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Abstract In this paper we consider multistage decision processes in Bellman and Zadeh’s paper “Decision-
making in a fuzzy environment” from a mathematical view-point. We propose another recursive equation
which solves both stochastic and deterministic multistage decision processes in a fuzzy environment in their
sense. Our result for deterministic processes coincides with their result. However, our result for stochastic
processes is more or less different from theirs. Our “stochastic” recursive equation is derived through invariant
imbedding. On the other hand, their “stochastic” recursive equation is a direct analogy for their deterministic
one. As an example, we illustrate their numerical data, which verify the equality between simultaneous and
sequential optimizations.

1 Introduction

It has been well known that dynamic programming is an iterative optimization tech-
nique which assures that in a sequential deterministic or stochastic system the simultaneous
optimization is attained and calculated through a sequential optimization [1], [4]. The se-
quential optimization — optimization of expected value for stochastic problem — reduces to
a recursive formula, which is sometimes called “recursive equation” or “Bellman equation”.

In this paper, from such a dynamic programming viewpoint — sequential optimization
assures simultaneous one —, we consider the stochastic decision-making problem in a fuzzy
environment in Bellman and Zadeh [2].

Throughout the paper we use the same notations and problems as in [2]. However, we
introduce a different notion and analysis from theirs. In Section 2, we consider the stochastic
decision processes in a rigorous way. In Section 3, we treat the deterministic decision process
as a special case of stochastic ones. On the other hand, Bellman and Zadeh have first derived
mathematically a recursive equation for deterministic process. Then for stochastic process
they have just replaced formally the recursive equation with a stochastic version through a
straightforward analogy. This is a main difference between their approach and ours. Section
4 illustrates a numerical example.

2 Stochastic Multistage Decision Processes

We use the notations in §4 (Deterministic) Multistage Decision Processes and §5 Stochastic
Systems in a Fuzzy Environment in Bellman and Zadeh [2, pp. B151-B155]. In this section,
we focus our attention on [2, §5].

First, let us cite their stochastic multistage decision processes [2, pp. B153] in the fol-
lowing style.

As in the preceding (deterministic) problem, assume that the termination time N is fixed
and that an initial state xqg is specified. The system is assumed to be characterized by a
conditional probability function p(zy41 | x¢, ). The problem is to maximize the probability
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468 S. Iwamoto & T.Fujita

of attainment of the fuzzy goal at time N, subject to the fuzzy constraints C,.. ., chN-1,
If the fuzzy goal GV is regarded as a fuzzy event in X, then the conditional probability
of this event given zy_1 and uy_; is expressed by

Prob(GY | 2n_1,un-1) = Epgn(azn) = Y. p(an | eN-1, un—1)ner(zy) (1)
N

Where E denotes the conditional expectation and ggv is the membership function of the
given fuzzy goal.

From a notational viewpoint, Eugr(zy) may be replaced with the adequate notation
Epgn(e | zy_1,un—1). Thus Eq (1) had better be replaced with

Cond.Exp(GY | zy_1,un—1) = Epgn(e | an_1,un_1) = > plen | en_1,un—1)ugv(zN).

TN

(2)

We observe that Eq (1) expresses Prob(GY | zy_;,un_1) or, equivalently, Eugn(zn),

as a function of zy_; and un_j, just as in the preceding (deterministic) problem pgn(zy)
was expressed as a function of zy_; and uy_; via the deterministic dynamics

Ti41 = f(a:t,ut), t=0,1,2,--- (3)

This implies that Epgv(zy) can be treated in the same way as pgrv(zny) was treated in
the nonstochastic case, thus making it possible to reduce the solution of the problem under
consideration to that of the preceding problem.

More specifically, the deterministic recurrence equations

;LGN—u(.’L‘N_,,) = MaXuN_v(ﬂN_,,(UN_,,) A NGN—"+1(‘7"N——V+1)) (4)

TN-p+1 = feN_vyun_y), v=1,---,N, (5)

are replaced by the stochastic ones

per-v(zN_y) = Maxuy_, (uN—v(un_p), Epgr-vir(TN-141)) (6)
E/‘GN“’“(-TN—V-H) = Z p(xN—V+1 |IEN_,,,uN_,,)/th—u+1(.’tN_,,+1)) (7)
IN—y+1

where pgn-+(zn-p) denotes the membership of the fuzzy goal at ¢ = N — v induced by the
fuzzy goal at t = N —v+1,vr=1,..-,N.
The Eqs (6), (7) may be replaced with the following equations:

pen-v(aN_p) = Maxuy_, [un—v(un—y) A Epgr-ver(e | TNy, uN—v)] (8)
Epgn-vir(o | zN_py,un_p) = Z p(zN—u+1 | xN—V’uN—II)”GN_"+1($N—V+1)' (9)

