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Abstract This paper studies a large class of M/C/l queues with vacations. By means of a probabilistic 
interpretation we obtain a functional equation which gives a unified approach to derive time-dependent 
results for the workload distribution. We also discuss application of our result to a number vacation models. 

1. Introduction 

Recently, analysis of the workload for single-server queues with vacations of the server 

is a subject of interest. Analysis of the stationary workload has been conducted, among 

others, by Boxma [2], Boxma and Groenendijk [3] and Takagi et al. [18]. An interesting 

result in this direction is the so-called decomposition property for the workload established 

by Boxma [2] for an M/G/l system with generalized vacations. Here the service of a 

customer can be preemptive. However, the preemption process should not affect the 

amount of service time given to a customer or the arrival time of any customer. 

Besides the stationary analysis, there are few treatments of the time-dependent dis­

tribution of the workload conducted by Keilson and Ramaswamy [10], Takagi [17] and 

Takine and Hasegawa [19]. However, most of the known derivations of time-dependent 

results for the workload are not quite satisfactory because they involve very lengthy and 

complicated calculations. Moreover, those derivations are restricted to special vacation 

models. 

In the present paper, we give a unified approach to the study of the time-dependent 

distribution of the workload for a general class of M/G/1 queues with vacations. Using 

the method of collective marks we derive an expression for the Laplace-Stieltjes transform 

of the workload at time t. The new formula allows us to rederive and unify some existing 

results. It also allows us to study the limiting behaviour of the workload process when 

the traffic intensity is equal to or greater than one. For information about the method of 

collective marks and the use of it in queueing theory we refer the reader to Cong [7] and 

the references therein. The present paper can be read without any special knowledge of 

this method. 

2. The main results 

Following Boxma [2] we consider a modified M/G/1 queueing system which satisfies 

the following assumptions. 
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Assumption 1. Customers arrive at the system according to a stationary Poisson process. 

The service times of customers are Li.d. non-negative random variables. The sequence of 

interarrival times and the sequence of service times are independent stochastic processes. 

Assumption 2. The service discipline does not affect the amount of service time given 

to a customer or the arrival time of any customer. 

Assumption 3. The state of the server can be {serving} or {non-serving}. A non-serving 

state can also be either free or interrupted (i.e. the server is not serving when there is at 

least one customer present in the system). The interruption process does not affect the 

amount of service time given to a customer or the arrival time of any customer. 

The above assumptions are slightly different from Assumption 2.1 of Boxma [2]. Here 

we do not require the existence of the equilibrium distribution of the workload process. 

Throughout this paper A is the arrival rate and S is the random service time with 

LSt (Laplace-Stieltjes transform) (3(0. The traffic intensity p = AE[S] is finite. The state 

of the server at time t is denoted by I(t), where I(t) = 1 if at time t the server is serving 

and I(t) = 0 otherwise. 

We obtain the following time-dependent result for the workload. 

Theorem 1. The LSt of U(t), for t ?: 0, satislies the equation 

where ~ is a complex number with ~~ ?: 0, lA is the indicator function of the set A and 

<p(~) ~f ~ - A + A(3(~). (2.2) 

Proof. It suffices to prove (2.1) for ~ > 0 because if this is done, then by analytic 

continuation (2.1) holds for complex ~ with ~~ ?: o. Let us consider an additional Poisson 

process with parameter ~ producing catastrophes. This Poisson process does not depend 

on the original queueing process. We introduce the following random events which depend 

on t 

A ~f a catastrophe does not occur either during the remaining service time of the cus­

tomers who are present at time 0 or during the service time of the customers who 

arrive in the time interval (0, t), 

B ~f the first catastrophe occurs after time t and a catastrophe does not occur during 

the remaining service time of the customers who are present at time t, 
C ~f the first catastrophe occurs at a time 8 < t when the server is not serving and after 

that a catastrophe does not occur either during the remaining service time of the 

customers who are present at time 8 or during the service time of the customers 

who arrive in (8, t). 
It is clear that the event A is the union of the disjoint events Band C. Therefore 

