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Abstract  This paper considers a discrete-time BBP/G/l queue with geometrically distributed gate open- 
ing intervals. The system has two queues and a gate. Customers arriving at the system are accommodated 
in the first queue at the gate. When the gate opens, all the customers who are waiting in the first queue 
move to the second queue at the server. The gate closes immediately after all the customers in the first 
queue move to the second queue. The server serves only the customers present in the second queue. For 
this system, we derive the probability generating functions for the queue length, the amount of work and 
the waiting time. We also provide some numerical examples in order to show the computational feasibility 
of the analytical results. 

1. Introduction 
This paper considers a discrete-time BBP/G/l  queue with a gate, where BBP denotes 

a batch Bernoulli process. Customers arrive at the system in a batch and service times 
of customers are independent and identically distributed (i.i.d. ) according to  a general 
distribution function. The system has two queues and a gate (see Fig. 1). Customers 
arriving at the system are accommodated in the first queue at the gate. When the gate 
opens, all the customers who are waiting in the first queue move to  the second queue a t  
the server. The travel times from the first queue to the second queue are assumed to  
be zero. The gate closes immediately after all the customers in the first queue move to  
the second queue. We assume that the intervals between successive openings of the gate 
are geometrically distributed. The server serves only the customers present in the second 
queue. The purpose of this paper is to provide a complete set of the analytical results for 
various performance measures. 

Gate 

The first 
queue 

The second Server 
queue 

Figure 1: A Queue with a Gate 

The queue with a gate is considered as a mathematical abstraction on many occasions. 
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For example, let us consider a shuttle bus in an airport which comes occasionally to  pick up 
customers and take them to a hotel. All customers who arrive to the hotel forms a queue 
at the registration counter. In computer communications, [l, 21 show an application of the 
model to the performance evaluation of the Cyclic-Reservation Multiple-Access (CRMA) 
taking account of a backpressure mechanism. Other examples could be found, e.g., mail 
pickup and so on. Thus, the queue with a gate has rich applications in wide areas. 

The queue with a gate falls into the category of the queue with generalized vacations 
4 ,  71. In the queue with generalized vacations, a server takes vacations even when waiting 
customers are present in the system. Note that, in the queue with a gate, there is a 
possibility that a server becomes idle, while customers are waiting outside the gate. Thus 
the idle periods of the server when waiting customers exist outside the gate are considered 
as vacations of the server. It  is well known that  in the queue with generalized vacations, 
the queue length, the amount of work in the system and the waiting time under the FCFS 
discipline have the so-called decomposition properties (see [6] and references therein). Note 
that the queue with generalized vacations has been studied mainly in the continuous- 
time model. However, very similar decomposition properties hold for the discrete-time 
counterpart, too. See, for example, [3]. 

Another interesting feature of the queue with a gate is the correlation between the gate 
opening interval and the number of customers who move to the second queue when the 
gate opens. It is easy to see that, when the gate opening interval is long, (relatively) many 
customers are likely to wait in the first queue, while (relatively) few customers are likely 
to wait in the second queue. Thus, the waiting times in the first queue and the second 
queue would be negatively correlated (i.e., a long waiting in the first queue leads to  a 
short waiting in the second queue). Also, if we consider the second queue as an isolated 
system, the interarrival time of batches (i.e., the gate opening interval) and the number of 
customers in each batch (i.e., the number of customers who move to the second queue at the 
same time) are positively correlated. Yet another view of this feature is that there exists 
the correlation between the interarrival time and the service time if each batch moving to 
the second queue is considered as a supercustomer. 

Takahashi has studied continuous-time queues with gates [13], where the service times 
of customers are exponentially distributed and the gate opening intervals are deterministic 
or exponentially distributed. Borst et al. have studied the continuous-time queue with 
exponential gate opening intervals [l, 21, where the service times of customers are generally 
distributed. They were mainly concerned with the second queue, and discussed the effect 
of the correlation between the interarrival time and the number of customers in batches 
on the performance of the second queue. Boxma and Comb6 have studied an M/G/1 
queue with a rather general dependency between the interarrival time and the service time 
[5]. Kawata has studied a discrete-time queue with geometrically distributed gate opening 
intervals and derived the probability generating function (PGF) for the sojourn times of 
supercustomers [g]. Ishizaki et al. have studied a discrete-time queue with bounded gate 
opening intervals [8]. 

