited local buffer 
capacities [6] [7]. In our case, blocking occurs only at the warehouse when the population in 
the shop reaches the limit NS and no blocking occurs at  any station in the shop because of 
the unlimited local buffer capacities. This type of blocking has not been dealt with by any 
researcher. 

We present the following approximation, denoted by ~ ( n ) ,  to get the equilibrium prob- 
ability P ( n )  for the ca,se of NH > 0: 

Using ~ ( n ) ,  we define the approximate throughput of the FMS as 

While these equations give the qproximate values for the equilibrium probabilities and 
the throughput of the FMS, the exact va,lues a,re also obtained through these equations in 
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Table 1. Accuracy of the approximation compared with the SIMAN simulation run 

SIMAN 
0.293 
0.347 
0.347 
0.641 
0.697 
0.697 
1.367 
1.385 
1.385 
0.260 
0.348 
0.350 
0.589 
0.701 
0.699 
1.312 
1.390 
1.392 
0.548 
0.697 
0.693 
1.261 
1.384 
1.407 

SIMAN : the throughput of the FMS obtained by the simulation run 

CQN : the approximate throughput of the FMS calculated using eqn.(12) 

CQN 
0.296 

Error 
0.9 
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Table 2. Accuracy of the approximation compared with the SIMAN simulation run 

( A/{E^~ <- i /  E-~(~;/P;)} = 0.9 ) 

( N s ,  N n )  SIMAN CQN Error 
( 5, 0) 0.340 0.341 0.3 

Errors100 X (CQN-SIMAN)/SIMAN [%l  
SIMAN : the throughput of the FMS obtained by the simulation run 

CQN : the approximate throughput of the FMS calculated using eqn.(12) 
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Table 3. Accuracy of the approximation compared with the SIMAN simulation run 

Er ro r~ lOO X (CQN-SIMAN)/SIMAN [%l 
SIMAN : the throughput of the FMÂ obtained by the simulation run 

Error 
1.2 
1.0 
0.6 
1.0 
0.0 
1.2 
1.0 
0.7 
0.9 

CQN : the approximate throughput of the  F'MS calculated using eqn.(12) 

Figure l. A typical FMS with a supplementary warehouse 
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the following cases: ( l )  the FMS lnoclel which consists of only one machining station with 
rate / ~ i  (72) = min{/i,i (12) ) /bi (Ns)} ) provided that a, loading/unloading S tation and a MHS 
lla,ve infinite service ra,tes; (2) the FMS model in which the number of available pallets Ns 
is infinite (or very la,rge); (3) the FWfS model with ATH = 0 (no supplementary warehouse). 

It is lla2rd to investigate the accuracy of this approximation for all cases of the FMS. 
Instea,d) we provide some compa,rison with the SIMAN simulation run, where the conditions 
are the same as given in t.1lis section except that the process route of arriving jobs are 
previously given randomly so that each job visits all stations only once (therefore) e: = 1) i = 
l M ) .  We set p ~ ( n )  = / L A ~ + ~ ( R , )  = CO) p - ~ ( n )  = A min{n) l} and pi(n) = pi min{n) ci}) i = 

. . 
l Ad, where e r / ( / i i~ i )  = e : / ( /~ i~ j ) )  i # j ,  f,, 1 = l Ad) for ba,la,ncing workload. The arrival 

114 A4 
ra,te A takes the following va,lues: A/{x c;/ x ( e ; / / l j ) }  = 0.7, 0.9 and 1.0, where the term 

i=l j=l 
A 1 A4 

ci/ (e;/Pj) represents the limit va,lue of the t l ~ r o u g h p ~ ~ t  of the F'MS because the A* 
i=l j=l 

A I  44 
defined in Theorem l ca,n not exceed the value of c;/ x ( e ; / p j )  for any configuration of 

run by dividing 1O)OOO [jobs1 by the time interval between the arrival of 

and the total work 

SIMAN simulation 

the 1)OOlst job and 
the departure i f  the 11)000th job. Tables l through 3 summarize the results) making it clear 
that the approximation gives the precise values (only 1.2% error at most) for the throughput 
of the FMS wit11 ba,la,nced loading. We a,lso investigated the accuracy for some cases of the 
FMS with unbalanced loa,cling. The results) omitted here) are similar to the case of balanced 
loading (we cannot generalize the results because we can not perform all cases of the FMS). 

Similar approximation methods lla,ve been presented by Shanthikumar and Stecke [g] for 
the case NH = CO and suggested by Yao [l51 and Yao and Shanthikumar [l71 for the case 
ATH > 0. 

3. Properties of the t l~rougl~put 

We derive properties of the t l ~ r o ~ ~ g h p ~ i t ~  of the FMS giveb in section 2. These properties 
are exploited for ma,king opti111a1 design a,s will be sl~own later. 

