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Abstract This paper is concerned with a variational problem with inequality phase constraints. We
present second-order necessary conditions (Legendre condition) for weak minirnal solutions of the variational
problem. Our optimality conditions give an information about the Hessian of the integrand at not only
inactive points but also active points. Since the present constraints do not include &, our conditions differ
from the Legendre-Clebsch condition.

1. Introduction

This paper is concerned with a variational problem with one-sided phase constraints:

L /1 t oz \dt
minimize | flt,z,2)
subject to z(0) = z9, (1) =z1, =z € Xo,
() a(t) < z(t) Vte[0,1],

where f(t,z, &) is a continuous function defined on R1*"+" X is the space of all n-dimensional
vector-valued absolutely continuous functions z : [0,1] — R" equipped with the norm

lzllx, = nax ()]l +etss[sl1§>||§7(t)||, (1.1)

where esssup denotes the smallest number M such that ||z(t)|| < M for almost everywhere
[0,1]. The end-points 2 and x; are given points in R a : [0,1] — R" is a given continuous
function and a(t) < z(t) means the component wise inequalities. We assume that f(¢,z, &)
is twice continuously differentiable w.r.t. £ and . We give second-order necessary conditions
(Legendre condition) for weak minimal solutions of (Pp). A local solution Z in the sense of
the norm || - ||, is said to be weak, and Z in the sense of the norm maxep 7 [|z(t)]| is
said to be strong. We encounter the one-sided phase constriant, for example, production
planning and planning mathematics of the employment, see pp. 234, 253 in {18].

In the literature, we can find many second-order necessary optimality conditions (Weier-
strass condition, Legendre-Clebsch condition, Legendre condition, maximum principle) for
variational problems or optimal control problems with various types of constraints: equality,
inequality or set constraints, {1] [2] [4] [5] [6] [7] {8] [9] [10] [12] [13] [18] [19] [20] [21] [22]
(23] [25]. All of them except [23] dealt with strong minimal solutions or mixed constraints
g(t,x, &) < 0, where g; is of full rank for the active constraints, which is never satisfied by
the present constraint a(t) —z(t) < 0. We note that Pales and Zeidan [23] dealt with optimal
control problem where the objective function is a supremum-type function.
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Our optimality conditions give an information about f;; at not only inactive points
(a(t) < z(t)) but also active points (a;(¢) = zi(t) for some ), where a;(t) denotes the i-th
component of a(t).

2 Preliminary results

Let X,V and W be Banach spaces. Let K be a closed convex cone of V with non-empty
interior int K. We denote by V* the topological dual space of V. The polar cone of K is
defined by K° = {v* € V¥ < v*,v >< 0 Vv € K}.

In this section, we consider the following abstract optimization problem with generalized
equality and inequality constraints:

(P) minimize F(z)
subject to G(z) € K, H(z)=0.

where F: X - R, G: X —» Vand H: X — W are twice continuously Fréchet differentiable
mappings. We denote by F'(z) and F"(z) the first and second Fréchet differential of F(z),
respectively. -

Now, let  be a weak minimal solution of (P). A direction y € X is said to be critical at
z if

F'(2)y =0, G'(z)y € clecone(K — G(z)), H'(z)y =0,

where clcone A denotes the closure of the conical hull of A.

A feasible solution Z is said to satisfy the Mangasarian-Fromovitz condition (regular) if

(2) H'(z): X — W is onto

(22) JzeX s.t. H(z)2=0, G(z)+G'(z)z€int K.
The following theorem can be found in e. g. Ben-Tal and Zowe [3], Kawasaki [14].

Theorem 2.1 Letz be a regular minimal solution of (P). Then, for each critical direction
y at T satisfying

G'(z)y € cone(K — G(z)), (2.1)
there exist v* € K° and w* € W™ such that
L'(z)=0, (2.2)
L"(z)(y,9) >0, (2.3)
<v*,G(z)>=0, <v*' G (2)y>=0, (2.4)
where
L(z) = F(2)+ < v*,G(z) > + < w*,H(z) > . (2.5)

3 Main theorems

Let z(t) be a weak minimal solution satisfying a(0) < xq and a(1) < z1 for (Py). We use
the following abbreviated notation:

j(t) = f(tv i(t)’ :—r(t))v ji(tv :‘_v(t)a“%(t))’ etc.
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All vectors except gradient vectors are column vectors. For each a € R®, we denote al the
transpose of a and by a; denotes the i-th component of a. For each t € [0, 1], we define

Jr(t)={i; 36 >0s.t. & >a;on (t,t+6)},

Jp(t)={¢; 38>0s.t & >a;on (t—861)}

A function Z is said to be piecewise smooth if [0, 1] is divided into a finite number of
subintervals and the function has continuous derivative on each subintervals.

