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Abstract  We consider a bulk service G I / M / l  queue with service rates depending on service batch size. 
If there are n customers waiting at the completion of service, min(n, I\) customers enter service. We show 
that the queue size and the service batch size at points of arrivals form an embedded Markov chain and 
the steady-state probabilities of this Markov chain have the matrix geometric form. We describe the rate 
matrix R of the matrix geometric solution procedure in a readily computable form. We obtain explicit 
analytic expressions for the steady-state queue length distribution at points of arrivals. Further we obtain 
the Laplace-Stieltjes transform and the moments of the stationary waiting time distribution of an arbitrary 
customer. 

1 Introduction 
Bulk service queueing models are often encountered in applications. For example, trans- 
portation processes involving buses, airplanes, trains, ships, elevators and so on, all have a 
common feature of bulk service. 

Several authors studied the bulk service queue with service time distribution depending 
on service batch size under a general bulk service rule. A general bulk service. rule was first 
introduced by Neuts [2]. Under this rule, let there be n customers waiting at the completion 
of a service. If 0 < n < L, the server remains idle until the queue length reaches L and then 
starts serving all L customers. If L < n < K, a group of size n enters service a,nd if n > K, 
a group of size K is served. We may denote this system by GI/G(L, K)/s if the intera,rrival 
time distribution is general and independent, the service time distribution is general and 
the number of servers is S. 

For Poisson arrival queueing S ys tems with service time distribution depending on service. 
batch size, Neuts [2] and Neuts [3] studied M/G(L, K)/ l  queue and derived queue length 
distribution. Further, for the same system, Neuts [6] studied wa,iting time distribution. By 
different approach, Curry and Feldman [l] studied M/M(L, K)/ l  queue by using the matrix 
geometric solution procedure by Neuts [4]. They derived t,he distribution of the number in 
service as well as in the queue. They also showed tha,t the solution to the matrix geometric 
equation had a simple structure that led to an easy algorithmic implementation. However, 
for non-Poisson arrival queue with service time distribution depending on service ba,tch size, 
there has been no work to our knowledge. 

In this paper, we study a GI/M(l, K)/l  queue with service rate depending on service 
batch size. The arrivals to the system occur one at a time,, according to a renewal process 
wit h interarrival time distribution F ( m )  of finite mean and the Laplace-S tieltjes transform 
(LST) A* (0). The service times of successive batches are conditionally independent, given 
that the batch sizes and the cumulative function (CDF) of service times. The CDF of service 
time Sk of a bat,ch size k (1 < k < K) obeys the negative exponential distribution with 
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mean l /pk.  Further assume that fii # fly when i # j .  For this queueing system, the paper 
is organized as follows. In Section 2, we show that the queue size and the service batch 
size at points of arrivals form an embedded Markov chain. In Section 3, we show that the 
steady-state probabilities of this Markov chain have the matrix geometric form. We describe 
the rate matrix R of the matrix geometric solution procedure in a readily computable form. 
Explicit analytic expressions for the steady-state queue length distribution at points of 
arrivals are obtained in Section 4. In Section 5 ,  we obtain the LST and the moment,s of the 
~tationa~ry waiting time distribution of an arbitrary customer. 

Throughout this paper, for notational convenience, we denote xT the transpose of the 
vector x, e the appropriate dimensional column vector with all elements equal to one and I 
the appropriate dimensional identity matrix, respectively. 

2 Embedded Markov Chain 
We consider a GI/M(}, K)/1 queue with service rates depending on service batch size at 
points of arrivals. Suppose that Ir denotes the queue length immediately prior to the rth 
arrival and Jr the number of customers in service immediately prior to t,he r th arrival, 
respectively. Further suppose that Tr denotes the time between (r - 1)st and r th  arrivals. 
For convenience, we choose the time origin a,t an epoch of arrival and set 7-0 = 0. Then, 
it is easily seen that the sequence { (L ,  Jr. rr ) r > O} is a Markov renewal sequence on 
the state space {(0,x) : X > O} U {(i,j ,x) : 2 > 0 , l  < ) < K,x 2 O}. Suppose that 

. . . .  . .  a = (al, 0 , .  ,0)  and A = diag(al, a^), where a.i = A*(b)  (1 < 2 < K).  Further 
U 