T l ~ e o r e i ~ ~  l. C o n s i d e r  t h e  FMS m(ode1 w i t h  t h e  w a r e h o u s e  def ined in s e c t i o n  2. S u p p o s e  
service  r a t e  o f  e a c h  s t a t i o n  sat is f ies  /Li(n) = /li(ci) f o r  n 2 ci a n d  pi(n)  5 Pi(ci) f o r  
n < ci ) i  = 0 , l ) -  - A4 + l .  T h e n ,  t h e  a p p r o x i m a t e  t h r o z ~ g h p u t  o f  t h e  FMS def ined zn eqn.  
(12) h a s  t h e  followzng l imz t s :  

(i) lim TTFAlS(Ars, NH) A )  = T H ( N S ) :  
A d m  

( i i)  lirn lim T ~ ~ ~ ~ ~ ~ ( ~ ~ T ~ , A T ~ , A )  = A*;  
Ns-m A-m 

(iii) lim =n~in(A,A*);  
Ns-m 
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A* E min {/Li(ci)/e:}. 
O<z<M+l 

(Proof) 

Property (i) liolcls becamuse P ( N ~  + ATH) -+ l ancl P ( n )  -+ O(12 # Ns + NH) as A -+ m, 
tliat is) there are alwa,ys Ns jobs in the shop when A is very large. 

Substituting property (i) into property (ii) yielcls 

lim TH(Ns) = A * )  
N s - m  

where e r l  = l (Theorein A in appendices shows that this equation is valid). 
From the definitions of P(12) and P(IX), we have) for any A ,  

liin ~ ( 1 2 )  = liin P(12),  
Ns-+m N s - m  

and the11 

It is noticeable that  the limit of T ~ ~ ~ ~ ~ ( N ~ )  NH, A) with respect to  Ns does not depend 
011 ATH. 

Therefore) to prove property (iii), it s~lffices to show 

lim THFllls(Ns) A )  = n~in(A) A*). 
N s - m  

Consider the equivalent CQN without warehouse where station -1 has service rate A and 
the expected visit times e l l .  Applying Theorem A to the equivalent CQN yields 

A 
-+ min - , p i n  &} =min(A,A*) a,s Ns -+ m. { eyl O<z<hI+l e: 

To prove (iv)) from the definitions of T ~ ~ ~ ~ ~ ( N ~ ~  NH) A)) p(12) and T H(n) ,  we get 

where ps = A/TH(ATs). 

If ps = l ,  then T ~ ~ ~ ~ ~ ( N ~ ) N H ) A )  -+ A ( =  TH(Ns)) as NH - + W ;  
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if ps < 1) then T ~ ~ ~ ~ ~ ( N ~ ,  NH) A) +- A ( <  TH(Ns)) as NH -+ m; 

if p s  > l )  then F H ~ ~ ~ ( N ~ ,  NH, A )  + Alps(= TH(Ns)  < A )  as NH +- m. 

Therefore, for any ps )  TxFMs(NS) NH) A )  --+ min{A) TH(Ns)} as NH +- m. Q. E. D. 
Although the exact throughput of the FMS is not analytically tractable) considering the 

practical and physical meaning of these limits) we can verify that the exact throughput of 
the FMS approaches these limits shown in Theore111 l .  It is therefore important to  note that  
both the approximate and exact throughputs of the FMS have the same limits as given in 
Theorem l .  This remark implies that the approximation provides a precise measure for the 
throughput of the F'MS if a t  least one of the following conditions holds: (l) very large arrival 
rate; (2) a sufficiently large amount of pallets available in the shop; or (3) sufficiently large 
capacity of the warehouse. 

The limiting behavior of the throughput with respect to Ns and NH can be determined 
using the first- and second-order properties given as follows: 

Tlieorem 2. Consider  t he  approx imate  FMÂ model  defined in sec t ion  2. Â§uppos t ha t  
service rate  of each s ta t ion ,  P ~ ( I ~ ~ ) ,  i s  nondecreasing and  concave in the  queue  length ni, i = 
0, l, . ) M + l .  T h e n ,  
(i) T ~ ~ ~ ~ ( N ~ )  NH) A )  i s  nondecreasing concave in NH; 

(ii) TxFMS(Ns, N - Ns) A )  is  nondecreasing concave in Ns; 

(iii) T ~ ~ ~ ~ ~ ( N ~ )  NH) A )  i s  nondecreasing in Ns. 

(Proof) 

Consider a CQN which consists of two nodes. Node l is the approximate FMS with 
mean service rate y(n)  such that y(12) = min{TH(n), TH(Ns)} for any n 2 0. Node 2 is 
the 110 node with service rate A. This two-node CQN represents the approximate CQN with 
NH > 0, where the equilibrium probability is defined by eqns ( l l a )  and ( l l b ) .  

Consider, first) two networks (p = l, 2) such that N; = N: and N& < N& = N&+ 1) that 
is, N1 = N; + N& < N; + N& = N2 = N1 + l. The queue-length dependent service rates 
at  node l in these networks are the salne, i. e., ?l(n) = -y2(n) = y(n),  because N: = N;. 
The two networks differ only in job population. 

Since all stations in the FMS have service rates) pi(n), i = 0 , l )  ) M + 1) which are 
nondecreasing concave in 12, the tllrougl~put of the FMS with population n,  denoted by 
T H ( n ) )  is also nondecreasing concave in n as shown in Shanthikumar and Yao [l21 [13]. 
That is) $n) is nondecreasing concave in n. Hence, the throughput of the CQN under 
discussion is also n~ndecrea~sing concave in N .  

