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Abstract We consider a discrete-time cyclic-service system consisting of multiple stations visited by a 
single server. Customers from several priority classes arrive at an individual station according to independent 
batch Bernoulli processes. We assume a non-preemptive priority rule and non-zero switch-over times of the 
server between consecutive stations. 'Ve derive an exact expression for a weighted sum of the mean waiting 
times for the individual priority classes: a pseudo-conservation law. Taking the limit of our result as the 
length tends to zero yields previously obtained continuous-time results. 

1. Introduction 

Multi-queue models served in cyclic order by a single server have been used to evaluate 
the performance of polling and token ring systems. Recently, the necessity for and impor­
tance of priority functions in a multi-queue model have been increasing. For example, a 
token ring system handling packetized and data traffic, where a voice packet has a higher 
(non-preemptive) priority tha.n a. data packet, reduces to a multi-queue priority model [10]. 
Motivated by this situation, we will treat a discrete-time multi-queue priority system and 
present an exact expression for a weighted sum of the mean waiting times for the individual 
priority classes, so-called pse~tdo-conservation law, that generalizes the previously obtained 
results [2, 3, 8, 17]. 

The pseudo-conservation law is shown to be important from both the practical and 
theoretical points of view, since it can be readily used to obtain (or test) the exact solutions 
and approximations for the mean waiting times in the individual queues in a multi-queue 
system [12, 17]. For continuous-time multi-queue priority systems, Fournier & Rosberg [8] 
and Shimogawa & Takahashi [17] have independently presented the pseudo-conservation law. 

To the best of our knowledge, however, there are few literature on the pseudo-conserva­
tion laws for discrete-time multi-queue priority systems. In discrete-time systems, all events 
(e. g., arriva.ls and departures of customers, server-switches) are allowed to occur only at 
regularly spaced points in time, as seen in recently developed communication systems [20, 
21]. Only Boxma & Groenendijk [3] have treated a discrete-time single-class (non-priority) 
multi-queue system. 

The main goal of this paper is to obtain discrete- time analogs of the results for continuous­
time priority systems [8, 17]. Section 2 describes our discrete-time priority systems in details. 
By using an ergodic argument we present some preliminary results for a general input system. 
In Section 3, assuming a batch Bernoulli process input, we derive a pseudo- conservation 
law. The approach taken here essentially relies on the simplified argument of Shimogawa & 
Takahashi [17]. We show how the argument in [17] can be generalized and applied to the 
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Pseudo-Conservation Law for Discrete-Time Systems 451 

batch Bernoulli process input system. In Section 4, by letting the slot length tend to zero, 
we obtain the continuous-time results for Poisson input systems [2, 8, 17] as special cases. 

2. Model description and prelirninary results 

Time is divided into slots which are equal to time unity (one) in length. This unit-time 
slot is assumed for Sections 2 and 3. We consider a multi-queue, single-server system with 
N stations, each with infinite queueing capacity. The stations are visited by the server in 
cyclic order. We assume four types of service strategy: exhaustive service, gated service, 
I-limited service, and I-decrementing service. See Takagi [18,19] for the definition of these 
types of service strategy for a single-class (non-priority) system. 

We assume P priority classes of customers arriving at each station. We further assume 
a non-preemptive or head-of-the-line (HL) local priority, as in [7, 8, 10, 12, 17]. By local 
we mean that the customer class to be selected for service at a station depends only on the 
customers present at that station (and independent of the customers at t.he other stations). 
A class-i customer has precedence over a class-j customer if i < j (1 ::::: i,j ::::: P). 

For every (exhaustive, gated, I-limited, or l-decrementing) service strategy, when the 
server visits a station i (1 ::::: i ::::: N) and finds no customers at that station, immediately the 
server moves on to the next station i + 1 (after the server visits station N, it moves on to 
station 1). The next station index will .be denoted as i(mod N) + 1. 

If the server finds any customer at station i (1 ::::: i ::::: N) upon the server's arrival, the 
server remains at that station, according to one of the followings. 

e) For exhaustive service, all customers at station i are served according to the HL priority 
rule until no more customers are left at that station. In other words, when the server leaves 
station i to move on to the next station i(mod N) + 1, no customers are left in station i. 

g) For gated service, only customers found at station i upon the server's arrival are served 
according to the HL priority rule. The station can be considered to have a gate. The gate is 
opened upon the server's arrival at the station, and it is shut just after the server's arrival. 
The server accepts and serves only those customers that have passed through the gate. 

11) For 1-limited service, the highest priority class found at station i upon the server's arrival 
is selected, and only one customer of the selected class is served. The I-limited service is 
sometimes called a pure limited service. 

Id) For I-decrementing service, the highest priority class found at station i upon the server's 
arrival is selected, and the selected-class customers are served until the number of customers 
in that class becomes one less than there were at the server's arrival. The 1-decrementing 
service is sometimes called a pure decrementing service or a semi-exhaustive service. 

The notation '·1-*" means that only one priority class of customers is selected upon the 
server's arrival at a 1-* service station and only the selected priority class is served during 
this visit. See Karvelas and Leon-Garcia [10] for a practical example of this strategy. 