The rest of the paper is organized as follows. In section 2, we describe the mathematical 
model in detail. Our model is considered as a discrete-time version of the model of [2]. 
Note that the model in this paper allows batch arrivals, while [2] considers only single 
arrivals. Many communication systems are operated based on a time-slot basis, which are 
naturally modeled by discrete-time queues. In [2], they have referred to the applications of 
their model to the performance evaluation of the CRMA taking account of a backpressure 
mechanism. Note that CRMA is a transfer protocol in high-speed local and metropolitan 
area networks which use slot-base transmission. Thus, our model is more suitable to  
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evaluate the performance measures of CRMA. From a theoretical viewpoint, a discrete-time 
model is more general than the continuous-time counterpart in a sense that the discrete- 
time model is reduced to the continuous-time counterpart by letting the slot length to zero 
(see [3], for example). 

In the next three sections, we provide various formulas of the performance measures 
of interest. In section 3, we study the number of customers in the system. We first 
derive the joint PGF for the number of customers in the first queue and that in the 
second queue immediately after departures of customers. The PGF is given in terms of 
a function which is represented by an infinite product. Next we derive the joint PGF for 
the number of customers in the first queue and that in the second queue a t  the beginning 
of a randomly chosen slot. Note that [2] did not provide any results on the joint queue 
length distribution a t  a random point in time. Furthermore, we analytically show the 
decomposition properties for the total number of customers in the system at departures 
and a t  a randomly chosen slot. In section 4, we analyze the amount of work in the system. 
Using the joint distribution of the queue lengths and the remaining service time, we first 
derive the joint P G F  for the amount of work in the first queue and that in the second 
queue at the beginning of a randomly chosen slot. Next we derive the PGF for the amount 
of total work in the system. Furthermore, we show the decomposition property for the 
amount of total work in the system. Note that the PGF for the amount of work in the 
system is identical to the PGF for the sojourn times of supercustomers [g]. In section 
5, we consider the waiting times of customers. We derive the joint P G F  for the waiting 
times of individual customers in the first queue and the second queue and the PGF for 
the waiting time of supercustomers. Also we analytically show the decomposition property 
for the total waiting time of individual customers. Finally, in section 6, we provide some 
numerical examples, where we discuss three kinds of correlations in the model: the effect of 
the correlation between the interarrival time and the service time of supercustomers on the 
mean waiting time of supercustomers, the effect of the correlation between the interarrival 
time of each batch composed of customers who move to the second queue at the same 
time and the number of the customers in the batch on the mean waiting time of individual 
customers in the second queue, and the correlation between the waiting times in the first 
queue and the second queue. 

2. Mathematical Model 
We consider a discrete-time queueing model with the following characteristics: 

Time is slotted. 

e Customers arrive at the system in a batch immediately before slot boundaries. The 
batch sizes and the service times of individual customers are independent and iden- 
tically distributed. Customers arriving a t  the system are accommodated in the first 
queue at the gate. 

a The gate opens immediately before slot boundaries. When the gate opens, all the 
customers waiting in the first queue move to the second queue a t  the server. The 
travel times of customers to the second queue are assumed to  be zero. We assume 
that customers arriving in a slot also move to the second queue when the gate opens 
in the slot, so that the waiting times of such customers in the first queue become zero. 
The gate closes immediately after all the customers in the first queue move to the 
second queue. The intervals between successive openings of the gate are geometrically 
distributed. 
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0 There is a single server who serves the customers only in the second queue. When 
the server finds some amount of work in the second queue immediately after a slot 
boundary, he serves exactly one unit of work in the current slot. We assume that cus- 
tomers are served on an FCFS basis. Furthermore, as for customers who arrive in the 
same slot, the next customer for service is randomly chosen among those customers. 

We now introduce random variables and notations to  describe the above model. Let 
B and C denote random variables representing the number of individual customers who 
arrive a t  the system in a slot and the service time of an individual customer, respectively. 
Further, let A denote a random variable representing the amount of work brought into the 
system in a slot (i.e., the sum of the service times of customers arriving in a slot). We 
define the following PGFs: 

By definition, we have 

(2.2) A(z) = B(C(z)) . 
Let G denote a random variable representing the length of an interval between successive 
openings of the gate. Let g(n) = Pr(G = n) (n > 1). We then have for a parameter 7 

We denote the PGF of the g(n) by G ( 4 :  

We assume that B, C and G are independent, identically distributed random variables, and 
those are independent each other. Throughout the paper, for any PGF f i), we use the 
symbol /'(l) to denote limz+l- df (z)/dz. Furthermore, we assume A1(l) = B'(l)C1(l) < 1 
and the system is in equilibrium. 

