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Abstract This paper is concerned with a variational problem with inequality phase constraints. We 
present second-order necessary conditions (Legendre condition) for weak minimal solutions of the variational 
problem. Our optimality conditions give an information about the Hessian of the integrand at not only 
inactive points but also active points. Since the present constraints do not include X, our conditions differ 
from the Legendre-Clebsch condition. 

1. Introduction 

This paper is concerned with a variational problem with one-sided phase constraints: 

mInImIze 10
1 

f(t, x, ±)dt 

subject to x(O) = Xo, x(l) = Xl, X E Xo, 
(Po) a(t) :::; x(t) Vt E [0,1], 

where f(t, X, ±) is.a continuous function defined on RHn+n, Xo is the space of all n-dimensional 
vector-valued absolutely continuous functions X' : [0,1] -+ Rn equipped with the norm 

Ilxllxo = max Ilx(t)11 + esssupll±(t)lI, 
tE[O,I] tE[O,I] 

(1.1) 

where esssup denotes the smallest number M such that 11±(t)11 :::; M for almost everywhere 
[0,1]. The end-points Xo and Xl are given points in Rn, a : [0,1] -+ Rn is a given continuous 
function and a(t):::; x(t) means the component wise inequalities. We assume that f(t,x,±) 
is twice continuously differentiable w.r.t. X and :r. We give second-order necessary conditions 
(Legendre condition) for weak minimal solutions of (Po). A local solution x in the sense of 
the norm 11 . Ilxo is said to be weak, and x in the sense of the norm maxtE[O,I]llx(t)11 is 
said to be strong. We encounter the one-sided phase constriant, for example, production 
planning and planning mathematics of the employment, see pp. 234,253 in [18]. 

In the literature, we can find many second-order necessary optimality conditions (Weier­
strass condition, Legendre-Clebsch condition, Legendre condition, maximum principle) for 
variational problems or optimal control problems with various types of constraints: equality, 
inequality or set constraints, [1] [2] [4] [5] [6] [7] [8] [9] [10] [12] [13] [18] [19] [20] [21] [22] 
[23] [25]. All of them except [23] dealt with strong minimal solutions or mixed constraints 
g( t, x, ±) :::; 0, where g!E is of full rank for the active constraints, which is never satisfied by 
the present constraint a( t) - x( t) :::; 0. We note that Pales and Zeidan [23] dealt with optimal 
control problem where the objective function is a supremum-type function. 
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Our optimality conditions give an information about fxx at not only inactive points 
(a(t) < x(t» but also active points (aj(t) = Xj(t) for some i), where aj(t) denotes the i-th 
component of a(t). 

2 Preliminary results 

Let X, V and W be Banach spaces. Let /( be a closed convex cone of V with non-empty 
interior int /(. We denote by V* the topological dual space of V. The polar cone of /( is 
defined by /(0 = {v* E V*; < v*,v >::; 0 Vv E /(}. 

In this section, we consider the following abstract optimization problem with generalized 
equality and inequality constraints: 

(P) minimize F( x) 
subject to G(x) E /(, H(x) = O. 

where F : X - R, G : X - V and H : X - Ware twice continuously Frechet differentiable 
mappings. We denote by F'(x) and F"(x) the first and second Fnkhet differential of F(x), 
respectively. 

Now, let x be a weak minimal solution of (P). A direction y E X is said to be critical at 
x if 

F'(x)y = 0, G'(x)y E clcone(I< - G(x», H'(x)y = 0, 

where clcone A denotes the closure of the conical hull of A. 
A feasible solution x is said to satisfy the Mangasarian-Fromovitz condition (regular) if 

(i) H'(x): X - W is onto 

( ii) 3z E X $. t. H'(x)z = 0, G(x) + G'(x)z E int I<. 

The following theorem can be found in e. g. Ben-Tal and Zowe [3], Kawasaki [Ill]. 

Theorem 2.1 Let x be a regular minimal solution of (P). Then, for each critical direction 
y at x satisfying 

G'(x)y E cone(I< - G(x», 

there exist v· E /(0 and w· E W* such that 

where 

3 Main theorems 

L'(x) = 0, 

L"(x)(y,y) ::::: 0, 

< v*,G(x) >= 0, < v*,G'(x)y >= 0, 

L(x) = F(x)+ < v*, G(x) > + < w*, H(x) > . 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Let x(t) be a weak minimal solution satisfying a(O) < Xo and a(l) < Xl for (Po). We use 
the following abbreviated notation: 

](t) = f(t, x(t), fc(t», ]x(t, x(t), fc(t», etc. 
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All vectors except gradient vectors are column vectors. For each a E Rn, we denote aT the 
transpose of a and by ai denotes the i-th component of a. For each t E [0, 1], we define 

JR(t) = {i; 3b > 0 s.t. ;1:; > a; on (t, t + b)}, 

h(t) = {i; 3b> 0 s.t. :I:i > ai on (t - b,t)}. 