The t l~rougl~puts  of nodes l and 2 in the CQN are the same and equal to  a half of the 
throughput of the CQN - "throughput of a CQN)' is usually defined as the sum of through- 
puts of all nodes included in the CQN like the definition given in eqn. (6a). Therefore, the 
throughput of node l in the CQN, corresponding to TxFMS(Ns) NH7 A))  is nondecreasing 
concave in NH. 

To prove (ii)) consider two networks (p = 1) 2) such that  N; < N: = N; + l and 
N; > N$ = Nk - 1) that is) N1 = N; + N& = N; + N; = N2.  These networks differ 
from each other only in the queue-length dependent service rates. If we set T H ( n )  = np)  
that is) ~ ( n )  = p min(n) NS)) then we can find that the throughput of the CQN) and hence - 
THFMs(Ns, N - Ns) A )  is nondecreasing concave in Ns as shown in Shanthikumar and Yao 
[ll]. Based on the proof of this special case) we can derive the same result for the general 
case ~ ( 1 2 )  = ~liin{TH(n)) TH(Ns)}. The proof is given in Tlleore~n B in appendices. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



N-NH-l N-NH N-NH+~ N - l  N  N + l  

The number of available pallets, Ns 

Figure 5. Illustration for explaining the second order property of T H F M s  (Ns , PTH, A) 
with respect to  Ns 

Property (iii) is directly obtained from (i) and (ii). That is, 

where the first and second inequalities are due to properties (ii) and (i), respectively. 
Q. E. D. 

We can show that the concavity of T ~ % ~ ~ ~ ( N ~ ,  NH) A) in Ns is not likely to hold. As 
illustrated in Fig. 5 )  the coi~cavity is expressed by the concavity of the curve G - E - C. 
From Theorem 2 (i) and (ii)) the curves A - B - C, D - E - F and G - H - I are all 
concave, and XD 5 E,- 5 EZ and E T  5 m. Therefore, if ZD 2 E!? 2 E T  holds, 
the curve G - E - C becomes concave. If NH is small enough and Ns is large enough, then 

- - p  

the relation AD 2 BE 2 C F ,  and therefore, the concavity of T ~ ~ ~ ~ ( N S ,  Njy, A)  in Ns  is 
likely to hold. However, if NH is very large and Ns is very small, the relation does not hold 
any more. 

Combining Theorems l and 2 yields the following corollary: 

Corollary l. Cons ider  t he  approx imate  FMS m o d e l  w i th  t he  warehouse  defined in sec t ion  
2. Suppose  tha t  service rate  pi(72i) i s  nondecreasing concave in 72i and  /ii(ni) = pi(ci) for 
ni > ci, i = 0 ,  l ,  ) M  + l .  Th,en, 
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- 

The number of available pallets, NS 

Relationships between the approximate throughput of the FMS and its bounds 

(i) T H ~ ~ ~ ( N ~ ,  NH, A) is  nondecreasing concave in NI{ and converges t o  min{A, T H ( N d }  
as NH --+ m; 

(ii) % F h f s ( ~ S , o , ~ )  5 ~ F M S ( N S , N H , A )  <: ~ \ ~ { = F M S ( N S  + N H , ~ , A ) , T H ( ~ s ) ] ;  

(iii) T - ~ ~ N ~ ,  NH, A) i s  nondecreasing in NS and converges t o  min(A, A*) where A* E 

mino<i<M+l { f i ( c i ) / e , * } .  

The relationship between the throughput of the FMS and its bounds in illustrated in 
Figs 6 and 7. In these figures, the horizontal and vertical axes represent the number of pallets 
available in the shop and the throughput of the FMS, respectively. T>MS(NS + N H ,  0, A), 
expressed by a dotted curve, is obtained by translating the curve of T f f p ~ s ( ~ s ,  0, A) (or 
equivalently, THFMs(Ns, A)) to the left by the quantity NH. The hatched area represents 
the region where the value of T H p M s ( ~ S ,  ̂H, A)  can be determined (as specified in Corol- 
lary 3 (ii)). 
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W 

The number of available pallets, NS 

Figure 7. Relationships between the approximate throughput of the FMS and its bounds 

(A* < A) 

4. Capacity design problems 
We provide solution methods to a few examples of capacity design problems for determin- 

ing warehouse capa,city, NH, and the number of pallets available in the shop, NS. Suppose 
that the service times of both the loading/unloading station and the MHS are small enough 
to have a negligible effect on the throughput of the FMS. Machining station i has ci-parallel 
servers (machines) with queue-length dependent service rate pi{n) = p min(n, ci), i = 1 M .  

We consider the two cases of the FMS: a single-station FMS with one machining station 
and a multiple-station FMS with several machining stations. The equilibrium probability 
given by eqns ( l l a )  and (l l b )  is.approximation for the multiple-station FMS but exact for 
the single-S tation FMS. Therefore, the following differences between the single- and multiple- 
station FMSs are important in developing the solution methods: (1) The throughput of the 
FMS defined by T > ~ ~ ( N ~ ,  Nfi A )  is exact for the single-station FMS but approximate for 
the multiple-station FMS; (2) The function T H ( n )  defined by eqns (8a) and (8b) does not 
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have a,ny brea,k point except at 72 = NS in the multiple-station FMS while in the single-station 
FMS the function TH(72) = p min(n, c) has the break point at n = c and T H ( n )  = TH(c)  
for any n > c if c < NS, where c denotes the number of parallel servers at the machining 
station in the single-station FMS. 