IN-—v41

In fact, their Example in [2, pp. B154-B155] is calculated through Eqs (8), (9) (See also (3,

pp- 153], [5, pp. 172]).
Second, let us consider the conditional optimization problem subject to a successive
constraint as follows:

Maximize E[uo(uo) A pi(ur) A+ Apy-_1(un_1) A pgr(zn)]
subject to  (1)n Tny1 ~p(® | Tp,up) 0 <R <N -1 (10)
(pun €U0 <N -1
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Stochastic Decision-Making 469

where F denotes the expectation (integral) operator on U x X x U x X .. x U x X induced
from the conditional probability functions p(zn+1 | Zn,us), a policy 7 = {mo, 71, -, 7*N—-1}
and an initial state 9. Now, let us define for any given zy_, the subproblem:

pev-v(en_y) = Max Elpn_p(uny_,) A Apn_1(un_1) A pgr(zN)
| (D)m, () N—v <m <N -1} (11)
Then we want to find a recursive equation between value pgn--(zy_,) and function {pggr-v+1
(zn_p+1)}. However, it is somewhat difficult to get such an equation [4]. Thus, we imbed

the problem into the following family of parameterized problems. Let us consider for any
given zy_, and A the maximization problem:

pon-v(zN_p; A) = Max EAA pn_p(un_p) A--- ApnN_1(un-1) A pgn(zN)

| m, (B)m N—v<m< N —1] (12)
1<v<N
pen(zn;A) = AA pgn(zy) 0<A <L (13)

Then we have the recursive equation between value pgy-» (¢ §y—,; A) and two-variable function
{nern-vrr(zN—v415 A) }:

Theorem 1

pon-v(EN-v;A) = Maxuy_, D pen-var (TNt AA pN o (un—v))

IN-—v41
X p(TN-v+1 IxN—wuN—v) (14)
zy_,€X, 0<A<1 v=1,2,---,N

pen(zn;A) = AApgv(zy) v €X, 0<ALL (15)
Proof We have the identity
AN[(pn—v(un—p) A+ Apn_1(un-1) A pon(zN)]
=AA Ny (uN ) AN —p1(uN s ) A Apnoi(un-a) A pgn ()] (16)
We note that the common value is denote by
AN pN_y(un_y) A Apn_1(un—1) A ugn(zN).

This completes the proof.0]

Let #x_y(zN—v;A) be any value of uy_, which attains the maximum in Eq (14).
We call the sequence # = {#o, %1,---,%n_1} an optimal policy for parametrized problems
(12),(13). In the following, we should discriminate one-variable function pggy-»(zn_,) from
two-variable function pgy-v(TN-y; A). In general, we have the inequality

pon-v(TN_u; A) # AN pen-v(TN—y) v=12..-,N—1. (17
(See [4]). However, we have for a sufficiently large value A of A
parn-v(TN-y) = pan-v(TN-v; )). (18)
For instance, choose A satisfying

;\Zum(um) upn €U N—-v<m<N-1
;\Z/LGN(:EN) zy € X (19)
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470 S. Iwamoto & T.Fujita

or more rigorously

A > Max[uy_p(un_p) A---Aun_1(uny_1) A pgr(zN)
| ()my () N—v<m<N-1]. (20)

Then we have the equality (18). Thus the desired maximum expected value pgo(z¢) is given
by pugo(xg; A) for a sufficiently large value A(< 1) of A:

pge(zo) = peo(o; ;\)~ (21)
Here, of course, X = 1 is available, because of 0 < p4(z) < 1.

3 Deterministic Multistage Decision Processes

In this section, we focus our attention on (2, §4]. Let us reconsider the deterministic dynamics
$t+l=f(xt7ut)v t=0’1a2a"'1N—1 (22)
in the following. This deterministic system is a special case of stochastic system:

P(ze41 | Te, w) = b5z, u,)(T141) (23)

where §4(#) is a Dirac’s measure concentrated on a with probability one:
P

_[1 forz=a
6,,(:5)—{0 for z # a.