K-l 

suppose that Bu (1 < 2 < K , j  >, 0) is K X K matrix with nonzero elements only in the 
ith column, bij = (bGl,. . . .  bijK)T. bÃ£ (i = 1,2, .  . . ,  K; j = 0,1, .  . .  ; k = 1,2, .  . .  , K )  is 
the probability that when the customers of batch size k are served immediately prior to an 
arrival, the service of batch size k finishes, the service of batch size K finishes j times and 
the customers of batch size i are served immediately prior to next arrival. The deta,ils of bijk 

will be expla,ined in Section 3. Now, for the case K = 3, the transit,ion probability matrix 
P of the embedded Markov charin {(Ir, Jr) : r > O} is given by 

where the constant c and K-dimensional column vectors c, (i 2 0) are determined t,o sakisfy 
that each row sum of P is equal to unity. 
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3 Determination of Rate Matrix 
Assume that y = {po, XQ, X\, .  . .) is the steady-state probability vector of P. That is, y is the 
solution to y P  = y ,  ye = 1. Note that p0 is the steady-state probability corresponding to the 
state 0 and the vector xn, for n = 0,1,. . . , of order K  is the steady-state probability vector 
corresponding to the states {(n, l), . . . , (n, K ) }  and is pa,rtitioned as Xn = (xni,.  . . ,X^). 
By exploiting the structure of P, the Markov chain represented by the transition probability 
matrix P is irreducible. Further we have the following theorem. 

Theorem 3.1 The Markov chain represented by the transition matrix P is positive 
1 

recurrent if and only if the traffic intensity p = 
J. < 1. 

\'̂ "K 
Proof : The proof will be in Appendix. D 

By Neuts' matrix geometric solution procedure [4], when p < 1, we have 

xn = XX for n = 0,1, .  . . ,  (2) 

where R is the minimal nonnegative solution of 

Then, we can show that the structure of R is a simple form a,nd R can be calculated in a 
readily computable form. 

Theorem 3.2 The rate matrix R is represented by 

where 

ai = A*(pi) for i = 1, .  . . , K  - 1 

and TK is the unique real root between 0 and 1 of the equation 

Proof: We assume that R = A + VL where A is some diagonal matrix and V\ is some 
matrix with nonzero elements only in the last column. Then, by induction, it follows that 
Rn = An + Vn for all n, where Vn has nonzero elements only in the last column. Neuts [4] 
showed that the matrix equation (3) is solved by successive substitutions, starting R = 0. 
Therefore, since A is a diagonal matrix and BKn-l (n = 1,2 , .  . .) have nonzero elements 
only in the last column, it follows that R has the specified form A + V\. Given this form 
for R, equation (3) leads immediately to equa,tion (4). By exploiting the elements of the 
tra~nsitio matrix P, we have 

and 
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By considering the ( K ,  K )  element of equation ( 3 ) ,  we have 

Finally we prove the existence of the unique real root z = T K  (0  < T K  < 1)  for equation ( 6 ) .  
We set f ( z )  = z  - A* ( p K  ( 1  - z K ) ) .  Then we have 

J ( 0 )  = -A* (pK)  < 0  and f ( 1 )  = 0.  

Since f  ' ( z )  = 1 + ( l  - z K ) ) ,  we have 

f ' (0) = 1  > 0  and / ' ( l )  = 1 -\-^K = 1 - 1/p < 0 ,  

dn 
where &("')(S) = - A*(O)],=,. Further it follows that 

den 

From equations ( g ) ,  (10)  and ( l l ) ,  it is shown that the equation ( 6 )  has the unique real root 
between 0  and 1. 0 

Theorem 3.3 The elements of the last column of R, T-.~ (i = 1, . . . , K - l ) ,  are given by 

(12)  
Proof: By induction, it can be shown that the elements of the last column of Rn are 

for i = 1,. . . , K - 1. The (2, K )  element of equation (3) leads immediately to 

for i = 1 , .  . .  , K  - 1. Since 

and equation (7) hold, direct calculation shows that 
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and 

00 00 n K  
n K - j  j-l 

r i n K ) b ~ , n - l , K  = ri X bK,n-1,K a, T K  

equations (14), (16) and (17) lead to equation (12). 

From Theorems 3.2 and 3.3, we can calculate the elements of the rate matrix R by only 
using the LST of the interarrival time distribution, A*(@, and the service rate (i = 
1,.  . . , K ) .  