In both cases, Theorems 1 and 2 and Corollary 1 are very useful for obtaining the optimal 
solution efficiently. 

4.1 A s ing le - s ta t ion  FMS 

Consider-first the single-station FMS. Note that P{n} given by eqns ( l l a )  and ( l l b )  
provide the exact value for P ( n )  in this case. Substituting T H ( n )  = pmin(n,c)  t o  eqns 
( l l a )  and ( l l b ) ,  we get the exa,ct expression for P ( n )  a,s 

^-p(n - l) ,  if 0 5 n < min(Ns,c); 

(I3a) P ( 7 2 )  = f &p(72 - 1)) if min(Ns, c) n̂< NS + NH; 

( 0 )  if Ns+ NH < n, 

where Nc = min(Ns, c) and p = Alp. 
Then, the exact expression for the throughput of the FMS is also obtained as 

Note that in this case we use THpMs(Ns, NH, A )  instead of using ~ F M S ( N S ,  N H ,  A) 
because the eqn. (12) gives the exact values for the throughput of the FMS. It is obvious 
that the throughput of the FMS expressed by this THpMsiNs, NH, A )  satisfies Theorems 1 
and 2 and Corollary 1. From Corollary 1 (ii) ,  the lower and upper bounds of the throughput 
are obtained as follows: 

In this single-station FMS, we consider the following design problems: 

PI : max {THFMS(NS, NH,A) 1 NS + NH 5 N and NS O,NH > O}, 
N S J H  

P 2  : ma,x {THFus(Ns, NH,A) 1 a N s +  bNH 5 A and NS 2 0, NH 2 O}. 
N s , N H  

Constraints in these two design problems represents the two kinds of tradeoff between the 
warehouse capacity and the number of available pallets. The constraint in the first problem 
means the space tradeoff under the fixed total spaces N, and the constraint in the second 
one, the cost tradeoff under the fixed tota,l available investment A for installing the spaces. 

On the basis of Theorems 1 and 2 and Corollary 1, we provide solution methods to  these 
problems below. 

S o l u t i o n  t o  PI 
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Since THFh4s(Ns, NH, A )  is nondecreasing in both Ns and NH from Theorems 2(i) 
and 2(iii), the optimal values for NS and NH, denoted by Ng and Nu, respectively, satisfy 
N$ + NJr = N .  Hence, we ca,n transform the original problem P1 to  

From Theorem 2(ii), N$ = N is clearly one of the optimal solutions to Pi /  and then 
P i .  On the other hand, when c < NS < A^, substituting Nc = c to eqn. (14)) we get for any 
Ns ^ [c, NI 

Ns+N~-c-l 

( 1 6 4  
Ê; P"/"! + (pC/c') E':;!) 

THFMs{NS,NH,\) = A NS+NH-c 
(plc)' 

~ s ' o  P'Â¥/" + (pC/c!) E'=!) 

This equation implies that any NS G [c, NI is also optimal. 
If N < c, then NS < c. Substituting Nc = NS to eqn. (14), we get 

This equation shows that the useful rela,tion represented by eqn. (16b) does not hold 
in this case. We know, however, that THFhls(NS1 N - NS, A )  is nondecreasing in NS. 
Therefore, we get N$ = N. 

In conclusion, we get the optimal solution to Pi ,  denoted by N$ and NJr, as any NS 
and NH satisfying 

min(c, N) < f i  < N and NH = N - ATs. 

Solu t ion  t o  P 2  

Using an approach simila,r to that used for solving Pi ,  we get Nu = \(A - aNz)/b] 
where 1x1 denotes the maximal integer being less than or equal to  X. Hence, the original 
problem can be transformed to 

There are three possible cases: 
(i) a = b 

In this case, the constraint aNs + bNH < A is equivalent to NS + NH < M a j .  From 
the results obtained for P1 we get NZ and Nu as any Ns satisfying 

min(c, N) < Ns < N a,nd NH = N - NS, where N = [A/a]. 

(ii) a < b 
In this case, Ns + NH = Ns + \(A - aNs)/b] < N = \A/a\ and NS = N (and NH = 0) 

is a feasible solution. From the upper bound of the throughput given in eqn. (15) and the 
nondecreasing property of THFns(Ns, 0, A )  in NS, we get THFMs{Ns, [(A- aNs)/b\, A )  < 
THFMs(Ns + [(A - a f i ) /bJ ,  0, A )  < THFAIs(N1 0, A ) ,  the bounds being satisfied with 
equality when Ns = N (and NH = 0). Therefore, we get Nt = N and N i  = 0. 

(iii) a > b 
In this case, the total space NS + NH is maximized when NH = [A/bJ and NS = 0. 