P(A) = P(B) + P(C). (2.3) 
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The probability that a catastrophe does not occur during the service time of the customers 

who arrive in the time interval (0, t) is 

(2.4) 

because during a service time with probability {3(t;.) no catastrophe occurs. The probability 

that a catastrophe does not occur during the remaining service time of the customers who 
are present at time s is nothing but E[e-eU(s)]. Hence 

P(A) = e-A(l-j3(e))t E[e-eU(O)]. (2.5) 

For the event B we have 

(2.6) 

The probability that the server is not serving at time s and no catastrophe occurs 

during the remaining service time of the customers who are present at that time is 

E[e-eU(s)l{I(s)=o}L while the event no catastrophe occurs during the service time of the 
customers who arrive in the time interval (s, t) has probability e-).(l-j3(e»(t-s). Therefore 

Equation (2.1) now follows from (2.3), (2.5)-(2.7) and simple algebra. 

Corollary 1. We have for t 2: 0 

E[U(t)] == E[U(O)] + lot P(I(s) = O)ds - (1- p)t. 

(2.7) 

o 

(2.8) 

Proof. Equation (2.8) follows either from (2.1) by differentiating in t;. and then letting 

t;. 1 0 or from the following observation 

U(O) + S(t) + lot l{J(s)=o}ds = U(t) + t, 

where S(t) is the sum of the service times of all customers who arrive in the interval (0, t). 
Taking expectations on both sides of the last equation results in 

E[U(O)] + pt + lot P(I(s) = O)ds = E[U(t)] + t, 

so that (2.8) follows. 

Corollary 2. Let U*(t;.,w) == 1000 e-etE[e-wU(t)]dt. Then 

U .. (t;., w) = E[e-wU(O)]_ wUO'(t;., w), 
t;.-w+'x-'x{3(w) 

o 

(2.9) 
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where 

u; (~, w) ~f 100 

e -et E[e -wU(t) l{I(t)=O} ]dt_ (2.10) 

Proof. Formula (2.9) immediately follows from (2.1) by taking Laplace transforms on 

both sides. 0 

Corollary 3. Let p < 1. Assume that (l(t), U(t)) converges in distribution as t ---;' 00. 

Let (I, U) be a random vector with as joint distribution the joint limiting distribution of 

(l(t), U(t)). We have the following decomposition result 

(~U1) 

Proof. We obtain from (2.9) and (2.10) by applying an Abelian theorem 

w -wU P(l = O)w -wU 
= w - A + Ai3(w)E[e l{I=o}] = w _ A + Ai3(w)E[e 11 = 0]. 

Letting w 1 0 we have P(l = 0) = 1 - p. o 
Some comments about the above results may be helpful. 

Remark 1. If we restrict to the standard M/O/1 queue, i.e. there is no interruption at 

all, then (2.1) simplifies to 

where pet) = P(server is idle at time t). This is the well-known Takacs equation for the 

workload or the virtual waiting time under the FIFO discipline (see Takacs [14], p. 51). 

This equation was first derived by means of an integro-differential equation (see Takacs 

[13] and Remark 2 below). A derivation by means of the method of collective marks was 

given by Runnenburg [12]. In the proof of (2.1) we follow the line of reasoning used in [6] 

and [12]. 
Remark 2. Equation (2.1) can be obtained by means of an integro-differential equation. 