Theorem 3.1 Let Z(t) be a piecewise smooth weak minimal solution satisfying a(0) <

z(0) and a(1) < Z(1) for (Py). Put

A(t) = /0 (1) Tdr — T ()T (3.1)
Then

(2)  Xi(2) is nondecreasing and increases only on {t ; a;(t) = z;(t)},
(i) ELfua(t—0)E >0 VE satisfying & = 0 for i & J (1),
(¢id)  ETfia(t +0)E >0 V& satisfying & = 0 for i & Jp(t).

We can find (i) in [18]. This condition can be regarded as an inequality version of the
Euler-Lagrange equation. So we call it the Euler-Lagrange condition for the one-sided phase
constraints.

For the sake of better understanding, let us consider the case of n = 1. Then (ii) and
(1ii) amount, respectively, to

f2:(t=0)>0if 36 >0, ; > aon (t—§1), (3.2)

fex(t+0)>0if 36 >0, ; = > aon (¢ +6). (3.3)

Fig. 3.1 is a standard picture of z(t). In Fig. 3.1, the above conditions assert that fiz >0
on [0, 2] U [t3,1]. The following theorem gives an information about f;; on [t3,13].

Theorem 3.2 Let Z(t) be a piecewise smooth weak minimal solution satisfying a(0) < xo
and a(1) < z) for (Py). Let Er(t) denote the set of all indicesi & Jr(t) for which the Euler
equation w. r. t. z;

d - -
o = In (34)

holds a. e. on (t — é,t] for some § > 0. Then we may replace, in (ii) of the previous
theorem, £ =0 by

&i>0forie Ep(t), & =0forie Jp(t)U EL(t).
Similarly, let ER(t) denote the set of all indices ¢ € Jr(t) for which the Euler equation w.
. t. i holds a. e. on [t,t+ ) for some § > 0, then we may replace, in (1) of the previous
theorem, & =0 by & > 0 for ¢ € Eg(t),& = 0 for i € Jr(t) U Eg(t).
It is clear that we may replace [0, 1] with any bounded closed interval [c,d] in the above

theory.
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Example 3.1 Let us consider the following problem on [0, 2]:

minimize /2{4.7: — 2}dt
0
subject to z(0) = z(2) =1,
z(t) >0 Vte[0,2)

Take
~t2—t+1 on [0, 3%1],

zZ(t) =10 on [¥3=1 5=45]
—t245t -5 on [5%@,2],
see Fig 8. 2. Then A(t) defined by (3.1) is
—2 on [0, 3[52;1],
A(t) =14 4t on [¥3=1 5=¥5)
10 on [§32@,2],

which is nondecreasing, see Fig 3.3. Hence Z(t) satisfies the Euler-Lagrange condition. But
it follows from Theorem 3.1 that Z(t) is not a weak minimal solution, since f3;(t) = —2 < 0.

Theorem 3.1 can not exclude the following non-minimal solution.

Example 3.2 Let us consider the following problem on [—2,2].

2
minimize /_2( I
subject to z(~2) = z(2) =1, a(t) < z(t) Vt € [-2,2],

where a(t) is given by Fig. 3.4. Take z(t) = 1. Then A(t) defined by (3.1) is identically
zero. Thus Z(t) satisfies the Euler equation (3.4). Moreover, Z(t) satisfies all conditions of
Theorem 3.1. But it follows from Theorem 3.2 that Z(t) is not ¢ weak minimal solution,
since fpp(t) =2(t2 - 1) <0 on (=1,1).

4 Proofs of the theorems
Define F : Xg — R, G : Xo — (C[0,1])®, H : X — R*" and K C (C[0,1])" by
1
F()= [ f(t,a,)d,

G(z) =a -1z,
H(z) = (2(0) — 2o, 2(1) — 1),
K = {v € (C[0,1])";v(¢) < OVt € [0,1}}.