Arrivals occur at the beginning of a slot, as in a discrete-time environment [3, 20, 21]. 
Customers from an individual priority class arrive at a station according to a batch Bernoulli 
process [20]. Let Xip be the i. i. d. batch size [the number of class-p arriving customers at 
station i during a slot be independent and identically distributed (i. i. d.)] with first two 
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452 Y. Takahashi & B.K.Kumar 

moments; Aip := E[Xip], A~;) := E[X~]. Similarly, we introduce for lumped arrivals: 

P N P 

Xi := L Xip (for station i) and X := L L Xip (for the total system), 
p=l i=l p=l 

with first two moments Ai, A~2); and A, A (2), respectively. 

For simplicity, we will refer to a class-p customer arriving at station i as a class-( i, p) 
customer. Let Hip be the i. i. d. service time of a class-(i,p) customer with first two moments; 

The offered loads are then given as 

P 

Pip := Aiphip (for class (i,P)),Pi := L Pip (for station i), and 
p=l 

N P 
P := L L Pip (for the total system). 

i=l p=l 

Let Si be the i. i. d. switch-over time of the server between stations i and i(mod N) + 1, 

with nrst two moments Si, s~2). The total switch-over time of the server during a cycle is 
given as 

with first two moments sand s(2). 

N 

S:=LSi, 
i=l 

As in the literature [11, 12, 15, 20], the model described above will be referred to as 
a discrete-time GeomX IGlll type multi-queue priority system, since positive batches for 
an individual class-(i,p) form a Bernoulli process, i. e., the batch inter-arrival times are 
geometrically distributed. Here, the positive batch means a batch with positive size, and the 
batch inter-arrival time means the time between two successive arrivals of positive batches, 
as in Takahashi & Hashida [20]. The model where the batch inter-arrival times are generally 
distributed but other assumptions are the same as the one described above, will be referred 
to as a discrete-time GX IGll1 type multi-queue priority system. 

Let C be the cycle time, i. e., the time between two successive arrivals of the server at 
a station. By using the ergoclic theorem and Little's law, we obtain the mean cycle time, 
denoted by c, as 

s 
c:=E[C] =­

I-p 
(2.1 ) 

for the discrete-time GX I G I 11 type multi-queue priority system. See Appendix for the proof 
of (2.1). It should be noted that (2.1) was previously proven for memory-less (batch Poisson 
and batch Bernoulli) input systems in the literature. In the appendix we have shown that 
(2.1) is still valid for a general input system. 
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Let Vi be the visit period for station i, i. e., the length of time that the server stays at 
station i (1 ::;; i ::;; N). The argument for deriving (2.1) is similarly applied to get 

S 
Vi := E[Vi] = Pie = Pi-­

I-p 
(2.2) 

for the G X /GI/l type multi-queue priority system with any(exhaustive, gated, I-limited, or 
I-decrementing) service strategy at station i. 

Let (e, g, 11, and Id) be the partition of the station index set {1,2, ... ,N} defined by 
e:= {j I station j is exhaustive}, 
g:= {j I station j is gated}, 
11:= {j I station j is I-limited}, and 
Id:= {j I station j is I-decrementing}. 

Let Aip (1 ::;; i ::;; Nj 1 ::;; p ::;; P) denote the event where the server finds that the 
highest priority class is p upon its arrival at station i. The probability of event Aip, denoted 
by Pr[Aipj, is also the probability that class-( 1, p) customers are being served during the 
server's visit period, if i E 11 u Id. 

If station i adopts the I-limited service strategy, it can be verified that 

Pr[Aip] = Aip-l S (1::;; p ::;; P, i E 11). 
-P 

(2.3) 

for the GX /GI/l type multi-queue priority system. See Appendix for the proof of (2.3). 

If station i adopts the I-decrementing service strategy, the mean visit period for class­
(i, p) customers is 

~-
1- Pip 

given Aip, since this fraction corresponds to the mean busy period initiated by one class-(i,p) 
customer for a discrete-time Geomx /GI/l queue with batch size Xip and service time Hip· 
(See Takahashi & Hashida [20].) Noting that PipC is the mean length of time the server serves 
class-(i,p) customers during each visit to station i, we have 

which yields, from (2.1), 

hip 
PipC = Pr[Aip]-I--. ' 

- P'P 

Pr[A- ] = Aip(l - Pip)S (1 < p < PiE Id). 
Ip 1- P - - , 

(2.4) 

(2.5) 

We have assumed that the system is stable in our derivation of equations (2.1) through 
(2.5). Although it is beyond the scope of this paper to obtain a necessary and sufficient 
condition for stability, the following condition is necessary: 

"P < 1 (i E eUg)," 

"P < 1 and ~ < 1 (i Ell)," 
I-p 
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or 
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"P < 1 and Ai(l- Pi)S < 1 (i E Id)," 
I-p 

which we will assume from now on. 

3. The pseudo-conservation law 

3.1 General form of the pseudo-conservation law 

To derive our pseudo-conservation law, we start with the stochastic decomposition prop­
erty for the work load in a single-server vacation model. We define 
Vc: the amount of work required by all customers in the cyclic service system described in 

Section 2 at an arbitrary epoch, 
\1;,: the amount of work in the lumped discrete-time FCFS GeomX IG!/l system (without 

switch-over time) where the same arrivals and service times are assumed as in our cyclic 
service system at an arbitrary epoch, and 

Y: the amount of work in the cyclic service system at an arbitrary epoch in a switching 
interval. Here, an arbitrary epoch is supposed to be the instant just after the beginning 
of a slot as customary in discrete-time queueing literature; See [3, 20, 21]. 