Then the stochastic recursive equations (14),{15) reduce to the following ones:

peN-v(TN_p; A) = Maxyy_, pgr-vi1 (f(ZN_p, uN—p); AN N (UN—_p)) (24)
v=1,2,---,N

uon(zN;A) = AApgr(zy)  0< AL (25)

On the other hand, taking account of the deterministic system, we see that Eqs (11),
(12) become as follows, respectively:

pon-v(zN_y) = Max[uy _y(un—y) A--- A py_1(un_1) A per(zN)
| B)ms (#)n N—v<m<N-1] (26)

pov-v(TN_p; A) = MaxAA gy (uy_ ) A -~ Apy_y(uy_1) Apen(zy)
| @mr (i) N-v<m<N-1 ()
where, in the deterministic system, the constraints (z),, (i¢), mean

(i)" Tntl = f(“”naun)
(1) un €U,

respectively. Now, if A is a constant and ¢ is any function, we have the identity

Max,[A A g(u)] = A A Maxyug(u).
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Stochastic Decision-Making 471

Consequently, we have the relation
pen-v(TN—p; ) = porv-(TN_p) A A 0<A<1, 2y, eX, 0Zv<N (28)
Substituting Eq (23) into Eq (24), we have
BTN ) AN = Maxuy_, [t (F(@N v tN—0)) AN A iy oo(uny)]. (29)
This implies
AN pon-v(TN_p) = AN {Maxyy_ [y _p(un_u) A parv-vir (f(ZN v, un-»))]}-

Since ) is arbitrary in the interval [0,1}, we finally obtain the desired “deterministic” recursive
equation:

Theorem 2

l‘GN'"(-":N—u) = MaxuN-u[ﬂN—u(uN—u)ANGN-"“ (f(‘TN—l/auN—v))]
TN_y € X, v=12,---,N. (30)

This equation coincides with Bellman and Zadeh’s deterministic recurrence Eqs (4), (5):

pov-v(EN-v) = Maxyy_ [UN_o(uN-») A pgr—v+1(TN_v41)) (31)
TN-p41 = f(TN_p,uN—y). v=1,---,N. (32)

4 Bellman and Zadeh’s Example

Throughout this section, we use Bellman and Zadeh’s example in [2, pp. B154] to verify that
the sequential optimization assures the simultaneous optimization. Their numerical data are
as follows:

/‘G’(UI) = 0.3, ﬂgz(dg) = 1.0, pG2(0’3) =0.8 (33)

mi(a) = 1.0, #i(az) = 0.6 (34)

po(en) =0.7,  po(ez) =1.0 (35)

U = Oy Uy = (9

$t\$t+1 gy 02 03 T \Typ1| 01 02 O3
a1 0.8 0.1 0.1 0 0.1 09 0.0
9 0.0 0.1 0.9 o9 0.8 0.1 0.1
73 0.8 0.1 0.1 03 0.1 0.0 0.9

4.1 Recursive Equations for Imbedded Problem
In this subsection, we apply the preceding recursive equations with parameter A:
perv—v (TN _y; A) = Maxy,y_, Z pon-v+1 (TN _pi 1 AN N (UN—y))
IN—v41
X p(TN_vt+1 ! ITN—v, uN—u) (36)
v=12---,N

uen(zN;A) =AApgn(zy)  0<S AL (37)
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First, letting
N=2 = pgi(o1)=03, pe(o2) =1,  pg2(o3) =038,
we have
per(o1;A) =AA03

pge(o; A) = AA1 (38)
pe2(o3;A) = AAN0.8.

Second, the equation

#e(z1;0) = MaxXy glar,a) 2, #ea(2; AA pi(w))p(es | 21,u1) (39)
z2€{01,02,03}
for z1 = o7 becomes as follows:
pai(o1;A) =[(AA1)A0.3)0.84+ ((AA1)A1)0.1+ ((AA1)A0.8)0.1]
V((AA0.6) A0.3)0.1 + ((AA0.6) A1)0.9+ ((AA0.6) A0.8)0.0]
=[(AA0.3)0.8 + (A A1)0.1 + (A A 0.8)0.1]

V [(AA0.3)0.1+ (AA0.6)0.9+ (A A0.6)0.0]. (40)
A simple calculation yields
A for0< A2 <0.3
per(o1;0) = ¢ 090 +0.03 for0.3<A <06
0.57 for0.6 <A <1
ajoray; for0<A<03
frl(a], A) =4 2 for 0.3 < A < 0.6
aj for 0.6 <A <1.
Similarly, we have
A for 0 <X <0.3
pei(o; X)) =< A for 0.3 <A1 <08
0.104+0.72 for0.8< 2 <1
aioraz; for0< A <03
T1{o;A) =< m for 0.3< A1 <08
a for 0.8 <X <1
and
A for0< A <03
pcr(o3;A) =€ 092 +0.3 for0.3<A<0.6
0.57 for 0.6 <A<1
ajoraz for0< ) <03
F1(o3;A) = ¢ a for 0.3 <A <06
as for 0.6 <A <1
Third, the equation
reo(zo; A) = Maxuoe{al,ag} Z uGr(z1; A A po(uo))p(z1 | 2o, uo) (41)
z1€{01,02,03}
yields
A for0 <A <0.3
o(01; ) = 0.99)1+0.003 for 0.3 <A <0.6
HG\TA) = 10,90 +0.057  for 0.6 <A <08
0.09X1 +0.705 for0.8< X <1
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aj or as gorOS)\SOB
~ ) ag or 0.3 <A <0.6
fo(on;A) = {02 for 06 <A <08
as for 0.8 <X <1
A for0 <2 <0.3
0.91A +0.027 for 0.3 <A <0.6
peo(o2;0) =< 01X +0.513  for 0.6 < X <0.7
01240513 for0.7<A<0.8
0.01A+0.585 for0.8< A <1
ajora; for0< A <03
ajoraz; for0.3< A <0.6
o(o2; A ajyoraz for 0.6 <A <0.7
as for 0.7< )2 <0.8
as for 0.8 <A <1
and
A for0 <2 <0.3
o(03; )) = 0.91X+0.027 for 0.3 <A <06
HGol93; 0.1A +0.513 for 0.6 <X <0.7
0.583 for 0.7 <A <1
ajoraz for0< A <0.3
(o3 A) = { &1 for 0.3 <1 <0.6
073, ay for 06 <A <0.7
aj for 0.7 <A< 1.