However, ATs = 0 implies that the throughput of the FMS is zero. On the other hand, while 
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the maximal value of f i  is [A/a] ( 5  [A/b] ) and then NH = 0, the total space NS + NH can 
be increased by sacrificing the space of pallets NS. This fact implies that the throughput of 
the FMS may be increa,sed in this ma,nner. 

Consider the case c 5 [A/a] first. 
For C 5 Ns 5 [A/aJ , eqn. (1611) holds and Ns + N y  5 c + \(A - ac)/bj with equality 

when NS = c and NH = \(A - ac)/b]. Hence, we get 

with equality when Ns = c and NH = [(A - ac)/b]. 
For 0 5 Ns < c, we do not know whether the throughput T HWs(Ns, \(A - aNs)/ b] , A) 

is less than THpMsic, \(A - uc)/bj, A). However, from eqn. (15) we get for any NS < Nl - 1 

where NI = \ T H p ~ s ( c  + [(A - ac)/b], 0, A)/^] + 1. 
It is clear that NZ exists on [Nb c] and is obtained by solving 

P2" : max{eqn.(17) \ NI 5 NS c and NH = [(A - aNs)/b) 
Ns 

Consider the case \A/aj < c. Obviously, NS <. \A/aj < c and from eqn. (15), for any 
Ns > N2 - 1, we get 

where N2 = \THFMs( \A/a], 0, A ) / ^ ]  + 1. 
It is a,lso clear tlia,t NZ exists on [N2, [A/aJ] a,nd is obtained by solving 

P ~ w  : max{eqn.(17) 1 N2 <: NS < [A/a] and NH = \{A - aNs)/b]}. 
N s  

Combining P2/1 and P2// / ,  we get the optimal solution to problem P 2  by solving the 
following reduced problem: 

R P 2  : max{eqn. (17) 1 NS 5 NS <. Nt and NH = [ ( A  - aNs)/b] } 
N s  

where N4 = min(lA/a], c) and N3 = \THFMs(N4 + 1(A - aN^/b], 0, A) /^ ]  + 1. 
The value of THMs(Ns, NH, A )  defined by eqn. (17) is easily calculated from the fol- 

lowing recursive equations: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



where THFMs(0, 0, A )  = 0. 
These recursive equations are stable in the sense that computational error is not increased 

by the successive iterations as shown in Theorem C (see appendices: T l f o  in Theorem C 
should be replaced with p 72 in this case). The optimal solution to problem R P 2  is obtained 
efficiently by calcula,ting the values of THFMs(Ns, \(A - a Ns)/ b\̂  A )  using these recursive 
equations for each value of Ng on [ N 3 ,  N4]. 

4.2 m,ultiple-station FMS 

We consider, next, the following capacity design problems in the multiple- station FMÂ§ 
denoted by MP1 and M P 2  similar to PI a,nd P 2 ,  respectively: 

MP1  : rnax { T I ~ ~ ~ s ( N ~ , A T ~ , A )  1 Ns+NH 5 N a n d  Ns >O,NH g}, 
Ns,NH 

MP2 : max { T H F M ~ ( N ~ ,  h, A )  1 aNs + bNH <, A and > 0, 2 0). 
Ns ,  NH 

In these case, it should be noted that eqns ( l l a ) ,  ( l l b )  and (12) provide the approximation 
for the throughput of the FMS, and that TH(n)  given by eqns (8a) and (8b) does not have 
a,ny break point except at 12 = h. Considering these facts, we provide solution methods to 
problems MP1 and M P 2  below. 

Solution to M P 1  
For problem M P l ,  the optimal solution is Nt = N a.nd N& = 0; in the multiple-station 

FMS, from the a,bove fact (2), we can not get a,ny relation similar to  that  shown in eqn. 
(16b) for c <  Ns < N .  

Solution to M P 2  
There are three cases to consider: 

(i) a = b 
From the argument similar to that in case (i) of P 2  and the result to M P I ,  we get 
NZ = N and NE = 0 where N = \A/aJ. 

(ii) a < b 
The derivation of the optimaJl solution to the case (ii) of P 2  is also applicable to this 

case as well. We get NZ = N and Nu = 0 where AT = \A/aj . 
(iii) a > b 

Since there is no break point in the function T H ( n )  for n < NS, we can not specify 
the upper bound of NZ less than ~ A / u ]  unlike case (iii) of P 2 .  Using Corollary 3(ii) in 
determining the lower bound of NZ yields 

N5 = rnin{Ns 1 TH(Ns) 2 T H ~ ~ ( \ A / u ~ ,  0, A )  and 0 < NS < \A/u]}. 
Then, the original problem is transformed into 

The value of T > ~ ~ ( N ~ ,  ATH, A)  is easily calculated by the following recursive equations: 

for NH 2 0  and Ns 1, 
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for Ns > 0, 

a,nd TH~-M~(O) 0, A )  = 0. 
The function T H ( n )  is defined in eqn. (8b) and the value of G ( M  + 2, n,  e )  in TH (n) is 

efficiently obtained by Buzen's algorithm [2] using any scaling for ei, i = - 1,0,  , M + 1. 
The above recursive equations are stable as shown in Theorem C(see appendices). The 
optimal solution to problem MP21 is obtained by the efficient manner similar to that used 
for solving problem RP 2. 