A function x is said to be piecewise smooth if [0, 1] is divided into a finite number of 
subintervals and the function has continuous derivative on each subintervals. 

Theorem 3.1 Let x(t) be a piecewise smo.o.th weak minimal so.lutio.n satisfying a(O) < 
x(O) and a(l) < x(l) fo.r (Po). Put 

A(t) = lot Ix(r)T dr -fx(tf. (3.1 ) 

Then 

(i) Ai(t) is no.ndecreasing and increases only o.n {t ; ai(t) = Xi(t)}, 
(ii) ~Tlxx(t- O)~ ;::: 0 V~ satisfying ~i = 0 fo.r if/. h(t), 

(iii) ~Tlxx(t + O)~ ;::: 0 V~ satisfying ~i = 0 fo.r i f/. JR(t). 

We can find (i) in [18]. This condition can be regarded as an inequality version of the 
Euler-Lagrange equation. So we call it the Euler-Lagrange condition for the one-sided phase 
constraints. 

For the sake of better understanding, let us consider the case of n = 1. Then (ii) and 
(iii) amount, respectively, to 

lxx(t - 0) ;::: 0 if 3b > 0, x> a on (t - b, t), 

fxx(t + 0) ;::: 0 if 3b > 0, x> a·on (t, t + b). 

(3.2) 

(3.3) 

Fig. 3.1 is a standard picture of x(t). In Fig. 3.1, the above conditions assert that h:x ;::: 0 
on [0, t2] U [t3, 1]. The following theorem gives an information about lxx on [t2' t3]. 

Theorem 3.2 Let x(t) be a piecewise smo.o.th weak minimal so.lutio.n satisfying a(O) < Xo 
and a(l) < Xl fo.r (Po). Let EL(t) deno.te the sd o.f all indices if/. h(t) fo.r which the Euler 
equatio.n w. r. t. X·i 

(3.4) 

ho.lds a. e. o.n (t - b, t] fo.r so.me b > O. Then we may replace, zn (ii) o.f the previo.us 
theo.rem, ~i = 0 b~f 

~i ;::: 0 for i E EL(t), ~i = 0 for i E h(t) U EL(t). 

Similarly, Id ER(t) deno.te the set o.f all indices i f/. JR(t) fo.r which the Euler equatio.n w. 
r. t. Xi ho.lds a. e. o.n It, t + 15) fo.r so.me 15 > 0, then we may replace, in (iii) o.f the previo.us 
theo.rem, ~i = 0 by ~i;::: 0 fo.r i E ER(t),~i = 0 fo.r i E JR(t) U ER(t). 

It is clear that we may replace [0, 1] with any bounded closed interval [e, d] in the above 
theory. 
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Example 3.1 Let us conS1der the following problem on [0, 2j: 

minimize 10
2 

{4x - j;2}dt 

Take 

subject to x(O) = x(2) = 1, 

x(t) ~ 0 Vt E [0,2J. 

{ 

_t2 - t + 1 

x(t) = 0 

_t2 + 5t - 5 

on [0 /5-1J 
, 2 ' 

on[~ 5-0 J 
2 ' 2 ' 

on [5-0 2J 2 , , 

see Fig 3. 2. Then >.(t) defined by (3.1) is 

{ 

-2 

>.(t) = 4t 

10 

on[O~J , 2 ' 
on[~ 5-0J 

2 ' 2 ' 
on [5-/5 2] 

2 ' , 

which is nondecreasing, see Fig 3.3. Hence x(t) satisfies the Euler-Lagrange condition. But 
it follows from Theorem 3.1 that x(t) is not a weak minimal solution, since IH(t) ::::::: -2 < O. 

Theorem 3.1 can not exclude the following non-minimal solution. 

Example 3.2 Let us consider the following problem on [-2,2J. 

minimize 12 (t 2 -1)±2dt 
-2 

subject to x( -2) = x(2) = 1, a(t) ::; x(t) Vt E [-2,2], 

where a(t) is given by Fig. 9.4. Take x(t) ::::::: 1. Then >.(t) defined by (3.1) is identically 
zero. Thus x(t) satisfies the Euler equation (3.4). Moreover, x(t) satisfies all conditions of 
Theorem 3.1. But it follows from Theorem 3.2 that x(t) is not a weak minimal solution, 
since lxx(t) = 2(t2 - 1) < 0 on (-1,1). 

4 Proofs of the theorems 

Define F : Xo -t R, G: Xo -t (C[O, lW, H : Xo -t R 2n and J( c (C[O, l])n by 

F(x) = 10
1 

f(t,x,±)dt, 

G(x)=a-x, 

H(x) = (x(O) - xo, x(1) - Xl), 

J( = {v E (C[O,I]t;v(t)::; OVt E [0, I)}. 