For our discrete-time multi-queue priority model, it is straightforward to verify the fol­
lowing stochastic decomposition property, as in Boxma & Groenendijk [3]: 

d 
Vc=Vo + Y, (3.1 ) 

where 4: stands for equality in distribution. Especially, it follows that 

Vc := E[Vc] = E[Vo] + E[Y]. (3.2) 

It is well known (see in [20]) for the standard discrete-time FCFS GeomX IG!/l system that 

N P N P d2) \ 2 \ . 
P '" '" (2) '" '" Aip - Aip - A,p 2 

E[V 0] = 2(1 _ ) L.J L.J Aiphip + ~ L.J 2(1 _) hip 
P 1=1 p=1 1=1 p=1 P 

N P h(2) 1 
+ L L PiP[2: + 2"]. 

i=1 p=1 Ip 

(3.3) 

Let mi denote the mean amount of work that is left at station i after an arbitrary 
departure of the server from that station, and Wip be the mean waiting time of a class­
(i,p) customer in station i (1 ~; i ~ N, 1 ~ p ~ P). Following the argument in Boxma & 
Groenendijk [2, 3], which is also seen to be valid for our HL priority model, we have 

(3.4) 

Since our priority rule is non-preemptive, we have (as seen in [20]) 

N P N P h(2) 1 

Vc = L L PipWip + L L Pip[2:' + "2]. 
i==1 p=l i=1 p=l Ip 

(3.5) 

Substituting (3.3) through (3.5) into (3.2) yields the following form for the pseudo-conservation 
law for our discrete-time priority system. 
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Lemma 3.1 For a discrete-time Geom X IGl/I type multi-queue priority system with 
mixed exhaustive, gated, I-limited, and I-decrementing service stations, we have 

N P P N P ) N P A (2) _ A 2 - A' 8(2) 1 
?= 2:: PipWip ==2(1 _ p) 2:: 2:: Aiph~; + 2:: 2:: Ip 2(1 ~ ) Ip h;p + p[~ - 2] 
1=1 p=1 1=1 p=1 1=1 p=1 P 

N N 

+ 2(1 ~ ) [p2 - 2:: pr] + 1:: mj, (3.6) 
P 1=1 1=1 

where Wjp denotes the mean waiting time of a class p customer in station i, and mj the mean 
amount of work that is left at station i after an arbitrary departure of the server from that 
station. 

Remark 3.1 Bisdikian [1] pointed out an error is involved in Boxma and Groenendijk's 
[3] result even for a zero switch-over time system (but did not mention which equation is in­
correct). We have corrected the error through replacing Eq. (2.3) of Boxma and Groenendijk 
[3] by our equation (3.3), according to Takahashi and Hashida [20]. 0 

3.2 Evaluation of mj (i = 1,· .. , N) 
We are now in a position to evaluate mj for each individual (exhaustive, gated, I-limited 

and I-decrementing) service strategy. The first lemma treats exhaustive and gated service 
stations, which will be verified by using a fairly straightforward argument. 

Lemma 3.2 The mean amount of work left behind at station i after the departure of the 
server from that station, mj, is given by 

mj = 0 (i E e), (3.7) 

and 
m.j = epr (i E g). (3.8) 

Proof. Equation (3.7) comes immediately from the definition of the exhaustive service 
station. If station i adopts the gated service strategy, 7nj corresponds to the mean amount 
of work required by customers that arrive at station i during the station i visit period of the 
server. Since the visit period is given by Pie from (2.2), we have 

P 

mi = L Aip(pje)hip = epr, 
p=1 

which yields (3.8), completing the proof.D 

The next lemma treats the I-limited and l··decrementing service stations, which will 
require somewhat more work than Lemma 3.1. We will show how the simple argument by 
Shimogawa & Takahashi [17] can be generalized and applied to our discrete-time system. 
(See also Remarks :3.2 and 4.1.) 

Lemma 3.3 Let Mi be the amount of work left behind at station i after the departure of 
the server from that station. The expectation 111; of Afi is expressed as 

p A(2)_A' P p p 
mi = e[p; + L tp 2 tp hip + L Pip L Piu + Pip L Aiu}Wip] (i E 11), (3.9) 

v=1 p=1 u=v+1 u=1 
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and 

p p p p 

mi = C[p; - L P;p + L Pip(1 - Pip) L Piu + Pip L >'iu(1- Piu)}Wip 
p=l p=l u=p+l u=l 

p >.~ h(2) p 

- L[2(;P_"P ) { L Piu(3 - Pip) + (1- Pip)Pip} 
p=l P,p u=p+l 

p >.. . h(2) 

+ >'ip(1 - Pip){ L 2('lu~u .i)2 (2 - Piu)} + Rip(disc)]] (i E Id), 
u=p+l P,U 

(3.10) 

where Rip (disc) is defined by 

R . (d' ). - 1 [ Piphip (d2) \2 \.)( . . f- >.~;) - >'ip 
Ip ISC • - 2" 1 _ P' Aip - Aip - A,p 1 - P,p + P,p L..J Piu) - >. (1 - Pip)Pip 

Ip u=p+l ip 

>.. ( . ){ f- (>.(2) >.2 >..)( . 2 ) hip } + Ip 1 - P,p L..J iu - iu - IU 1 - P,U + Piu >.. (1 _ .)2 
u=p+l IU P,U 

p 

+ >'ip L Piu{Plp - (1- Pip)(1 + Piu))]. 
u=p+l 

Proof. To derive mi(:= E[Mi]), we use the following decomposition: 

p 

mi = L mipPr[Aip], 
p=l 

where mip denotes the conditional expectation of Mi given Aip, i. e., 

mip := E[Mi I Aip] (1 ::; P ::; P). 