Therefore, the conditional optimization problem:
Maximize E[po(uo) A p1(u1) A pg2(z2)]

subject to (¢)p Tpy1 ~ p(® | Tp,un) n=0,1 (42)
(i)p uyp € {1,002} n=0,1

has the following maximum expected values:

teo(01) = peo(o1;1) = 0.795

1eo(02) = pgo(o2;1) = 0.595 (43)

peo(03) = peo(o3; 1) = 0.583.
These maximum expected values are yielded by optimal policy # = {%p,#1} from initial
state (zo;1). Figures 1, 2 and 3 give not only the optimal behaviors resulting from optimal
policy % but also the corresponding maximum expected values. Here, of course, a behavior

is a cyclic sequence of state, action, stage-wise reward and one-step transition probability.
We use the following notation in Figures 1, 2 and 3.

up = #o(zo; 1), #o = po(uo), po = p(z1 | 20, u0), 1 ~ p(e | zo,u0), A1 =1Auo
ur = fi(z A1), 1 = pa(wa), pr= p(a2 | 21,u1), z2 ~ ple | z1,u1), A2 = A1 A ps
ty = pga(z2), min = pg A py A g, prob = pg,p1, multi. = prob X min
max. ttl. = maximum total expected value.

These maximum expected values are also obtained through the direct enumeration method
as are shown in Tables 1, 2 and 3, respectively.
We use the following notations in Tables 1, 2 and 3.

history = x¢ uo po(uo) p(x1 | 2o, wo) 1 u1 pa(w1) p(z2 | z1,w1) 22
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(0;1.0)  wo po [po (zi; M) w1 [P (T25A9) b, .
prob min multi.
0.1 (01;06) 03
0.01 0.3 0.003
0.1 (0'1,10) Qi 06109 (0'2,06) 1.0
0.09 0.6 0.054
0.0 (03;06) 08
0.00 0.6 0.000
0.0 (01;1.0) 0.3
0.00 0.3 0.000
(01;1.0) a2 1.010.9 (02;1.0) a 1.0]0.1 (09;1.0) 1.0
0.09 1.0 0.090
0.81 0.8 0.648
0.1 (01;0.6) 03
0.00 0.3 0.000
0.0 (03;1.0) a2 06| 0.0 (02;06) 1.0
0.00 0.6 0.000
0.9 (03;06) 0.8
0.00 0.6 0.000
max. ttl. 0.795

Figure 1: optimal behavoir and maximum expected value from (o4;1)
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(20;1.0) up po [P0 (z;A1) w1 pr |1 (T25h) p2
prob min multi.

0.1 (01;08) 03
0.08 0.3 0.024

0.8 (01;1.0) a 0.6 0.9 (02;06) 1.0
0.72 0.6 0.432

0.0 (03;0.6) 0.8
0.00 0.6 0.000

0.0 (01;1.0) 0.3
0.00 0.3 0.000

(02;1.0) a2 1.0|0.1 (062;1.0) & 10| 0.1 (02;1.0) 1.0

0.01 1.0 0.010

0.9 (051.0) 08
0.09 08 0.072

0.1 (0,;0.6) 0.3
0.01 0.3 0.003

0.1 (03;1.0) az 06| 0.0 (02;06) 1.0
0.00 0.6 0.000

0.9 (03;0.6) 0.8
0.09 0.6 0.0%4

max. ttl. 0.595

Figure 2: optimal behavoir and maximum expected value from (02;1)
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(20;1.0) w0 po |po (T5M) w1 m [P (225 00) 12
prob min multi.