5. Conclusions 
We extended the existing FMS models through the addition of a supplementary auto- 

matic warehouse with finite capacity. Since the equilibrium probabilities of queue lengths at  
each station and the throughput of the FMS can not be exactly formulated in this case, we 
provided approximate expressions for the probabilities and the throughput, using a closed 
queueing network model. We showed the condition that the approximations yield the exact 
values. Comparing with the SIMAN simulation run, we also made clear that the accuracy of 
the approximation is very high especially in the FMS with balancing workload. We derived 
the limits, and the first- and second-order properties of the throughput with respect to both 
the warehouse capacity and the number of the pallets available in the shop. Exploiting these 
properties, we proposed efficient solution methods to several capacity design problems. 

Capacity design problems presented here are essential ones and can be applied to various 
versions of these problems; for instance a design problem to maximize a profit function 
involving both the warehouse capacity and the number of available pallets. Furthermore, 
the following capacities should be modeled to be determined in design problems: (1) capacity 
at  each station; the number of machines at  each machining station, the number of carts in the 
MHS, and the number of machines (or labors) and fixtures at  the loading/unloading station; 
(2) capacity of local buffer spaces at  each station. Solution methods to design problems with 
these capacities will be topics of future research. 

Appendices 
Theorem A. C o n s i d e r  a closed q u e u i n g  n e t w o r k  (CQN) w i t h  M s t a t i o n s  a t  w h i c h  
service  t im,es  are  expon,en,tially d is tr ibuted w i t h  serv ice  ra tes ,  /^(K;),  i = 1,2,  - - - , M ,  w h e r e  
K; d e n o t e s  t h e  q u e u e  l e n g t h  a t  s t a t i o n  i. J o b s  fo l low a M a r k o v  r o u t i n g  w i t h  y(2, j), i(or j) = 
0,1, - - - , M', w h e r e  s t a t i o n  0 d e n o t e s  a d u m m y  s t a t i o n  r e p r e s e n t i n g  a n  i n p u t /  o u t p u t  s t a t i o n  
w i t h  a n  i n f i n i t e  serv ice  ra te .  T h e  expected v i s i t  t i m e s  o f  e a c h  Job, eL i  = 1,2)  - , M ,  are  
obtained a s  a u n i q u e  s o l u t i o n  t o  t h e  f low e q u a t i o n s  s u c h  t h a t  

M 
ei = 7(O,i) + Y, en( j , i )  for i = 1 , 2 , . - .  , M .  

j=l 

Def ine  t h e  s y s t e m  t h r o u g h p u t  a s  
M G ( M ,  N - l, e*) TH(N) G E THi(N)y(i ,  0) = 
i=1 G(M,  AT, e*) 

where  N a n d  TH;(N) are t h e  p o p u l a t i o n  in t h e  C Q N  a n d  t h e  t h r o u g h p u t  o f  s t a t i o n  i ,  
respect ive ly ,  a n d  

G(M, N, e*)  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



If li,(12) = pi(Ni) f o r  n >. Ni, a n d  p;(n) 5 p i ( N )  f o r  n < Ni, i = 1,2 ,  . - , M ,  t h e n  

lim TH{N) = 
N-.m 

(Proof) 

Schweitzer [g] has proved the above result for the special case of pi(n) = p; for i = 
1,2, + 

, M. We shall generalize his result below. 
Consider two networks, denoted by superscript p = 1,2, with service rates ^{n)'s such 

that 
d ( n )  = pi(Ni)l{n >. Ni} and f i n )  = fi(Ni), i = 1,2 , .  m - ,  M, 

where l{x] is an indicator function; l{x} = 1 if X is true and 0 otherwise. 
Since for any n <: m, pUn) <: pi(m) and pi(n) <: ^ ( m ) ,  i = 1,2, - , M, the corre- 

sponding system throughputs are related as follows according to the results given by Shan- 
t hikumar and Yao [10]: 

S ( N )  5 TH(N) 5 TH(N) .  
-2 

We clearly have TH ( N )  -+ ?in {pi(Ni)/e',} as N -+ oo because yi(Ni)'s are all 
l<z<M 

constant. 
h4 

When N > VNf - M ,  the throughput of network 1 is equivalent to that of network 
1=1 - - 

h4 
-1 -2 M 

2 with the population N - X N; + Ad, that is, TH (N) = TH (N - V Ni + M) for 
. . !'=l z=1 

M 
-1 -2 

N > X Ni - M. This relation implies that lim TH (N) = lim TH (N). 
N-m N-+m i=l 

Therefore, TH(N) -  ̂ rqin {pi(Ni)/e*,} as N 4 m. 
l<t<M 

Q. E. D. 

Theorem B. C o n s i d e r  a C Q N  w i t h  M s t a t i o n s  a t  w h i c h  serv ice  t i m e s  a r e  e x p o n e n t i a l l y  
d is tr ibuted w i t h  q u e u e - l e n g t h  d e p e n d e n t  serv ice  r a t e s  yi(ni), = 1,2, - - - , M .  S u p p o s e  t h e  
?i(ni) 'S a re  all  n o n d e c r e a d i n g  concave  in n; a n d  71(n1) = min{pl(nl), pl(c)}, w h e r e  pl(nl)  
i s  also nondecreas ing  c o n c a v e  in 721. T h e n ,  t h e  t h r o u g h p u t  o f  t h e  C Q N ,  THcQN(c), i s  
nondecreas ing  concave  in c. 