Let F(t, x) = P(U(t) ~ x), Fo(t, x) = P(U(t) ~ x,l(t) = 0) and B(x) = peS ~ x). A 

continuity argument as in Takacs [13], [14] requiring differentiability of F(t, x) and Fo(t, x) 
gives 

a a {} [- 1. ] -;:;-F(t, x) = -a F(t, x) - "!:}Fo(t, x) - A I F(t, x) - B(x - y)dyF(t, y) . 
ut X uX ~,x) 

Laplace transformation with respect to x results in 

so that (2.1) follows. This we find a more complicated way of finding (2.1). o 
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Remark 3. Let G(t) be the cumulative time spent in the non-serving state up to time t, 

i.e. G(t) = J;[1 - 1(s)]ds. Then the Laplace-Stieltjes transform for the joint distribution 

of U(t) and G(t) satisfies the following equation 

This equation can be derived by means of the method of collective marks. In this case we 

need two different kinds of catastrophes, Gf. and Gw, which occur according to independent 

Poisson processes with para.meters e and w, respectively. These extra Poisson processes 

and the original queueing process are also independent. Without loss of generality we can 

assume that U(O) = O. Let Set) be the sum of the service times of all customers who 

arrive in the time interval (0, t). We introduce the following random events 

A ~f no Gf. occurs during the service time of the customers who arrive in (0, t), 

B ~f no Gf. occurs during [0, t) n {s ~ 0: 1(s) = O}, 

C ~f no Gw occurs during [0, t) n {s ~ 0: 1(s) = o}. 
Clearly 

peA) = peA n B n C) + peA n B n C), 

where B n C is the complement of the event B n C. We have 

and 
peA n B n C) = E[e-f.S(t)-(f,+w)C(t)] = E[e-f.(t+U(t»-wC(t)], 

(2.12) 

(2.13) 

(2.14) 

where the last equality holds because Set) + G(t) = t + U(t). Since the event B n C occurs 

if and only if a catastrophe (Gf. or Gw) occurs during [0, t) n {s ~ 0: 1(s) = O}, we have 

peA n B n C) = lot E[e--f.S(t)-(f,+w)C(s)l{I(s)=o}](e + w)ds 

=(e + w) lot E[e-f.(S(t)-S(s»-f.(s+U(s»-wC(s)l{I(s)=o}]ds 

=(e + w) lot E[e-f.U(s)-wC(s)l{I(s)=o}]e- A(l-,B(f.))(t-s)e-f.sds. (2.15) 

The relations (2.12)-(2.15) and simple algebra give us the desired result. o 
If p ~ 1, then U(t) does not converge in distribution as t ---+ 00. In that case, however, 

it is interesting to know the behaviour of the workload process U(t) for larget. We have 

the following theorem. 

Theorem 2. (a) If p = 1, c = ':\E[S2] < 00 and for every w > 0 the limit 

(2.16) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Time-Dependent Distribution of the Workload 

exists and is independent of w, then 

1 d 
cU(t) - IYI as t -+ 00, 

yet 

where Y has the standard normal distribution. 

(b) If p > 1 and 

d 
then U(t)/t - p - 1. 

lim ! t P(I(s) = O)ds = 0, 
t-+oo t 10 
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(2.17) 

(2.18) 

Proof. We first show that if l(w) is independent of w, then l(w) = JCfi. Let b(~) be the 

LSt of the length of a busy period in the standard M/C/1 queue. Note that b(~) satisfies 

the well-known equation (see Takacs [14], p. 58) 

(2.19) 

Substituting ~ + ,>. - .>.6(0 for ~ in (2.1), then multiplying both sides by e-~t and finally 

letting t -+ 00 we have for ~ > 0 

It follows that 

(2.20) 

If p = 1 and E[S:!] < 00, then using (2.19) it can be shown that for 0 < € < Wo = v~ 

(2.21 ) 

for sufficiently small ( This together with (2.20) implies 

1 
l(wo + €) :s - :s l(wo - €). 

Wo 

Hence l(w) = Jc/2 if l(w) is independent of w. 