(3.11) 

Since we already know Pr[Aip] from (2.3) and (2.5) for the I-limited and 1-decrementing 
service stations, all we have to do is to evaluate the quantity mip. 

As in Shimogawa & Takahashi [17], we decompose the quantity mip in the following way. 
Let Kipq be the conditional mean number of class-( i, q) customers just after the departure of 
the server given Aip(1 ::; p, q ::; P). Since our priority is non-preemptive, we have 

p 

mip = L Kipqhiq (1 ::; P ::; P). (3.12) 
q=l 

To evaluate Kipq appearing in (3.12), we need the following notation. Let Tip be the 
sojourn time (or visit period) of the server at station i under the condition that the server 
finds class p the highest priority, i. e., Aip. We can then have the mean sojourn time of the 
server, tip(:= E[Tip]), as 

h ( . 11) d hip (. d) tip = ip z E ,an tip = --- z El. 
1- Pip 

(3.13) 
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We consider an arbitrary class-( i, p) customer who has just finished its service during Tip 

and is going to depart from the system. We will refer to this arbitrary class-( i, p) customer 
as a tagged customer. 

We can easily evaluate "'ipq for p > q. It follows from our priority rule that if service 
is given to the tagged customer, then no higher class customers are present at that station 
upon the server's arrival. Thus "'ipq equals the mean number of class-(i,q) customers who 
arrive during Tip, i. e., "'ipq = >"iqtip or 

h· 
"'ipq = >"iqhiJl (for p > q, i Ell); and "'ipq = >"iq-I '1' (for p > q, 1 E Id). 

- Pip 
(3.14) 

It now remains for us to evaluate "'ipq for p :s: q. We will discuss the i E 11 and the i E Id 
cases separately. 

The i E 11 case. We first evaluate "'ipq for p = q. Consider class-(i,p) (the same class) 
customers who arrive at the same slot as the tagged customer, but are served after the 
tagged customer. We will refer to these customers as pse'udo-subseq1Lent customers. As seen 
in Takahashi & Hashida [20), it follows that the number of pseudo-subsequent customers is 
given as the backward recurrence time of class-( i, p) batch size. The mean number of pseudo-

subsequent customers is thus given by [>..~~) - >'',p)/(2)''jp). The number of customers in "'i1'1" 

except for these pseudo-subsequent customers, equals the number of customers who arrive 
during the sojourn time (with mean Wip + hip) of the tagged customer. This observation 
leads to 

(2) \ . 
>"ip - All' . 

"'ipp = >"i1'(Wip + hip) + --,\-- (for p = q, Z Ell). 
2. ip 

(3.15) 

We then evaluate "'ipq for p < q. To make the discussion clear, we decompose "'iJlq into 
two terms: 

"'ipq (senior): the mean number of class-(i,q) customers who were already present upon the 
arrival of the tagged customer and remain there until the end of the tagged customer's 
service, and 

"'ipq (subseqt): the mean number of class-(i,q) customers who arrive during the sojourn time 
of the tagged customer and remain there until the end of the tagged customer's service. 

Note that the GASTA (Geometric Arrivals See Time Averages) property [9) implies that 
the tagged customer sees time averages, since the batch inter-arrival time of class (i,p) is 
geometrically distributed. We then have 

where Lig denotes the mean number of class-(i .. q) waiting customers. With probability Pig, 

the tagged customer found the server busy with a class-(i.q) customer upon the tagged 
customer's arrival, but this class-(i,q) customer leaves from the system before the tagged 
customer's service (since we assume the non-preemptive priority rule). From our l-l service 
strategy and p < q, it follows that no other class-(i,q) customers than this class-(i,q) cus­
tomer will be served until the end of the tagged customer's service. Hence, this case (with 
probability Piq) no longer contributes to "'ipq (senior). 

From the independence between the system state and the arrival processes, we have 
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With probability Piq the tagged customer found the server busy with a class-( i.q) customer 
upon the tagged customer's arrival, but this class-(i,q) customer leaves from the system be­
fore the tagged customer's service. Also, this case (with probability Piq) no longer contributes 
to Kipq(subseqt). Summing up these two equations above gives 

Kipq = Aiq( w;p + Wiq + hip) (for p < q, i Ell). (3.16) 

Substituting (3.14) through (a.16) into (3.12) and using (2.3), (3.11), and (3.12), we obtain 
(3.9). This completes the proof of the former part. 

The i E Id case. We will generalize the argument of Fournier & Rosberg [8] for our 
batch input system. We first evaluate Kipq for p = q as in the i E 1l case. 