Then the problem (Po) is expressed as (P). Furthermore, F, G and H are twice continuously 
Frechet differentiable and their first and second Frechet differentials are given by 

(4.1 ) 
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F"(x)(y, y) = 10
1 
{yTlxxY + 2yTlxxY + yTlxxy}dt, 

G'(x)y = -y, G"(x)(y, .y) = 0, 

H'(x)y = (y(O),y(I)), H"(x)(y,y) = (~~), 

487 

(4.2) 

(4.3) 

( 4.4) 

see e. g. Girsanov [11] and Ioffe and Tihomirov [13]. It is easily seen that the Mangasarian­
Fromovitz condition is satisfied at x if a(O) < Xo and a(1) < Xl. Hence we may apply 
Theorem 2.1 to (Po). By Riesz's representation theorem, the Lagrange function L(x) is 
represented as 

I I I 
L(x) = [ f dt + [ d> . .T(a -- X) + L Jlf(x(k) - Xk), 

10 10 k=O 
(4.5) 

where Jlo, III E Rn and ,\ : [0,1] -t Rn is a component wise nondecreasing function and 
increases only on {t; ai(t) = Xi(t)}, see e. g. Rudin [24], Luenberger [18]. It follows from 
(2.2), (4.1), (4.3) and (4.4) that 

1 I 1 
[ UxY + lxy}dt - [ d)\T Y + L Jlfy(k) = 0 

lo lo k=O 

for all y EX. By :integration by parts, we get 

10
1 
Ux -llxdr + l d,\T}iJdt + {lol lxdr - 101 

d,\T + Jldy(1) = 0 

for all y with y(O) = 0; see [18], [13]. Hence we have 

lx(t) -llx(r)dr + ,\T(t) = constant = eT a.e. (4.6) 

Now, let r be an arbitrary point of (0,1]. For any s < r sufficiently close to r and sufficiently 
small c> > 0, put 

{

2J(T-\t-S+C» on [s-c>,s-~] 
hn(t)= _2y'(71(t-s) on[s-~,s] 

o otherwise, 

(4.7) 

and 
YlT(t) = h<T.(t)~, (4.8) 

where ~ E Rn is an arbitrary vector which satisfies 

~i=O VitJh(r). (4.9) 

Here we note that 
her) C h(s). ( 4.10) 

Then we see that 
G'(x)YlT = -yn E cone (l( - G(x)). (4.11) 

Indeed, (4.11) is equivalent to 

:la> 0 s.t. aYlT(t) - aCt) + x(t) ;:::: 0 Vt E [0,1]. ( 4.12) 
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For any i f/. h(r), since Yui(t) == 0, the i-th inequality of (4.12) holds. For any i E h(r), 
since 1 Yui(t) I::; ~ 1 ei 1 and ai(t) < Xi(t) on [8 - a,s], the i-th inequality of (4.12) holds. 
Thus we get (4.11). 

Moreover, since Yu(O) = Yu(l) = 0, we have 

where the last equality follows from the complementary condition (2.4). Therefore Yu is a 
critical direction. Hence, by Theorem 2.1, we have 

o ::; L" (x )(Yu, Yu) 

l
s T - 2 T - . T - . 2 

= s-u (e fxxehu + 2e fxxehuhu + e fxxehu)dT. (4.13) 

Putting M = max{1 eT]xx(t)e I; t E [s - a, s]), we have 1 fLu er]xxeh~dtl ::; fLu Madt = 
0(a2 ). Similarly the second term of (4.13) is O(a). By mean-value theorem, the third term 
is equal to -11S 

T- T-4a s-u e fHedt = 4e ixx(tu)e 

for some tu E (s - a,s). Hence, from (4.13), 

Since tu -t S as a -t 0, we get 
T-e fxx(s)C~ o. 

Taking s -t r, we have 
T-e ixx(r - O)e 2 o. 

The assertion (iii) is similarly obtained. This completes the proof of Theorem 3.l. 
Next, we prove Theorem 3.2. We define Yu by (4.8), where e E Rn is an arbitrary vector 

which satisfies 
Vi E EL(r) 
Vi E h(r) U EL(r). (4.14) 

Then we see that 
-Yu E cone (K - G(x)). ( 4.15) 

Indeed, for i E EL(r), the i-th component of the left-hand sided of (4.12) is 

aYui(t) - ai(t) + Xj(t) 2 Xi(t) - ai(t) 20 Vt. 

So the i-th inequality holds. [t follows from the Euler equation (3.4) that 

Thus Yu is critical. The rest is as in the previous proof. This completes the proof of Theorem 
3.2. 
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