Then the problem (Pp) is expressed as (P). Furthermore, F', G and H are twice continuously
Fréchet differentiable and their first and second Fréchet differentials are given by

1 _ -
Py = [ {Fay+ Feidat, (4.1)
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F'(z)(y,y) = /Ol{nyuy +2y" fosy + 47 Fasi}t, (4.2)
G'(z)y = -y, G"(@)y,y)=0, (4.3)
H(@y = GO0, 7@ = (3 ) (4.4)

see e. g. Girsanov [11] and Ioffe and Tihomirov [13]. It is easily seen that the Mangasarian-
Fromovitz condition is satisfied at & if a(0) < x¢ and (1) < ;. Hence we may apply
Theorem 2.1 to (Py). By Riesz’s representation theorem, the Lagrange function L(z) is
represented as

1
L(z) = /01 fdt+ /01 d\T(a —z) + kgzjouf(x(k) — ), (4.5)

where pg, 43 € R® and X : [0,1] — R"™ is a component wise nondecreasing function and
increases only on {#;a;(t) = z;(t)}, see e. g. Rudin [24], Luenberger [18]. It follows from
(2.2), (4.1), (4.3) and (4.4) that

Yor LT, L5, T
/0 {foy + fei}dt — /0 A3y + 3 pry(k) =0
k=0
for all y € X. By integration by parts, we get
1 t t 1 1
A Ty, o T _
/0 {f: /0 frdr +/0 dA” }ydt + {/0 fedr /0 dA\" +m}y(1) =0
for all y with y(0) = 0; see 18], [13]. Hence we have
- t_
fa(t) — / fo(T)dr + AT (1) = constant = ¢T  a.e. (4.6)
0

Now, let 7 be an arbitrary point of (0,1]. For any s < 7 sufficiently close to 7 and sufficiently
small o > 0, put

2/ Ht—s+0) on[s—as— 5]
ho(t) = § —2/7 Yt —s) on [s —_%,s] (4.7)
0 otherwise,
and
Yo(t) = hy ()€, (4.8)
where £ € R" is an arbitrary vector which satisfies
Here we note that
JL(T) C JL(S). (4.10)
Then we see that
G'(2)ys = -y, € cone (K — G(Z)). (4.11)
Indeed, (4.11) is equivalent to
Ja>0 st ay.(t)—a(t)+z(t) >0 Vte(0,1]. (4.12)
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For any ¢ & Jr(7), since y,i(t) = 0, the ¢-th inequality of (4.12) holds. For any ¢ € Jp(7),
since | y5i(t) [< o | & | and a;(t) < Zi(t) on [s — o, s], the i-th inequality of (4.12) holds.
Thus we get (4.11).

Moreover, since y5(0) = y,(1) = 0, we have

(@ = || (Favo + Teioddt = [ (o= [ Fedr)iot
- /Ol(c — 0T jdt = /01 ATy, =0,

where the last equality follows from the complementary condition (2.4). Therefore y, is a
critical direction. Hence, by Theorem 2.1, we have

0 < L"(z)(¥e,yo)
= /_a(gT}‘zzéhg + 2£szi£haila + fT}i'xéhi)dT. (4.13)
Putting M = max{| (T foo ()¢ |;t € [s — 0,s]}, we have | [_, €T fou€h2dt| < [P , Modt =

O(c?). Similarly the second term of (4.13) is O(o). By mean-value theorem, the third term
is equal to

3 —_ -
107 [* € Tuatdt = 467 Fuato)€
for some t, € (s — o,s). Hence, from (4.13),
0 < 0(0?) + O(0) + 4¢7 fi:(to)E.
Since t, — s as ¢ — 0, we get _
€7 Fax(s)€ 2 0.
Taking s — 7, we have B
€' Fux(r — 0)¢ 2 0.

The assertion (iii) is similarly obtained. This completes the proof of Theorem 3.1.
Next, we prove Theorem 3.2. We define y, by (4.8), where £ € R” is an arbitrary vector

which satisfies £>0 Vie Ey(r)
1 Z 2 L\T
{g; 20 Vi€ Ji(r)UEL(r) (4.14)

Then we see that
—ys € cone (K — G(7)). (4.15)

Indeed, for : € Er(r), the i-th component of the left-hand sided of (4.12) is
ayei(t) — ai(t) + Z(t) > zi(t) — ai(t) >0 Vi
So the i-th inequality holds. It follows from the Euler equation (3.4) that
1 t
I~ _ r 7 . —
Fla = [ {7 - [ Fedthindt =0.

Thus yg is critical. The rest is as in the previous proof. This completes the proof of Theorem
3.2.
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()

Figure 3.2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



492

H.Kawasaki & S.Koga

A1)

Figure 3.3
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