4 Stationary Queue Length at Arrivals 
In this section, we derive explicit expressions for the steady-state probability vector y of P. 
By exploiting the special structure of P and using that the steady-state probability vector 
has a matrix geometric form, p. and x0 satisfy the following steady-state equations. 

b .  = xo X R n K + ' - l b .  
x0 i  = ^nK+i-l zn (2=2 ,  . . . ,  K ) .  

n=O n=O 

Further, the normalizing equation 

holds. Since the rate matrix R is completely determined in Section 3 and equations (U) ,  
(19) and (20) form a system of simultaneous linear equations with K + 1 unknowns, we can 
solve these equations if we can calculate 

00 

d, = ( d i l l .  .. = Y, R 
nK+i-l 

b i n  (i = l , . . . , K )  

in closed form. 
At first, we calculate d K .  For j = 1 , .  . . , K - 1, it follows that. 
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The Kth  element of d ~ ,  ~ K K ,  is given by 

For the next step, we calculate di (i = 1, . . . , K - 1) .  
( 1 )  Derivation of diK 

Since it follows that 

we have 

(2) Derivation of da 

Since it follows tha,t 
00 

bioi = 1 /tite-'"'dA(t) 

and 

t =r p i p ~ e - ' ' ~  d.&) J (t - X )  (PKx)n- l  e ( ~ t - ~ ~ ) x d x  
o (n - l ) !  (n 2 l ) ,  

tedious calculations deduce that 

For i = 1, by using equation (24) ,  we have 
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For2=2, . . .  , K -  1, we have 

Therefore we have 
00 

by using equations (29) and (30) 

(3) Derivation of dij ( j  = 1, . . . ,  K - l ; i  # j )  
Since it follows that  

and 

00 

PK n - l ) !  
p j e - p j y  e - ~ i ( t - x - ~ )  dy (n > 1)7 (33) 

we have 

For 2 = 1, by using equation (24), we have 
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For 2 = 2 , .  . . , K - 1, we have 

Therefore we have 
00 

nK+i-1 dy = E (a, (nK +z-  l) bin, + rj  bin^ ) 

by using equations (34), (35)  and (36). 
Finally we can calculate di (i = 1,. . . , K) by using the LST of the interarrival dis- 

tribution, A*(O), and its first derivative, A*(')(O), the service rates pi (z = 1, .  . . ,K )  and 
the rate matrix R. We can determine the steady-state probability distribution at points of 
arrivals by solving a system of equations (18), (19) and (20) and using equation (2). 

Further we can obtain the moments of the queue length at  points of arrivals. We denote 
by L and L(z) the steady-state queue length at points of arrivals and its generating function, 
respectively. By using xn (n = 0,1, .  . .) and R, L(z) is expressed as 

The mean and variance of L are given by 

where 

5 Waiting Time Distribution 
In this section, we obtain the LST and the moments of the stationary waiting time distri- 
bution of an arbitrary customer. 
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Theorem 5.1 Let us define 

Let W and W*(0) denote the steady-state waiting time and its LST, respectively. Then 
W * (0) is given by 

Proof: If upon arrival a customer finds that the server is idle, then W = 0. Further if upon 
arrival a customer finds that the number of waiting customers is i  K + j  ( i  > 0,O < j  < K - l) 
and the number in service is k then the conditional waiting time has LST, given by 

Therefore W*(O) is given by 

D 
Differentiating (43) once a,nd twice and inserting 0 Â¥= 0, we have the next Corollary. 

Corollary 5.2 Let us define 

The first and second moments of W are given by 
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6 Concluding Remarks 
In this paper, we studied a bulk service GI/A///l queue with service rates depending on 
service batch size. In Neuts and Chandramouli [5], we can find a nice application of bulk 
service queue with service time distribution depending on service batch size. Neuts and 
Chandramouli [5] studied group testing in quality control tests, with special at tention to 
the trade-off between larger group sizes and time lost due to retesting of groups containing 
flawed items. 

We only treated the case L = 1 in this paper. If L > 1, it is cumbersome to analyze 
the steady-state queue length distribution at points of arrivals because the boundary states 
of the Markov chain represented by the transition matrix P are very complicated. Further, 
the analysis of the waiting time distribution is very difficult because the waiting time of a 
tagged customer will be influenced by the customers who will arrive after a tagged customer's 
arrival. 

Thus the treatment of the case L > 1 is left to the future study. 
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Appendix 

The proof of Theorem 3.1 
00 

Let C = A + 1 BKn- It is clear that C is stochastic. Since A is a K X K diagonal 
n=O 

matrix and BKn ( i  = 0,1,. . .) are K X K matrices with nonzero elements only in the Kth  
column, C is upper triangular. By adapt,ing the result of Theorem 1.4.1 of Neuts [4] to 
present case, we see that 

By using eq. (7), the inequality (49) yields 

00 

F ( n  + 1)~r ( w t ) n l e - p K t d ~ ( t )  = KpK [ ldA(t) = KmA' > 1, 
n=o (n + l)! (50) 

This completes the proof. 
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