Let nip be the mean number of class-(i,p) customers left behind by a class-(i,p) departing 
[tagged] customer. The derivation for (3.15) can be similarly applied to give 

(3.17) 

The I-decrementing service strategy gives 

A;p h~;) A~;) - A7p - Aip 

nip = Kipp + [2(1 _ Pip) + 2(1 _ Pip) hip + Pip]. (3.18) 

See Chiarawongse and Srinivasan [5] for (3.18). Substituting (3.17) into (3.18) gives 

d2) \ 2 \ . 
Aip - Aip - AlP . 

2( _ .) hip(for p = q,z E Id). 
1 PIP 

(3.19) 

It remains for us to evaluate Kipq for p < q. If we denote by lipq the mean number of 
class-(i, q) customers at the beginning of the visit period Tip, it is straightforward that 

Kipq = lipq + Aiqtip (for p < q). (3.20) 

The quantity lipq can be expressed as 

lipq = kipq - jipq (for p < q), (3.21 ) 

where kipq is the mean number of cla.ss-( i, q) customers at the beginning of the tagged 
customer's service, and jipq is the mean number of class-(i, q) customers who arrive from the 
beginning of the visit period Tip until the beginning of the tagged customer's service. 

We are now going to evaluate kipq and jipq' We decompose kipq into the following two 
terms: 

kipq (senior): the mean number of class-(i, q) customers who were already present upon the 
arrival of the tagged customer and who remain until the beginning of the tagged cus­
tomer's service, and 

kipq (subseqt): the mean number of class-(i,q) customers who arrive during the waiting time 
of the tagged customer and who remain until the beginning of the tagged customer's 
serVIce. 
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The quantity k;pq(senior) is obtained from 

. . . _ .. . h~;) 1 . A;qh~;) A~;) - A~q - Aiq . 1 
k,pq(selllor)h,q - L,qh,q+p,q[~/' +,?)-Ptq{L)(1 .~) + ?(1 _ .) \. h,q )-. Hfor p < q). 

~ ~,q ~ ~ P,q ~ P,q "Iq P,q 
(3.22) 

The left-hand side is the mean amount of work for class-(i,q) customers who were already 
present upon the arrival of the tagged customer. The first two terms on the right-hand side 
represent the mean amount of work seen by the tagged customer upon its arrival. With 
probability Piq, however, the tagged customer arrived during the class-(i, q) visit period. In 
this case, these two terms include the amount of class-( i, q) work that will leave from the 
system until the tagged customer's service begins. The braced term on the right-hand side 
thus represents this expected leaving amount, which corresponds to the mean amount of 
class-( i, q) work at .an arbitrary time of the busy period for the discrete-time Geomx /G I /1 
queue with batch size Xiq and service time Hiq for the I-decrementing service strategy. This 
observation validates (3.22). 

The quantity k,pq(subseqt) is obtained as 

b(2) 1 
kipq(subseqt) = AiqWip - PiqA,q[~ - -) (for p < q), (3.23) 

2biq 2 

where biq and b~;) (1 :s q < P) denote the first two moments of the busy period for the 

discrete-time Geomx /GI/l queue with batch size Xiq and service time Hiq initiated by one 
class-(i, q) customer, i. e., 

and 

b
. _ hiq 
Iq - ----, 

1 - Piq 

(3.24) 

The number of class-( i, q) customers who arrive during the waiting time of the tagged cus­
tomer will be given by the first term on the right-hand side of (3.23) unless the server serves 
class-( i, q) customers. With probability Piq, however, the tagged customer arrived during 
a class-(i, q) visit period. In this case, those cla,ss-(i, q) customers who arrive during the 
interval Iiq from the tagged customer's arrival epoch to the end of the class-( i, q) visit period 
will leave from the system (and so those customers should be removed). The interval Iiq 
corresponds the backward recurrence time of the class-( i, q) busy period, so that 

b(2) 1 
E[Iiq) = ...!!L_ - -. 

2biq 2 

The expected number of those class-(i, q) customers to be removed is then given by the 
second negative term on the right-hand side, validating (3.23). 

Hence, it follows from (3.22) through (3.24) that 

1(2) h(2) h3 (d2) \ 2 \. ) 
. _ . r. . ~ip ~ . iq + iq /liq - "ip - "Iq 1 

k,pq - AIq"LWtp + W'q + [2hiP + 21- P,q[ 2hiq(1 _ Piq)2 - '2]} 
(2) (2) \2 

Aiqhiq A;q - "iq - Aiq - [ + ) (for p < q). 
2(1 - piq)hjq 2(1 - Piq)Aiq 

(:3.25) 
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Recalling (3.20) and (3.21), it remains for us to evaluate the quantity jipq. To simplify 
the argument, we assume a llon-preemptive LIFO rule within class (i,p). This assumption 
does not change the queue length nor the work load for class (i, p). If the tagged customer 
does not arrive during the visit period Tip, it will be served first during Tip under the 1-
decrementing service strategy. This is because a class-(i,p) customer who arrives after the 
tagged customer and who finds that the server is serving other classes or that the server 
is switching stations has to initiate a class-(i,p) visit period. This class-(i,p) visit period 
comes before Tip for the LIFO rule. Hence, the elapsed time between the beginning of the 
visit period Tip and the beginning of the tagged customer's service, denoted as rip, is zero 
unless the tagged customer arrives during Tip. We thus have 