3. Number of Individual Customers 
In this section, we consider the number of individual customers in the first queue and 

that in the second queue. First we observe an imbedded Markov chain which is composed 
of two types of imbedded points. Next we derive the PGF for the number of customers 
immediately after departures of customers. Finally, we obtain the PGF for the number of 
customers at the beginning of a randomly chosen slot in terms of the PGF for the number 
of customers immediately after departures of customers. 

3.1. Number of customers immediately after departures 
In this subsection, we derive the formula for the number of customers immediately after 

departures. To do so, we introduce an imbedded Markov chain which is composed of two 
types of imbedded points: 

type 1: immediately after departures of individual customers, 

type 2: immediately after gate opening instants during idle periods. 
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Let X^ and X^ denote random variables representing the numbers of individual cus- 
tomers in the first queue and in the second queue, respectively, at a randomly chosen 
imbedded point. Note here that X^ and X^ are dependent. Moreover, let Tp  denote a 
ran.dom variable representing the type of a randomly chosen imbedded point, i.e., Tp  = i 
(i = 1,2)  when a randomly chosen imbedded point is of type a. We define P(z l ,  z2) and 
Q(z2) as 

(3.1) 
A ~ ( 1 )  xW 

P(z1,z2)= E[+ ^2 1{Tp=ll], 

where IT denotes the indicator function of a set T. Note here that X^ = 0 if Tp  = 2 
because all the customers waiting in the first queue move to the second queue when the 
gate opens. 

Let X:) and X^ denote random variables representing the numbers of individual cus- 
tomers in the first queue and in the second queue, respectively, immediately after the 
departure of a randomly chosen customer. Note here that X :  and ~ 2 )  are dependent. 
We define QD(zl, Q) as the joint PGF associated with Xff and ~ 2 ) :  

We then have the following theorem. (The proof is given in Appendix A.I.) 

Theorem 3.1. QD(z1, z2) satisfies 

where 

(3.5) 

Note that (3.4) is rewritten to be 

The equation (3.8) may be useful because it can replace Qn(z1, 2 2 )  by Qn(z1, O), QD(%, 0) 
and Qo(z2, z2). Indeed, we will use (3.8) in Proofs. 
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(3.4) shows that Q o ( a ,  z2) is expressed in terms of Q(z) (2 = xi, 2;). We shall therefore 
consider $ (2). Define for \z\ 1 < 1 : 

(3.10) 
A 

^(q) = 21, 

(3.11) 6Ãˆ(z1 & b ( ~ ( ~ - - l )  (^l)) (2  > 1). 

Since the system is stable, QD(z1, z2) is bounded and analytic for \X^\ <_ 1 and \X^\ 1. 
Thus, for 2 2  = 6(z1), the left-hand side of (3.4) becomes zero, so that the right-hand side 
of (3.4) must become zero, too. We then have 

To simplify notations, we introduce for lzll < 1, 

Then (3.12) becomes 
(3.14) 

Using (3.14), we have 

Wl) == (^)*(^l)). 

the following theorem. (The proof is given in Appendix A.2.) 

Theorem 3.2. *(z) = (P(^, 0) + Q(O))/P(l, 1) 2s given by 

where f o r  \zll < 1, 

(3.16) 

Next we present a corollary which immediately follows from Theorem 3.1. Let X:' 
and X denote random variables representing the numbers of individual customers in the 
first queue and in the second queue, respectively, at  the beginning of a randomly chosen 
slot. Note here that X? and X^ are dependent. We define QAlh  (zl, Q) as the joint 
PGF for the numbers of individual customers in the first queue and in the second queue 
at the beginning of a randomly chosen slot given that the server is busy. Also, we define 
QAIidle(z}.} as the PGF for the number of individual customers in the first queue at the 
beginning of a randomly chosen slot given that the server is idle: 

A 
(3.17) Q ~ l h i q  (zi 22)  = E 

where Ts denotes a random 

(3.18) 

variable defined as 

Ts g { 1 if the server is busy, 
0 if the server is idle, 
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at a randomly chosen slot. Note that, by definition, QAIidle(z) is given by 

Corollary 3.1. The PGF QD(z, z) for the total number of customers in the system 
immediately after departures are given b y  

where 

(3.2 1) 

and QAIidk(z) 2s given in (3.19). 

The proof is given in Appendix A.4. 

Remark 3.1. Note that QDb(z) denotes the PGF for the number of customers imme- 
diately after departures of customers corresponding BBP/G/l  queue without gates and 
QAIidle(z) denotes the PGF for the number of individual customers in the system given 
that the server is idle. Thus, the total number of customers in the system immediately 
after departures are decomposed into the two independent factors. 