(Proof) 

Shanthikumar and Yao [l 11 proved Theorem B for the case of 71 (nl )  = p min(nl, c), i. 
e., pl(n1) = pnl. We sha,ll prove Theorem B along a way similar to their proof below. 

Without loss of generality, consider a two-node CQN with N jobs and visit rations v1 = 

v2 = 112. Since min{;ii(l2),;li(c)} 5 min{pi(n), pl(c + l)}, T H c Q d c )  5 THcQN(c + 1) 
follows directly from the results derived by Shanthikumar and Yao [l l] .  We shall prove the 
concavity of THcQN (c) i. e., THcQn (c) + THcQ fi{c + 2) 5 2THcQN (c + 1). 

Construct four networks (11 = 1 4) such that t*?(ni) = min{pl(nl),pl(c)} for p = 
l; min{m(nl), pi(c + l)} for p = 2,3; min{pl(nl), pl(c + 2)} for p = 4, and the other con- 
ditions in these networks are all the same. Let ZT(t)  be a random variable which represents 
the queue length at node j of network p, and ~ : ( t )  be a ra,ndom variable which denotes the 
number of departures from node j of network "p in (0, <). Since the throughput of node j 

2 
is TH,[c) = lim E { D $ ( t ) } / t  and the throughput of the CQN is THcQN(c) = D H j ( c ) ,  

t+m 
J=l 
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it suffices to prove D1(t) + D4(t)  2' ~ ~ ( t )  + D3(t) ,  where DP(t) = (D?(<), D;(()) and 
ZP(t) = (Zf( t ) ,  Z;(t)) for p = l W 4. 

We shall construct the process {ZP(t), D p ( t ) } ( ~  = 1 4) on a common   rob ability space 
(0, F, P) such that 
(i) {Zp(t), Dp(t)} =" (2'-(t), DP(t)}, p = 1 - 4; 
(ii) @(t) 5 G ( t )  5 Z\( t )  and e ( t )  $ a t )  <: Z\{t) for t 2 0; this implies 

Zi( t )  2 G ( t )  2 ~ i ( t )  and 2 t ( t )  2 ,?g(<) > G ( t )  fo r t  2 0; 
(iii) D } ( f )  + D 3 t )  $ ~ 3 t )  + D}(t) for t 2 0 and j = 1,2; 

(iv) ~ p ( 0 )  = (N,0) and ~ " ( 0 )  = (0 ,0 ) ,p=  1 4. 
Let 0 = TO < TI < - .  - be the event epochs of a Poisson process with rate 27?, where 

t] = m a x { ~ ~ ( c  + 2), %(./V)}, a,nd ( u k ) F 0  be a. sequence of i. i. d. uniform random variables 
with support on (-v, v) .  These two processes {Q} and {uk} are independent of each other 
and are both defined on a common probability space (0, F, P). Consider a path W G 0, and 
denote rk(w) and uk(w) simply a,s r k  and i lk .  

When t = TO = O,Zp(0) = (N,0) and Dp(0) = (0,O) satisfies (ii) (iv). Suppose 
Z P ( T ~ _ ~ ) , D ~ ~ ( T ~ _ ~ ) )  has been specified for all p and (i) (iv) a,re valid at t = T I _ _ ~ .  For 
t E ( T ~ _ ~ ,  T ~ ) ,  set (Zp(t), Dp(t)) = ( Z P ( T ~ _ ~ ) ,  D ~ ( T ~ _ ~ ) )  for p = 1 4. 

P -  P 7 - p  TO simplify notations for all p, let ZP = Z P ( T ~ _ ~ ) ,  d p  = DP(T~.~),  -y, - 7 ( ( T ~ _ ~ ) ) ,  
1 2 3 4 -  3 7" =n1 in (7 , , 7~ ) , 7  -rnin(y1, 7?), RI3 =max(-y;, 7;) and = m a ~ ( ~ ; , ~ ? ) .  

Set = zzf + (A!; - A?, Ay - A!;), Dp(Tk)  = dP + (Ay, A;), where 
A} = 1{0 5 uk < 712} + l{R13 - 7; + 7" 5 u~ RI3}, 
A: = 1{0 < uk < 712} + l { ~ ~ ~  - 72 + 7" 5 UK R ~ ~ } ,  
A: = l {O 5 %  < 724} + 1{R13 -$ +q4 5 < fi13}, 
Af = 1{0 5 ~k < 734} + 1 { ~ ~ ~  - 71 + -134 5 uk < R24}, 

where l{x} is the indicator function; l{d = 1 if x is true and 0 otherwise. 
Since P{A; = l} = 7'7(2v) for all nodes j of network p, the transition rates of the 

constructed processes from a state (zp, dp) to states (zp + (-1,1),dP + (1 + 0)) and (zp + 
(-1, l ) ,  d P  + (0 , l ) )  are 2v7?/(2t]) = 7; and 1i1$/(2);) = 7;, respectively. These rates 
coincide with those of the original processes. 