0.1 (01;0.6) 0.3
0.08 0.3 0.024

0.8 (01;0.7) oy 06|09 (02;06) 1.0
0.72 0.6 0432

0.0 (o3;0.6) 038
0.00 0.6 0.000

0.0 (0;0.7) 0.3
0.00 0.3 0.000

(63;1.0) oy 0.7] 0.1 (02;0.7) a; 10| 0.1 (0;0.7) 1.0
0.01 0.7 0.007

0.9 (05;0.7) 08
0.09 0.7 0.063

0.1 (01;06) 03
0.01 0.3 0.003

0.1 (03;0.7) a2 0.6 | 0.0 (02;0.6) 1.0
0.00 0.6 0.000

0.9 (03,0.6) 0.8
0.09 0.6 0.054
max. ttl. 0.583

Figure 3: optimal behavoir and maximum expected value from (o3;1)
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Table 1 : all behaviors from o, and selection of maximum branch

history | ter. | path | min. [ mult. | sub. | #tl. |
o, a1 07 0.8 0y o1 1.0 0.8 0,103} 0.64 | 03 |0.192
o1 ay 0.7 0.8 04 a3y 1.0 0.1 05§ 1.0 | 008} 0.7 |0.056 | 0.304
oy ay 0.7 0.8 694 vy 1.0 0.1 o3| 0.8 008 | 0.7 | 0.056
op ay 0.7 0.8 0 a3 06 0.1 o1 (03] 008 | 0.3 |0.024
o1 ap 0.7 0.8 07 a 06 0.9 0| 1.0 | 0.72 | 0.6 | 0.432 | 0.456
oy ay 0.7 6.8 00 a 0.6 0.0 o3} 0.8 | 00 06 |0
o g 0.7 ¢.1 0y 1.0 0.0 a1 03100 0.3 0
o o 0.7 0.1 09 o 1.0 0.1 02| 1.0 0.01 { 0.7 | 0.007 | 0.070
o o1 0.7 0.1 03 oy 1.0 0.9 03|08 | 009} 0.7 |0.063 0.583
oy a1 0.7 G.1 00 a2 06 0.8 01| 03008 0.3 |0.024
o a; 0.7 0.1 o9 ap 06 0.1 o0, 1.0 0.01 ] 0.6 | 0.006 | 0.036
oy a1 0.7 0.1 09 ap 06 0.1 03| 08001 | 0.6 | 0.006
oy ap 0.7 0.1 03 a7y 1.0 0.8 01103 ]0.08| 03 |0.024
or ay 0.7 0.1 o3 ay 1.0 0.1 02| 1.0 001} 0.7 | 0.007 | 0.038
oy oy 0.7 0.1 03 a4 1.0 0.1 o3| 08| 0.01 | 0.7 j0.007
oy ap 07 0.1 03 ap 06 0.1 o003 (001 0.3 |0.003
o a1 0.7 0.1 o3 ag 06 0.0 oo | 1.0 | 0.0 06 |0 0.057
o1 aq 0.7 0.1 03 ag 06 0.9 03108009} 06 |0.054
o1 Qg 1.0 0.1 0y 1.0 0.8 o1 03| 008 0.3 0.024
o1 az 1.0 0.1 04 a1 1.0 0.1 02| 1.0 0.01 | 1.0 |0.01 }0.042
op a2 1.0 0.1 oy an 1.0 0.1 0308|001 | 0.8 |0.008
o1 ap 1.0 0.1 01 ag 06 0.1 o1 (030011 0.3 |0.003
o, o 1.0 0.1 0y ap 06 0.9 05| 1.0 | 0.09 | 0.6 | 0.054 [ 0.057
o, a3 1.0 0.1 oy az 06 0.0 o3} 0.8} 0.0 06 |0
oy a2 1.0 0.9 00 an 1.0 0.0 0103100 03 |0
or ag 1.0 0.9 09 a1 1.0 0.1 09| 1.0]009] 1.0 |0.09 |0.738
oy az 1.0 0.9 02 aq 1.0 0.9 05| 0.8 | 0.81 | 0.8 | 0.648 0.795
op ap 1.0 0.9 09 ap 06 0.8 07] 031072 | 03 |0.216
op ag 1.0 0.9 09 ag 06 0.1 o9 1.0 | 0.09 | 0.6 |{0.054 | 0.324
g1 Qo 1.0 0.9 0y Qg 0.6 0.1 O3 0.8 10.09 0.6 0.054
01 Qg 1.0 0.0 03 Qn 1.0 0.8 a1 03100 0.3 0
op az 1.0 0.0 035 o 1.0 0.1 o2} 1.0 ] 0.0 10 |0 0
o1 a; 1.0 0.0 o3 o7 1.0 0.1 03] 08100 08 |0
01 Qg 1.0 0.0 03 Q9 0.6 0.1 (e8] 03100 03 |0
01 Qg 1.0 0.0 03 Qg 0.6 0.0 (0] 1.0 | 0.0 0.6 0 0]
op a2 1.0 0.0 03 a3 06 0.9 0308} 0.0 06 |0
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Table 2 : all behaviors from o9 and selection of maxirmum branch

i history [ ter. | path | min. [ mult. [ sub. | ttl. |
Oa Qq 0.7 0.0 o, 1.0 0.8 g1 03100 0.3 0