3.2. Number of customers at the beginning of a randomly chosen slot 
In this subsection, we derive the formula for the number of customers a t  the beginning 

of a randomly chosen slot. To do so, we first consider the number of customers in the 
first queue and that in the second queue a t  the start of the service of a randomly chosen 
customer. Let X  ̂and X ( 2 )  denote random variables representing the numbers of indi- 
vidual customers in the first queue and in the second queue, respectively, at the start of 
the service of a randomly chosen customer. We define Q(z1, Q) as the joint P G F  for the 
numbers of individual customers in the first queue and in the second queue a t  the start of 
the service of a randomly chosen customer: 

We then have the following lemma. (The proof is given in Appendix A.5.) 

Lemma 3.1. ~ ( 2 1 ,  Q) is given by 

where 

(3.24) 

and H(% z2) 2s given in (3.7). 

Taking zl = z2 = z in (3.23) and noting 
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we can easily confirm that the following equation holds: 

The equation (3.26) implies that the number of customers in the system left behind by a 
randomly chosen customer is equal to the number of customers in the system a t  the start of 
his service (including himself) plus the number of customers arriving to the system during 
his service time minus one (himself). 

We now consider the number of customers in the first queue and that in the second 
queue at the beginning of a randomly chosen slot. We define QA(z1, z2) as the joint PGF 
associated with X:) and X?): 

We then have the following theorem. (The proof, in which Lemma 3.1 is used, is given in 
Appendix A.6.) 

Theorem 3.3. QA (zl, z2) is given b y  

(3.28) 

where 

(3.29) 

with 

(3.30) 

QA (xi, 22) = ~ ' ( l ) ~ ' ( l ) e ( z i ,  Q) 
z2 

C ( B ( 4 )  
QD (22 ,  ~ 2 )  

and S(z1, z2) is given in (3.24). 

We present a corollary which immediately follows from Theorem 3.3. 

Corollary 3.2. The PGF Q&, z )  for the total number of customers at the beginning 
of a randomly chosen slot is given b y  

(3.31) QA (z, z) = Q~t(z )Q~~ic -~ lc  (2) 

where 

(3.32) 

and QAidle(^) is given in (3.1 9). 

The proof is given in Appendix A.7 

Remark 3.2. Note that QAb(z) denotes the PGF for the number of customers a t  
the beginning of a randomly chosen slot in the corresponding BBP/G/l  queue without 
gates. This decomposition result is a discrete-time example of the general result for the 
continuous-time queue given in [7]. 
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4. Work in the System 
In this section, we consider the amount of work in the first queue and that in the second 

queue. To obtain the formulas for the amount of work in the system, we first derive the 
formula for the joint PGF for the numbers of customers and the remaining service time a t  
the beginning of a randomly chosen slot. 

Let X^ (resp. X^) denote a random variable representing the number of individual 
customers who arrive and remain in the first queue (resp. arrive and move to the second 
queue) during the backward recurrence time of the service time of a customer who is served 
in a randomly chosen slot. Also, let C denote a random variable representing the forward 
recurrence time of the service time of a customer who is served in a randomly chosen slot. 
We define QAlhsy(z1, Q, W) as the joint PGF for the numbers of customers who arrive and 
remain in the first queue and customers who arrive and move to  the second queue during 
the backward recurrence time of the service time of a customer who is served in a randomly 
chosen slot, and the forward recurrence time of the service time of the customer given that 
the server is busy: 

We then have the following lemma. (The proof is given in Appendix A.8.) 

Lemma 4.1. The joint PGF Q A l h s y ( ~ l ,  22, W) is given by 

where 

(4.3) 

with 

and S(q , z2) is given in (3.24). 

We now consider the amount of work a t  the beginning of a randomly chosen slot. Let 
U(') (resp. U^) denote a random variable representing the amount of work in the first 
queue ( resp. in the second queue) a t  the beginning of a randomly chosen slot. Note here 
that U'(') and u ( ~ )  are dependent. We define the joint PGF U(zl, Q) associated with U^ 
and 

(4.5) 
A 

U(zl, z2) = E [ z ~ ( " z ~ ( 2 ) ]  . 

We then have the following theorem. (The proof, in which Lemma 4.1 is used, is given in 
Appendix A.9.) 

Theorem 4.1. The joint PGF U(zl, ẑ} is given b y  
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We present a corollary which immediately follows from Theorem 4.1. Let U = u^+u^ 
denote the amount of the total work in the system and we define U ( z )  as the PGF for U .  

Corollary 4.1. The PGF U ( z )  is given by 

where 

The proof of the above is given in Appendix A.10. 

Remark 4.1. 

Note that U ( z )  is identical to  the PGF for the sojourn time of supercustomers and 
coincides with the result in [g]. 