The tagged customer arrives during Tip (and in this case rip is positive) with probability pip. 
The first term in the inner braces on the right-hand side represents the mean elapsed time 
between the beginning of Tip and the arrival epoch of the tagged customer, corresponding to 
the mean backward recurrence time of the busy period for the discrete-time GeomX IGlll 
queue with batch size Xip and service time Hip initiated by one class-( i, p) customer. The 
second term in the inner braces is the mean residual service time seen by the tagged customer 
(because of the non-preemptive rule). The third term in the braces is the waiting time of the 
tagged customer, corresponding to the mean busy period initiated by those customers who 
arrive during this residual service time (because of the LIFO rule). This validates (3.26). 

Using (3.21), (3,25), and (3.26), (3,20) then gives 

h~;) 1 h~:) + h~q (A~:) - A;q - Aiq) 1 
Kipq = Aiq{Wip + Wiq + [2hiP + 2]- Piq[ 2hiq(1 _ Piq)2 - 2]} 

(2) (2) 2 
Aiqhiq A;q - Aiq - Aiq 

-[ + ] 
2(1 - Pip)hiq 2(1 - Piq)Aiq 

h(2) h3 (d2) \2 \.) h(2) (2) 
ip + ip Aip - Aip - A,p 1 ip 1 hip 1 

- Aiq{Pip{[ 2hip(I _ Pip)2 - 2] + [2hip + 2] + Aipbip[2hiP + 2]}} 

+ Aiqtip (for p < q, i E Id). (3.27) 

As in the i E 11 case, substituting (3.14), (3.19), and (3.27) into (3.12), and using (2.5), 
(3.11) through (3.13), we obtain (3.10). This completes the proof.O 

Lemma 3.1, together with Lemmas 3.2 and 3.3, gives the following pseudo-conservation 
law. 

Theorem 3.1 (Pseudo-conservation law) For a discrete-time GeomX IGIII type multi­
queue priority system with mixed exhaustive, gated, I-limited, and 1-decrementing services 
stations, we have 

p P P p-1 

2..: 2..: PipWip + 2..: 2..: [Pip - c{Aip 2..: Piu + Pip 2..: Aiu}]Wip 
iEeUg 1'=1 jEll p=l u=p u=l 
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P P p-l 
+ L L[Pip - c{Ajp(l - Pip) L Piu + Pip L Aju(l - Piu)}]Wip 

iE1d p=l u=p u=l 

_ P ~ ~ . (2) ~ ~ .\~;) - ).}p - Aip 2 8(2) 1 
- 2(1 _ p) ~ ~ Atphip + ~ ~ - 2(1 _ p) hip + p[T - 2'] 

t=l p=l t=l p=l 8 

{
I [2 ~ 2 '" 2 .... __ ~ A~;) - Aip + c 2' P - ~ Pi] + ~ Pi + l __ ~ 2A' Pip 

i=l iEgulluld iElI p=l 'P 

P A2 h(2) P 

'" '" [p2
t'P + ip iP. {'" (3 ) (1 )} ~ ~ 2( ) ~ Pia - Pip + - Pip Pip 

iEldp=l 1 - PIP u=p+l 

PAP h(2) 
+Aip(1-Pip) L (,u tu .i)2(2-- PiU) + Rip(disc)]), 

u=p+l 2 1 - PtU 
(3.28) 

where c and Rip(disc) are given in (2.1) and (3.10). 

Remark 3.2 a) For a discrete-time non-preemptive priority system with zero switch-over 
times, if we set 8 == 0 and 8(2) /8 = 1, (3.28) together with (3.3) reduces to the conservation­
law result in Takahashi & Hashida [20]. For a single-class (non-priority) discrete-time system 
with non-zero switch- over times, if we set P = 1, (3.28) corresponds to Eq_ (4_22) of Boxma 
& Groenedijk [3], correcting their error. b) In the busy-period second-moment (3.2'1), we 
have corrected a typographical error in Eq. (26) of Klimko & Neuts [13] where cubing of the 
service time in the numerator is missing.D 

4. The continuous-time result as a special case 

So far we have expressed all quantities in slots with the slot length equal to unity. If 
instead, we assume a slot to be of length ~, and if we let the length of a slot go to zero 
(~ ~ 0) as in the discrete-time literature [3, 16], we can obtain the continuous-time pseudo­
conservation law. 

Even if we assume that the slot length is ~, the results in Section 3 are still valid. To be 
more exact, in this case, all the quantities are measured in ~ units. We have to distinguish 
between a quantity measured in ~ units and the corresponding quantity measured in time 
units. Here, we will attach a tilde ("") to quantities measured in ~ units, while we will use 
the notation in Sections 2 and 3 for quantities measured in time units. The mean waiting 
time, for example, is expressed as 

where Wip denotes the class-( i, p) waiting time in ~ units and Wip the corresponding waiting 
time in time units. Similarly, we have 

It should be noted that all the results in Section 3 are valid for quantities with these tildes 
when the slot leng;th is ~. 