O3 1 0.7 0.0 o, oy 1.0 0.1 Oy 1.0 0.0 0.7 0 0

02 i 0.7 0.0 o1 1.0 0.1 g3 08100 0.7 0

09 0.7 0.0 01 Qg 06 0.1 a1 0300 0.3 0

o2 ap 07 0.0 0y a2 06 0.9 02| 10| 0.0 06 |0 0

oy ay 0.7 0.0 o0 o 06 0.0 o3| 08 | 0.0 06 |0

Ty 0.7 0.1 09 1.0 0.0 a1 03]00 0.3 0

oy a1 0.7 0.1 00 ay 1.0 0.1 02| 1.0} 001 | 0.7 |0.007 | 0.070
o9 ay 0.7 0.1 09 a4 1.0 0.9 03|08 | 0.09 | 0.7 |0.063 0.583
02 0.7 0.1 Oy (o 0.6 0.8 g1 031|008 0.3 0.024

gy oy 0.7 0.1 03 a3 0.6 0.1 0] 1.0} 0.01 | 0.6 |0.006 | 0.036
oy aq 0.7 0.1 o0 ap 06 0.1 05|08 |0.01 | 06 |0.006

oo, a7 0.7 0.9 03 04 10 0.8 01103072} 03 |0.216

oy o 07 0.9 03 a1 1.0 0.1 09101009 | 0.7 |0.063 ] 0.342
o a1 07 0.9 03 a1 1.0 0.1 03|08 |0.09 | 0.7 |0.063

oo ay 0.7 0.9 o3 oz 06 0.1 01103009 | 0.3 |0.027

oy a7 0.7 0.9 03 as 0.6 0.0 05| 1.0 | 0.0 06 |0 0.513
o2 a7 0.7 0.9 o053 az 0.6 0.9 03|08 | 0811} 0.6 | 0.486

0y ap 1.0 0.8 00 7 1.0 0.8 0003|064 | 0.3 [0.192

oy az 1.0 0.8 0y oy 1.0 0.1 02|10 | 0.08| 1.0 |0.08 [ 0.336
o9 a3 1.0 0.8 0 o4 1.0 0.1 05|08 | 0.08 0.8 |0.064

o ap 1.0 0.8 01 a2 0.6 0.1 0103008 | 03 |0.024

02 ap 1.0 0.8 01 az 0.6 0.9 00| 1.0 | 0.72 | 0.6 | 0432 | 0.456
oy ag 1.0 0.8 0 ap 06 0.0 03|08 | 0.0 06 10

oy ag 1.0 0.1 09 oy 1.0 0.0 o103 | 0.0 03 |0

0y ag 1.0 0.1 02 a1 1.0 0.1 00| 1.0 001 | 1.0 |0.01 | O0.082
02 Q9 1.0 0.1 02 1.0 0.9 g3 0.8 | 0.09 0.8 0.072 0.595
0y ap 1.0 0.1 09 g 06 0.8 0703|008 03 |0.024

0y ay 1.0 0.1 09 a3 06 0.1 09| 1.0 | 0.01 | 0.6 |0.006 | 0.036
0y g 1.0 0.1 05 ay 0.6 0.1 o3| 08001 0.6 |0.006

0y a; 1.0 0.1 03 ay 1.0 0.8 04{03}0.08 03 }0.024

09 ag 1.0 0.1 o3 oy 1.0 0.1 o3| 1.0 0.01 | 1.0 [0.01 |0.042
op az 1.0 0.1 o5 oy 1.0 0.1 o3| 08| 001 | 08 |0.008