Ub(z)  denotes the PGF for the amount of work in the corresponding BBP/G/l queue 
without gates, and Uidle(z) denotes the PGF for the amount of work in the first queue 
given that the server is idle. Thus (4.7) shows that  the amount of the total work in the 
system is decomposed into two independent factors. This is a discrete-time example 
for the work decomposition property in the queue with the generalized vacations [4]. 

Note that, with (4.7) and noting ( P ( l , O ) + Q ( O ) ) / P ( l ,  1 )  = ( 1  - ~ ) ( 1 -  B 1 ( l ) C ' ( l ) ) / B 1 ( l )  
from Theorem 3.2, (4.6) is rewritten to  be 

The equation (4.10) may be useful because it can replace U ( z l ,  z2)  by U ( z l )  and U ( z 2 ) .  
Indeed, we will use (4.10) in order to derive the PGFs for the waiting times in the next 
section. 

5. Waiting Times 
In this section, we consider the waiting times of supercustomers and individual cus- 

tomers. We first derive the PGF for the waiting time of a randomly chosen supercustomer 
in terms of the P G F  for the amount of work in the system. Next we obtain the PGFs for 
the waiting times of a randomly chosen individual customer in terms of the PGF for the 
amount of work in the system. 
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5.1. Waiting Time of a Randomly Chosen Supercustomer 
In this subsection, we consider the waiting time of a randomly chosen supercustomer. We 

define a supercustomer as a batch composed of individual customers moving to  the second 
queue at  the same time when the gate opens. Note here that it is possible that  there is 
no individual customer in the first queue when the gate opens. We regard such a case as 
an arrival of a supercustomer with zero service time at  the second queue. Let Wg denote 
a random variable representing the waiting time of a randomly chosen supercustomer. We 
define W,(z) as the PGF for W,. We then have the following theorem. (The proof is given 
in Appendix A.ll .)  

Theorem 5.1. T h e  PGF Ws(z) is  given b y  

where U(z) is given i n  (4.7) 

Remark 5.1. After some algebra with (4.10) and (5.1), we have the following relation- 
ship between the work in the second queue and the waiting time and the sojourn time of 
a supercustomer: 

Note that (5.2) can also be derived from the equality of the virtual delay and attained 
waiting time distribution (See, for example, [10, 11, 121). 

5.2.  Waiting Time of a Randomly Chosen Customer 
In this subsection, we consider the waiting time of a randomly chosen individual cus- 

tomer. Let W? (resp. W }̂ denote a random variable representing the waiting time of a 
randomly chosen customer in the first queue (resp. in the second queue). Note here that  
W?) and W? are dependent. We define Wc(zl, z2) as the joint PGF for W? and W?: 

We then have the following theorem. (The proof is given in Appendix A.12.) 

Theorem 5.2. T h e  joint PGF Wc(zl, z2) is  given b y  

where U(z) is given in (4.7). 

Let WC = W? + W? denote the total waiting time of a randomly chosen customer in 
the system. We then define WC (z), Wcl (z) and Wc2 (z) as the PGFs for WC, W'') and W?, 
respectively. Now we present a corollary which immediately follows from Theorem 5.2. 

Corollary 5.1. T h e  PGFs Wcl(z},Wc2(z) and Wc(z) are given b y  
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(5.7) (2) = Wb (4 ubac k (2) , 
respectively, where 

and  U(z) is given in (4.7). 

Remark 5.2. 

1. Wb(z) denotes the PGF for the waiting times of customers in the corresponding 
BBP/G/l  queue without gates, and Uback(z) denotes the PGF for the backward re- 
currence time of the gate opening interval given that the server is idle. This is a 
discrete-time example of the waiting-time decomposition property in the queue with 
generalized vacations [7]. 

2. After some algebra with (4.10) and (5.6), we have the following relationship between 
the work in the second queue and the waiting time and the sojourn time of an indi- 
vidual customer in the second queue: 

1 - C(z) 
U(1, z) = 1 - A1(l) + A ' ( l ) w )  

C' ( l )  (l - z )  

Note that (5.10) can also be derived from the equality of the virtual delay and attained 
waiting time distribution (See, for example, [10, 11, 121). 

6. Numerical Examples 
In this section, we provide some numerical examples. First we regard the second queue 

as an isolated system and observe the effect of the gate opening interval on the mean waiting 
time. More precisely, we consider the gate opening interval in terms of the covariances and 
the correlation coefficients. In introduction, we mentioned two types of correlations: 

0 type 1: correlation between the interarrival time G and the service time CS of each 
supercustomer, 

0 type 2: correlation between the interarrival time G of each batch composed of cus- 
tomers who move t o  the second queue at  the same time and the number BG of the 
customers. 