Let Xip( z) be the pgf of class-( i, p) batch size Xip in a slot with length ~, and Xip( z) be 
the pgf of the total number of class-(i,p) customers during a time unity. Since 1/~ is the 
number of slots per time unity and since we are assuming a batch Bernoulli process (where 
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the batch size arriving at a slot is statistically independent of the one at another slot), we 
have 

which yields 
-(2) 

A. - -'ip d A (2) A;p 1 ( 1 ) - 2 
Ip - ~,an ip = ~ + ~ ~ - 1 Aip-

Traffic intensity is invariant regardless of the slot length, i. e., 

Equation (3.28) with tildes leads to 

PI""", P P p-1 1 
.L L PipWip ~ + L L[Pip - C{Ajp L Piu + Pip L Aiu}]Wip ~ 
IEeUg p=1 lE 11 p=1 u=p u=1 

P P p-1 1 
+ E E[Pip - c{,\ip(l - Pip) E Piu + Pip E Aiu(1- Piu)}]Wip ~ 

iE1d p=1 u=p u=1 
N P N P \ (2) \ 2 \ . (2) 

P "". (2) 1 " "Aip - Aip - A,p 2 1 s 1 1 = 2(1 _ p) L...J L...J A,phip ~ + ~ L...J 2(1 _ p) hip~ + p[~ . ~ -- 2"] 
l=lp=1 l=lp=1 

1 2 ~ 2 " 2 ,,~A~;) - (1 - ~)A;p - Aip . 
+ c{ "2[p - L...J Pi] + L...J Pi + L...J L...J 2A. P,p 

i=1 iEgulIu1d iEll p=1 Ip 

P A? h(2) P 
- E L[P;p + ?(l'P- 'P ) { L piu(3 - Pip) + (1 - Pip)Pip} 

iE1dp=1 ~ P,p u=p+1 
P \ h(2) 

" '\iuPiu iu ( . ]} 1 + Aip(l - Pip) L...J 2(1 _ . )2 2 - Piu) + Rip(dJsc) ~' 
u=p+1 PIU 

(4.1 ) 

where 

s 
C = ( ) and 1-p 

Rip(disc) = ~{:~hiP (,\~;) - A;p - Aip)(1- Pip + Pip t Piu) 
P,p u=p+1 

A(2) - (1 - ~)A? - A· 
Ip Ip Ip (1 . ) . 

A. - P,p P,p 
Ip 

+Aip(l-Pip)[ t (A~:)-A;u-Aiu)(l-Piu+P;u)A. (1~ . )2] 
u=p+1 IU PIU 

P 

" 2 + Aip L...J Piu[Pip - (1 - Pip)(l + Piu)]~}. 
u=p+l 

We are now in a position t.o consider a continuous-time batch Poisson input multi-queue 
priority system. In this case, t.he discretization of the input (batch Poisson) process forms a 
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batch Bernoulli process for any slot with length ~; see Powell & Avi-Itzhak [16]. Multiplying 
both sides of ( 4.1) by ~ and taking the limit as ~ tends to 0, we obtain the following theorem. 

Theorem 4.1 For a continuous-time M X /GI/I type multi-queue priority system with 
mixed exhaustive, l~ated, I-limited, and I-decrementing service stations, we have 

p P P p-1 

2: 2: Pipwip + 2: 2: [Pip - C{,.\ip 2: Piu + Pip L: Aiu}]Wip 
iEeUg p=l iEll p=l u=p u=l 

P P p-l 
+ 2: 2: [Pip - c{,.\ip(I- Pip) L: Piu + Pip 2: Aiu(I- Piu)}]Wip 

iEld p=l u=p u=l 

P .{--- .f- (2) ~ .f- A~;) - ;\lp - Aip 2 8(2) 1 2 ~ 2 
=2(1- )L.JL..JAiphip +L..JL..J 2(1-) hip+P~+c{2[P -L..JPi] 

P 1==1 p=l 1=1 p=1 P 1=1 
P \ (2) \2 \ . 

+ 2: pi: + 2: 2: Aip -2~iP - AlP Pip 
iEgulluld iEll p=1 Ip 

P A2 h(2) P 
- L: 2: [p;p + 2(I'P_ IF ) { L: piu(3 - Pip) + (1 - Pip)Pip} 

iEld p=l PIP u=p+l 

P A' . h(2) 
+ Aip(I- Pip) 2: 2('Iu~u .i)2(2 - Piu) + Rip(cont)]} , (4.2) 

u=p+l PIU 

where 
8 

C = and 
(1 - p) 

( ) 1 { Pip hip (d2) 2 \) 0 
Rip cont : == - ---. Aip - Aip - Aip (1 - Pip + Pip L..J Piu) 

2 1 - PIP u=p+l 

A~:) - Alp - Aip 
A' (l-Pip)Pip 

Ip 

\.( .)[0(\(2) \2 \.)( . 2) hip ]} + A,p 1 - P'P L..J Aiu - Ai". - AIU 1 - PIU + Piu A' (1 _ .)2 . 
u=p+l IU PIU 

Remark 4.1 Equation (4.2) is a slight extension of the Poisson input results by FOllrnier 