oo ap 1.0 0.1 03 ap 0.6 0.1 o403 001 0.3 |0.003

02 (g 1.0 0.1 gy Qg 0.6 0.0 ()] 1.0 0.0 0.6 0 0.057
oy ag 1.0 0.1 03 a; 06 0.9 o3| 08| 009 | 0.6 |0.0%4
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history | ter. [ path [ min. | mult. [ sub. [ ttl.
03 Qg 0.7 0.8 g1 1.0 0.8 28] 0.3 064 0.3 0.192
03 1 0.7 0.8 g1 1.0 0.1 (0] 1.0 | 0.08 0.7 0.056 | 0.304
o3 a3 0.7 0.8 01 aq 1.0 0.1 03| 0.8 008 ] 0.7 | 0.056
o3 oq 07 0.8 01 o 06 0.1 0103|008 0.3 |0.024
o3 a3 0.7 0.8 01 g 06 0.9 05| 1.0 [ 0.72 | 0.6 | 0.432 | 0.456
03 0.7 0.8 g1 Qg 0.6 0.0 g3 0.8 0.0 0.6 0 ‘
03 0.7 0.1 0o g 1.0 0.0 01 03|00 0.3 0 ;
o3 a1 0.7 0.1 03 oy 1.0 0.1 o, | 1.0 | 0.01 | 0.7 | 0.007 | 0.070 |
o3 aq 0.7 0.1 02 a7 1.0 0.9 03| 0.8 | 0.09| 0.7 | 0.063 0.583 |
o3 aq 0.7 0.1 02 az 06 0.8 01|03 |008| 03 |0.024 i
o3 ay 07 0.1 02 ag 06 0.1 02| 1.0]0.01 | 0.6 {0.006 | 0.036 |
03 ay 0.7 0.1 00 ap 06 0.1 03| 0.80.01] 0.6 |0.006 |
o3 a1 0.7 0.1 03 a; 1.0 0.8 o1 | 03] 0.08] 0.3 [0.024 |
o3 a; 0.7 0.1 o3 aq 1.0 0.1 02| 1.0 | 0.01 | 0.7 |0.007 | 0.038
o3 oy 0.7 0.1 03 o7 1.0 0.1 03] 08| 001 | 0.7 |0.007
03 0.7 0.1 03 Q9 0.6 0.1 g1 03001 0.3 0.003
03 0.7 0.1 O3 Qg 06 0.0 (o0} 1.0 0.0 0.6 0 0.057
o3 a; 0.7 0.1 03 ag 06 0.9 03| 08 | 0.09 | 0.6 |0.054
o3 ap 1.0 0.1 o0y a; 1.0 0.8 01| 03] 0.08| 0.3 | 0.024
o3 a2 1.0 0.1 01 v 1.0 0.1 oo 1.0 0.01 | 1.0 |0.01 |0.042
o3 az 1.0 0.1 01 a4 1.0 0.1 03| 08 | 0.01 | 0.8 {0.008
03 Q9 1.0 0.1 a1 Qg 0.6 0.1 o1 031|001 0.3 0.003
03 ag 1.0 0.1 01 o 0.6 0.9 0o 1.0 (009 | 0.6 |0.054 | 0.057
o3 ag 1.0 0.1 o1 ag 06 0.0 o3| 08 [ 0.0 06 |0
03 Qo 1.0 0.0 0y 1.0 0.0 01 03100 0.3 0
o3 az 1.0 0.0 02 aq 1.0 0.1 02| 1.0 | 0.0 1.0 |0 0
o3 az 1.0 0.0 02 a1 1.0 0.9 05| 0.8 | 0.0 08 |0 0.570
03 Qg 1.0 0.0 09 Q9 0.6 0.8 g1 03100 0.3 0
03 (o 1.0 0.0 gy Qo 0.6 0.1 (b)) 1.0 | 0.0 0.6 0 o
03 Qo 1.0 0.0 09 (g 06 0.1 g3 0.8 (00 0.6 0
o3 a 1.0 0.8 03 a7 1.0 0.8 01| 03072 0.3 |0.216
o3 ap 1.0 0.8 03 v 1.0 0.1 02| 1.0 | 009 | 1.6 |0.09 |0.378
o3 a; 1.0 0.8 03 oy 1.0 0.1 03|08 [ 009 | 0.8 |0.072
03 Qo 1.0 0.8 03 Qo 0.6 0.1 01 031009 0.3 0.027
o3 ag 1.0 0.8 03 az 06 0.0 02| 1.0 | 0.0 06 |0 0.513
o3 az 1.0 0.8 03 a2 0.6 0.9 03|08 (081 | 0.6 | 0486
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ter. = terminal reward = pg2(z2)
path = path probability = p(z1 | zo,u0) X p(z2 | z1,u1)
min. = minimum = go(uo) A p1(u1) A pg2(z2)
mult. = multiplication = path x min.
sub. = sub expected value, ttl. = total expected value.
Furthermore, an italic number is a probability, and a bold number denotes a selection of

the greater (maximum) value of the two up-and-down expected values.