Then, the covariances and the correlation coefficients for the two types of correlation are 
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respectively. Note here that the correlation coefficients are increasing functions of the mean 
gate opening interval. 

8 

. IÃ‘ 

-(-> 

Figure 2: Effect of correlation (1) 

Now we observe the effect of the gate opening interval on the mean waiting time of 
supercustomers. We show the formula for the mean waiting time of supercustomers in 
Appendix A.14. To compare the result, we also consider a corresponding Geo/G/l queue 
where the PGF for the service time of a customer is G ( A ( 4 )  and the PGF for the interar- 
rival time of customers is G(z). Fig. 2 shows the mean waiting time of (super)customers in 
the second queue as a function of the parameter 7 in the following settings: (1) the number 
of individual customers arriving t o  the system in a slot is geometrically distributed with 
mean 0.6, (2) the service times of individual customers are deterministic and equal to  one 
slot. Note here that the increase of the parameter 7 implies the increase of the correlation 
coefficient between the interarrival time and the service time of each supercustomer. In 
Fig. 2, we observe that the positive correlation leads to the reduction of the mean waiting 
time of supercustomers, whereas the mean waiting time increases with the increase of the 
correlation coefficient. A similar observation has been shown in [2]. 

Next, we observe the effect of the gate opening interval on the mean waiting time of 
individual customers in the second queue. We show the formula for the mean waiting 
time of individual customers in Appendix A.15. To compare the result, we also consider a 
corresponding BBP/G/l  queue where the P G F  for the service time of a customer is C(z) 
and the PGF for the batch size (arriving to  the second queue) is (1 - y)G(B(z))  + 7. Fig. 
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Figure 3: Effect of correlation (2) 

3 shows the mean waiting time of individual customers in the second queue as a function 
of the parameter 7 in the same settings as those in Fig. 2. Note here that the increase of 
the parameter 7 implies the increase of the correlation coefficient between the interarrival 
time of the batches and the number of customers in each batch. In Fig. 3, we also observe 
that the positive correlation leads to  the reduction of the mean waiting time of individual 
customers in the second queue, whereas the mean waiting time increases with the increase 
of the correlation coefficient. 

Finally we observe the correlation between the waiting times of a randomly chosen 
individual customer in the first queue and in the second queue. Fig. 4 shows the correlation 
coefficients between the waiting times of a randomly chosen individual customer in the first 
queue and in the second queue, which are obtained by using numerical differentiation as 
a function of the parameter 7 in the following settings: (1) the number of individual 
customers arriving to  the system in a slot is geometrically distributed with mean 0.4, 0.6 
and 0.8, (2) the service times of individual customers are deterministic and equal t o  one 
slot. In Fig. 4, we observe that,  as expected, the correlation is negative and the correlation 
coefficient decreases with the increase of the parameter 7. Further, we observe that  the 
increase of the traffic intensity leads to  the increase of the correlation coefficient. 

Appendix: Proofs 
A.I.  Proof of Theorem 3.1 

By definition, QD (zi , Q) satisfies 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Analysis ofa Discrete-Time Queue 

Figure 4: Correlation between the waiting times in each queue 

Thus QD ,̂ z2) is obtained once we have P(zl ,  22). Using the memoryless property of the 
gate opening intervals, we have 

Let Y ^  denote a random variable representing the number of individual customers who 
arrive and remain in the first queue during the service time of a customer whose service 
starts immediately after the randomly chosen imbedded point. Also, let Y^ denote a 
random variable representing the number of individual customers who arrive and move to 
the second queue during the service time. Note here that Y^ and ~ ( ~ 1  are dependent. We 
define a random variable To as 

@ a 3 )  TG A { 1 if the gate opens at least once during the service time, 
0 if the gate does not open during the service time. 

Note here that Y^ = 0 if Tg = 0. We define H(zl ,  z2) as 

To derive an expression for H(% z2), we suppose that the service time of a randomly 
chosen customer is T (1 $ T < co) and the gate last opens in the kth (1 <, k 5 r )  slot 
during the service time of the customer. It follows that 
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Furthermore, we define O(zi, Q) as 

To obtain P(zi ,  z2), we now consider three exclusive events: 

e The preceding imbedded point is of type 1, there exists at least one customer in the 
second queue at  the preceding imbedded point and the gate does not open during the 
service time of the customer who is served immediately after the imbedded point, i.e., 
{Tp = l, x ( ~ )  > 0, TG = 0}, 

e The preceding imbedded point is of type 1, there exists at least one customer in 
the second queue at the preceding imbedded point and the gate opens during the 
service time of the customer who is served immediately after the imbedded point, i.e., 
{Tp = I ,x (~)  > O,TG = l}, 

e The preceding imbedded point is of type 2 and there exists at least one customer in 
the second queue, i.e., {Tp = 2, > O}. 