Hence, {Zp(t),Dp(t)} =" {ZP(t),DP(t)},p = 1 4 at  t = r k ,  that is, (i) is satisfied. We 
can prove that (ii) is satisfied at t = using an approach similar to that in Shanthikumar 
and Yao [ g ] .  

We shall prove (iii) at t = T(-, that is, d} + d! 5 d; + d; + A; + A; - A} - A!, j = 1,2. 
Consider j = 1 first. There are the following possible cases: 
(a) 7; 5 -yf and 7; > 7;; then ?l2 = 7!, and 734 = $, a,nd hence A? 2 A \ ,  A: 5 A!; 
(b) 7: > 7; and 7; 5 71 ; then 7" = 3 and 734 = 74, and hence A% A}, A: 2 A:; 
(c) 7; 5 7; and 74 5 7;; then 7" = 7: and i34 = $, and hence A: > A}, A: > At; 

(d) > 7: and 74 > ?;. 
Case (d) is impossible because if z? > c + 2 then c + 2 <_ z}, 22, zf,  that is, 7; = pl(c) 5 

4 -  2 4 2 -  2 2 
'yf = 7; = p1(c+l )  5 7: = pl(c+2) ,  and if z? 5 c + 1  then 7; - y1(zl) 5 +yl - y1(zl) and 
yf = 7f(z?) (consider that $(z) is nondecreasing in z and that z t  <: zG:).  

In case (c), ( A ~ - A ~ ) + ( A ~ - A \ )  2 0, and henced\+df 5 d ? + d : + ~ : + A 3 - ~ } - A f ,  
provided that d\ + df d: + df . 

In cases (a) and (b), (A: - A}) + (AT - A?) 2 -1. If d\ + d\ < d? + d:, then d\ + d\ 5 
d;+d:-l 5 d p + d ! + A > ~ : - A \ - A t .  1 fd i+df  = d ? + d K a n d d i + d i  5 dg+dD, then 
z ! + z ^ = { N - d [ + d ! , ) + ( ~ - d i + d i )  5 (~-dp+dZ)+(N-d:+di)  = z:+z?. Provided that 
zt 5 z? 5 z} ,A 5 z? 5 sL 2: + 5 22 + 23 and pi (n )  is nondecreasing concave in n ,  we can 
show that 5 $+$; if z? >. c+2 then $+74 = pl(c)+;il(c+2) 5 2pl(c+l)  = 7,2+73, 
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1 1  2 2 2 2 and if 24 5 c + l then 71' - 7; = (zl)  - $(z?) 5 7?(z;) - yl (zl) = -yl (zl + (2;  - g)) - 
2 2 2 4 2 4 2 3 2 4 3 3 4 4 3 4 

71 (21 1 5 7, (21 + (2; - 4 ) )  - 71 (21 5 71 (21) - 71 (21 ) = 71 (21) - 71 (21) = 71 - 71 
Therefore, we get 
(a) A: + Ay - A} - At 

= 1 { ~ ~ ~  - ($ - u k  < - l { ~ ~ ~  - (74 - 7;) < u k  < > 0; 
(b) A2 + A; - A} - Af 

- - 1{R 13 - (7; - $) 5 U K  RI3} - l{R" - (7; - $) 5 U& R"} > 0; 

These results imply that d} + df 5 d; + <S + A: + A; - A} - Af for cases (a) and (b). 
For j = 2, we can prove d\ + d$ 5 d; + <& + A; + A; - A; + A$ in the same manner as 

in Shant hikumar and Yao [l l]. 
We have thus completed the induction. Q. E. D. 

T h e n  we get 

for NH > 0  and NS > 1; 

i i )  + l, 0, A )  = A 
T H ( N s  + 1) for N s  >. 0 

T H ( N s  + 1) + A - % s ( ~ ~ s ,  0 , ~ )  

and -S(O, 0, A) = 0; 

1 A(NS, NH) 1 
and - * A ( N s , N H  - l )  1 < -* 

l A(Ns,O) l 5 - *  
THpMs(Ns, NH, A )  THpMs(Ns, NH - 1, A) THFMS(NS, 0, A) 

where "*" and A(Ns, Nu) denote the  exact  value without  computa t ional  error and  the  
computat ional  error f rom the  calculation of T > ~ ~ ( N ~ ,  NH, A), respectively. 

(Proof) 

We show the proof in an argument similar to tha,t in Yao and Shanthikumar [16]. From 
the definition of B(Ns, NH), we get 

and 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



C7apa~,ity Design in an FMS 6 l 

Substituting THF~~[N~,  NH, A )  = A{1 - B(Ns, h)} into these equations yields (i) 
and (ii). 

Define A(Ns, NH) md~s,  NH, A) - r f f d ~ s ,  A^, A) = ^B*(Ns,  NH) - 
B(Ns, NH)}. Since both B(ATs, NH) and B*(Ns, NH) satisfy the above equations, we get 

and 

Since T & ~ ( N ~ ,  NH, A)  (and then B*(Ns, NH)) is nondecreasing (nonincreasing) in 
both Ng and NH, we can show that (iii) holds. Q. E. D. 
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