& Rosberg [8] and Shimogawa & Takahashi [17]. For a Poisson input (A~:) = Arp + Aip, 1 :::; 
p :::; P) system, (4.2) reduces to the main result in [17]. For a Poisson input single-class 
(non-priority) system, (4.2) agrees with the result of Boxma & Groenendijk [1] if we set 

P = 1, and A~i) = A;1 + Ail. However, there is a discrepancy between our result and that in 
Fournier & Rosberg [8]. We understand that a calculation error is involved in [8], because Eq. 
(28) in [8] (should but) does not reduce to Eq. (:1.21) in [1] for the Poisson input single-class 
system.D 

5. Concluding remarks 
We have derived the pseudo-conservation law for a discrete-time Geomx /GI/1 type 

multi-queue priority system with mixed exhaustive, gated, I-limited and 1-decrementing 
service stations. Taking the discrete-time result as the slot length tends to zero has enabled 
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us to obtain the continuous- time result for an M X I G 111 type multi-queue priority system. It 
is left for future work to derive a pseudo-conservation law for a more general (e. g., Markov­
modulated batch Bernoulli process [21]) input system, since mean performance measures 
were shown to be influenced more by variances of the input processes than by those of the 
service times in the literature [11, 12, 15]. It is also worthwhile to study a distributional 
form of the pseudo-conservation law (a distributional relationship between the waiting time 
and the input random variables batch size, service time and switch-over time). 

Appendix. 
We will treat more general (stationary and ergodic) discrete-time GX IGl/l type multi­

queue priority system than the GeomX IGl 11 type system described in Section 2. The batch 
inter-arrival times are generally distributed (but can be correlated). The service time and 
switch-over time are respectively assumed to be independent and identically distributed (i. i. 
d. ) and mutually independent of the arrival processes. For any (i,p)(1 Si S N; 1 S p s P), 
we consider a class (i,p) queue in the GX IGl/l type multi-queue priority system. We 
introduce the following notation. 

{T;( k) I k = 0,1,2, ... }: sequence of the server arrival time points at station i, 

where T;(O) = ° 
G;(k) := T;(k + 1) - T;(k); k = 0,2,··· (cycle-time sequence) 
2;(k) := L::;;;~G;(u). We assume the cycle-time sequence {G;(k)} is stationary and 

ergodic. This assumption is valid for the (batch-renewal input [12]) Glx IGl/l type and 
the (Markov-modulated batch Bernoulli process input [21]) M BBPIGl/l type systems. 
Applying the ergodic theorem gives 

(A.l) 

where Ci denotes the mean cycle time at station i. This C; is independent of station index, 
as shown below. 

A) Proof of equation (2.1) 
We also introduce the following notation. 

TS;(k): total switch-over time of the server during G;(k) 
2B;(k): subset of time interval [O,3;(k)] during which the server is busy and 
21;(k): subset of time interval [0, 2;(k)] during which the server switches stations. 

The sequence {T5;(k)} is independent, and hence, the strong law of large numbers gives 

k-l 

~ E T5;(u) 
1· :=.1;( k) 1· u=O 
Im --- = Im ="--=:--- = S 

k-... oo k k-+oo k ' 
(A.2) 

where s is the mean total switch-over time of the server during a cycle. 

Now that the server either serves customers or switches stations at an arbitrary time, 
we have 

(A.3) 
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Applying Little's law to the subsystem composed of only the server facility (without any 
waiting room for an individual class), we have 

1· =-Bi (k) [ h . b ] lm ~ (k) = Pr t e server IS usy = p. 
k~oo =-j 

(AA) 

Multiplying both sides of (A.3) by Ilk, and taking the limit as k tends to infinity, we have 
from equations (A.l), (A.2), and (AA) 

. _ l' =-i(k) _ l' =-i(k)_ =-Bj(k) l' =-li(k) 
Cl - lm k - lm k ~ (k) + lm k k-oo k-+oo '::'i k-+oo 

= CiP + S. (A.5) 

Equation (A.5) yields 
S 

C·---
1- 1- p' 

showing that mean cycle time Ci does not depend on station index. We have denoted this 
mean cycle time by C in Section 2. This completes the proof of equation (2.1).0 

B) Proof of equation (2.3) 

and 

We also need the following notation. 
Q;p(n): number of class-(i,p) customers at time point n(n = 0, ±I, ±2,···) 
L:;p(k): number of class-(i,p) customers who were served during [O,=-i(k)] 
W;p(k): number of class-(i,p) customers who arrived during [0, =-j(k)] 

0ip(k) := Q;p(T;(k) + 1) (queue length found by the server upon its k-th arrival) 

Noting that for the I-limited service station, the maximum number of customers that 
can be served per cycle is only one, we have 

and 

Assume the stationary condition: 

P [ ] 1
. L:;p(k) 

r Aip = lm --k-' 
k ...... oo 

lim 0ip(k~ = O. 
k ...... oo k 

(A.6) 

(A.7) 

(A.S) 

Multiplying both sides of (A.6) by 1 I k, taking the limit as k tends to infinity, and applying 
the ergodic theorem, we have from equations (A.I) and (A.6) through (A.S) 

Pl'[Aip] = lim l:ip(k) = lim ~[I;p(k) = lim W;p(k) =-j(k) 
k ...... oo k k ...... oo k k ...... oo =-j( k) k 

= AipC, 

proving (2.3).0 
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