From the above observation, we obtain 

Setting zi = z2 in (A.7) and using (A.2), H(z2, z2) = C(B(,+)) - C(7B(z2)) and O(z2, z;) = 
C(B(z2)),  we have 

Using (2.4), (A.2) and. (A.8) in (A.7), we obtain 

from which and (A. l), (3.4) immediately follows. 

A.2. Proof of Theorem 3.2 
Iterating (3.14), we obtain for IzJ <_ 1 and M > 0 

We now need the following lemma. 

Lemma A.I.  
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1. The equation 6{zl) = z1 (\z\\ < 1) has a unique solution z[ and 4 i s  real. 

3. HEo converges for all 21 with lzll $: 1. 

The proof of Lemma A.1 is given in Appendix A.3. Letting M -  ̂oo in (A.10), then 
Lemma A.1 leads to the following expression for ^(^l): 

Thus (A . l l )  becomes 
(A.12) XP (21) = a(z1)lq.q). 

Letting z1 = 1 in (A.12), we obtain 

Substituting (A.13) into (A.12) leads to  

Also, letting z2 = 1 in (A.8), we have 

(3.15) immediately follows from (A. 14) and (A.15). 

A.3. Proof of Lemma A.1 
Using (3.9), we then find that 6 ( q )  = zl if and only if c(yB(zl))  = yB(zl)  and that 

!;(h)(7~(zl))  = 7 ~ ( 6 ( h ) ( z l ) )  (lzll 5 1, h = 1 ,2 ,  ...), where 

From the results in [g], we know that the equation i;(w) = W, \ W \  5 1 has a unique 
solution W*, that 0 < W* <: 1 and that l i m M 4 m w )  = W* for all W with lw 1 < 1. As 
17B(zl)l < 1 for all z1 with \zl\ 5 1, we conclude that the equation 6(z1) = zl, \z^\ 1 has 
a unique solution z\ = C(w*), is real, and that limM+OO gM)(z1) = z; for all 2:1 with 

1~11 < 1. 
Using (3.13)~ we have 
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Thus we obtain 

From the theory of infinite products, the infinite product 

converges if and only if the infinite sum 

converges. For some real ql (0 < ql < l ) ,  we have 

(A.23) b ( h + l ' ( ~ l )  - = \ d h ) ( z l )  - (4116' (ql ) I .  

Since Ibt(ql) 1 S 16'(1) 1 = y B t ( l ) C ' ( y ) ,  we obtain 

(A.24) 6 (h+1) (z l )  - S(h) ( z l )  1 <; 7 ~ ' ( 1 ) ~ ' ( 7 )  16(h)(21) - m ( z l )  1 .  
Similarly, we have for some real 1 7 ~  ( 0  < q2 < l), 

(A.25) I B ( < ( ~ + ~ ) ( Z ~ ) )  - B ( s ( ~ ) ( ~ ~ ) )  \ = i ~ ( ~ + l ) ( z ~ )  - 6 ( h ) ( z 1 ) l l ~ ' ( ^ ) [  

Since \B'(q'i)\ < 1; we obtain 

(A.26) - B ( ~ ( ~ ) ( z ~ ) )  1 < l b ( h + l ) ( ~ l )  - fi) 1. 
From (A.26),  it follows that 

We define xn as 

(A.28) 

Using (A.24),  we have 

<(n+l) (%) - b(n) ( z 1 )  B (6(")(21)) - m(-') ( z i )  ) 
,j(n) (^) - b(n-1) ( x i )  ~ ( b ( ~ + l )  ( z l ) )  - -,B(6(n+1) (a))  

Since - y B t ( l ) C t ( 7 )  < 1  and 

(A. 30) 

the infinite sum 

(A.31) 

converges, and therefore the infinite product 

also converges. 
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A.4. Proof of Corollary 3.1 
First we note that 

(A.33) Q., z)=C(B(z)) 

Furthermore, from (3.5) and (A.15), we have 

Letting z = z1 = 2 2 ,  and using (A.33) and (A.34) in (3.4), we obtain 

from which, (3.20) immediately follows. 

A.5. Proof of Lemma 3.1 
We observe the imbedded point preceding the service time of a randomly chosen cus- 

tomer. We then consider two events: 

e The imbedded point is of type 1 and there exists a t  least one customer in the second 
queue at  the imbedded point, i.e., {Tp = l, > O}, 

The imbedded point is of type 2 and there exists a t  least one customer in the second 
queue at  the imbedded point, i.e., {Tp = 2, X^ > O}. 