4.2 Bellman and Zadeh’s Recursive Equations

In this subsection, we consider Bellman and Zadeh’s approach [2] with the preceding data.
They have applied their recurrence equations (8), (9):

ﬂGN-V(xN—u) = Maxun-u[l‘N—u(“N—u) A El‘GN—"“(. | :”N—muN—v)] (44)

Eugn-vai(e | 2N_yyun_y) = Y pEN_yi1 | TNy, un_y)ugr-vr (TN_yst).  (45)

IN-v41

Their approach [2, pp. B154] solves the “deterministic” sequential optimization problem,
which has been taken, as it were, the backward conditional expectations:

Maximize [po(mo) A E™[p1(m1) A E™ pge(x2)]]
subject to  (2)n Tn41 ~ p(® | Tn,un) n=0,1 (46)
(78)n 7u(zn) € {01,002} n=0,1

where

E™k(z2) = Y k(z2)p(zz | 21, m1(21)) for k = k(z2)

p1(m1) = pa(mi(z1))

are functions of z;, and
E™(z;) = ;I(xl)p(xl | Zo, mo(zg)) for = I(x1)
1
po(mo) = po(mo(z0))
are functions of xy. Then, the usual dynamic programming technique yields the identity

Maxxg,x, [0(m0) A E™[u1(71) A E™ pge(z2)]]
=Maxy, [po(mo) A E™Maxy, [p1(71) A E™ pga(z2)])- (47)

This is equivalent to the recurrence equations:

per(z1) = Maxy e (ananyi1(w) A > pea(z2)p(as | z1,wm))] (48)
z2€{01,02,03}
peo(To) = MaxXyye(ay,an}o(w0) A Y- per(zi)p(zy | 2o, uo)]. (49)

z1€{01,02,03}

They give the following optimal solution through the backward equations:

pei(o1) =06, pgi(o2) =0.82, pgi(o3)=0.6 (50)
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m(01) = a1, m(o2) = a1, mi(03) = e, (51)
ﬂGo(O'l) =-0.8, /lGo(O'g) = 0.62, /IGO(G';;) = (.62 (52)
7r0(01) = oy, 7r0(02) = 1 Oor a2, 7!‘()(0‘3) = ay. (53)

However, an exact expression of pgo{zg), #o(z¢) becomes as follows:
ﬂGo(Ul) = 0.798, HGo (0’2) = 0.622, N Tell (0’3) = 0.622 (54)

mo(01) = oz, mo(02) =y or a3, Wo(03) = ay. (85)
Now, let us compare optimal solution (43) of our stochastic problem (42) with optimal
solution (54) of Bellman and Zadh’s “deterministic” problem (46). Thus, we should remark
that problems (42), (46) are not the same problems (see [4] for a detail):
MaxzE™[po(uo) A p1(u1) A pga(22)]
#Maxy, [to(m0) A E™Maxy, [£1(7m1) A E™ pga(z2)]]. (56)

As is shown in the preceding section, the invariant imbedding technique with a parameter A
solves the former problem (42).

4.3 Another Recursive Equations
Finally, we have, as another candidate, the third recursive equations as follows:

Egn-v(an_y)Maxuy_, Y [unv_p(un_y) Abgr-vri(TN_pt1)]

ITN-v+1
X P(-TN—V+1 | xN—uauN—u) (57)
v=12,--- N
€on(zn) = ngv(zn). (58)
Let m%_,(zn--) be any value of uy_, which attains the maximum in Eq (57). However,
there is no reason why we may call the sequence n* = {n§, {,---,7y_;} an optimal policy
for problems (57).(58). Then, for the preceding data, the corresponding recursive equations
€a2(22) = pe(x2) (59)
éa1(z1) = Maxy, e{ay,a,) > [mlur) Aéga(xa)lp(as | z1,w) (60)
Ize{dl,dz,ﬂa}
fgo(70) = MaXyoefarar) 2. #0(u0) Aégr(z1)]p(z1 | 2o, uo) (61)
z1€{01,02,02}
yield in turn
€e2(01) = 0.3, £g2(02) = 1.0, E€g2(03) = 0.8, (62)
fcl (0'1) = 0.57, fcn (0’2) = 0.82, €G1 (0’3) = 0.57 (63)
W;(a'l) = ay, 7“1}.‘(0'2) = ay, 7lP;{(a':‘) = a3, (64)
€G0 (0’1) = 0.795, fG'o (0’2) = 0.595, fGo (0’3) = 0.583 (65)
n3(01) = a2, w3(02) = a2, mi(03) = 1. (66)

Now, let us compare optimal solution (43) of our stochastic problem (42) with solution
(62)-(66) of problems (59)-(61). Thus, it happens that the coincidences

poi(zi;l) = €gi(z;) for i =o01,00,03, i=0,1
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#i(zi;1) = wj(zi) for =z =o01,02,03, 1=0,1

hold. However, these two equalities do not remain in general true.
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