From the above observation and using (3.8), (A.I), (A.2) and (A.8), it follows that 

from which and (A.6), (3.23) immediately follows. 

A.6. Proof of Theorem 3.3 
Since the server is busy with probability B1(l)C'(l), we have 

We relate QA16usy(zl, z2) with Q(z1, z2). To do so, we define 6 and &' as random variables 
which represent the backward recurrence time of the service time of an individual customer 
and that of the gate opening interval, respectively. We then consider two events: 

The server is busy and the gate opened at least once during the backward recurrence 
time of the current service, i.e., {Ts = 1, > G } ,  
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0 The server is busy and the gate did not open during the backward recurrence time of 
the current service, i.e., {Ts = 1, C < G}. 

Let X  ̂denote a random variable representing the number of individual customers who 
arrive and remain in the first queue during the backward recurrence time of the service 
time of a customer who is served in a randomly chosen slot. Also, let X^ denote a 
random variable representing the number of individual customers who arrive and move 
to the second queue during the backward recurrence time of the service time. We define 
&z1,z2) as 

It  then follows from an argument similar to the one for (A.5) that  

from which, we obtain (3.30). We then have 

Finally, using Corollary 3.1, Lemma 3.1 and (3.26), we obtain 

from which, (3.28) follows. 

A.7. Proof of Corollary 3.2 
Setting z\ = z2 = z in (3.28), noting 

and using Corollary 3.1, it follows that 

from which, (3.31) follows. 
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A.8. Proof of Lemma 4.1 
We define H (zl , 2% W )  : 

A.9. Proof of Theorem 4.1 
By definition and using (3.19) and Lemma 4.1, we have 
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Note that 

(4.6) immediately follows from the above two equations. 

A.lO. Proof of Corollary 4.1 
Using (A.35) in (4.6), it follows that  

from which, (4.7) immediately follows. 

All. Proof of Theorem 5.1 
It follows that 

(A.50) 
,̂ 

Using (4.10) in (A.50), (5.1) immediately follows. 

A.12. Proof of Theorem 5.2 
We divide the waiting time of a randomly chosen customer into three parts: 

(A.51) W? = ~ ( 1 1 ,  ~ ' 2 1  = FW + D,  

where F(') (resp. F  ̂ ) denotes a random variable representing the waiting time of the 
batch which includes the randomly chosen customer in the first queue (resp. in the second 
queue), and D denotes a random variable representing the sum of the service times of 
customers who arrive in the same batch as the randomly chosen customer and are served 
before the randomly chosen customer. Note here that  F(') + F^) and D are independent. 

Now we define the following PGFs: 

First we consider F(z l ,  Q). Let G^ denote a random variable representing the remaining 
gate opening interval. Also, let ~ 2 '  and W, denote random variables representing the 
amounts of work in the first queue and in the second queue, respectively, immediately 
before the arrival of a randomly chosen customer. Note that the joint distribution of 
the amount of work immediately before arrivals is identical to that  a t  the beginning of a 
randomly chosen slot, since customers arrive to  the system according t o  a batch Bernoulli 
process [3]. Thus, it follows that 
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On the other hand, D ( z )  is given by 

1 - A(z)  
D(z)  = 

B' ( l )  ( l  - C ( z ) )  ' 

We then have 
(A.55) Wc(-2) = F(z^z,)D(z2).  

Using (4.10) in (A.55), (5.4) immediately follows. 

A.13. Proofof Theorem 5.1 
Letting z-f = 1 ,  zl = 1 and zl = z2 = z in (5.4) ,  we obtain (5.5) ,  (5.6) and (5.7) ,  

respectively. 

A.14. Mean Waiting Time of Supercustomers 
We consider the mean waiting time of supercustomers Â£'[Ws] From ( 5 . 1 ) ,  we have 

Using Theorem 3.2, Corollary 4.1 and (A.34), we obtain 

O0 '̂(i5("' ( l ) )  h(")' ( l )  7 + - ~ ' ( l ) .  
n=O 1 - 7  

Thus. we have 

A.15. Mean Waiting Times of Individual Customers 
We consider the mean waiting times of individual customers E [ w i l ) ] ,  Â£[wJ2) and 

E[Wc] .  From (5.5), it follows that 

From (5.6), we obtain 

where U 1 ( l )  is given in (A.57). Moreover, we have 

(A.61) E W C ]  = E [W:')] + E [wL2)] 
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