Substituting ~/Vci for ~ in (2.1) we obtain 

Define 

and 

FW(x) ~f 1ft l x 
E[e-wU(ts)/v'Ct1 ]ds t {I(ts)=O} . 

e 0 
(2.22) 
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Then 

E[e-{U(t)/Vct] = e4>tW [E[e-{U(O)/Vct]_ ~ fal e-4>t({)"'d",Ff(x)]. (2.23) 

It can be shown that if the limit (2.16) exists for every w > 0, then 

1
00 1 

lim e-{"'d",Ft(x) = r,;cl(w/Jct) for ~ > 0 and w > o. 
t-+oo 0 vc~ 

(2.24) 

In particular, if l(w) is independent of w, then l(w) = ~ and we have 

Applying an extended continuity theorem (see Feller [8], Theorem 2a, p. 410) we obtain 

. ( ) def f§x lim Ft x = F(x) = - for x :2: 0 and w > o. 
t-+oo 7r 

Note that 

(2.25) 

Applying Helly's theorems we have for ~ > 0 and 0 < € < e /2 

t e-<!e+e)"'dF(x) 5 liminf r1 

e-4>t({)"'d",Fnx) 
lo t-+oo lo 

5 limsup t e-4>· (0'" d", Ft (x) :::; r1 

e-(te-e)"'dF(x). 
t-+oo lo lo 

Letting € 1 0 results in 

(2.26) 

We now have 

From the last formula we obtain by means of the substitution x = (1 + u/02 

so that (a) is proved. 

To prove (b) we substitute ~/t for ~ in (2.1). Then 

E[e-{U(t)/t] = e4>({/t)t [E[e-{U(O)/t]_ t fat e-4>({/t)s E[e-{U(S)/t1{l(s)=O}]dS]. (2.27) 
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If p > 1, then 

lim <p(~/t)t = (1 - p)~ < 0 for ~ > O. 
t-+oo 

We have 

llt limsup - e<!>(e/t)(t-s) E[e-eU(s)/tl{I(s)=o}lds 
t-+oo t 0 

lit ::;limsup - e<!>(e/t)(t-S)P(I(s) = O)ds 
t-+oo t 0 

lit ::; limsup - P(I(s) = O)ds = o. 
t-+oo t 0 

We now obtain from (2.27) by letting t -+ 00 

lim E[e-eU(t)/tl := e-(p-l)e. 
t-+oo 

o 

3. Application to selected vacation models 

In this section we demonstrate the generality and convenience of formula (2.9) for 

the workload process. We show how this new result can be applied to rederive and unify 

some existing results for selected vacation models. We also verify whether the conditions 

of Theorem 2 are satisfied in these special cases. 

We shall analyse five M/G/l vacation models. In the first three models the service 

is assumed to be exhaustive, while in the last two models the service is non-exhaustive. 

For more information about M/G/l queues with vacations we refer the reader to Ta.kagi 

[16], Chapter 2. 

Throughout this section, X is an exponential random variable with parameter ~ and 

X is independent of the queueing process. 

Example 1. Multiple vacations and exhaustive service 

In this queueing model, the server takes a vacation of a random length of time when 

he finishes serving a customer and finds the system empty. At the end of a vacation, the 

server returns to the system and starts serving those, if any, who have arrived during the 

vacation. If there are no waiting customers at the end of a vacation, the server takes a 

new vacation. Vacations are taken repeatedly until the server finds at least one waiting 

customer at the end of a vacation. The lengths of vacations are i.i.d. non-negative random 

variables. The sequence of arrival times, the sequence of service times and the sequence 

of vacation times are independent stochastic processes. Let V*(~) = E[exp( -~V)], where 

V is the random vacation time. It is assumed that P(V = 0) < 1. 

Note that in this queueing model I(t) = 0 if and only if the server is on vacation at 

time t. Because of the independence of X and the workload process U(t) we have 
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Let Tn be the moment at which the nth vacation starts and Vn the length of the nth 

vacation. From (3.1) we have 

00 

~U;(~, w) = L E[l{Tn::ox<Tn+vn}e-wU(X)] 
n=l 

= I:E[l{Tn::OX}e-WU(Tn)]1 lY e-A(l-,B(W»"~e-e"dxdyP(V;t ~ y) 
n=l [0,00) 0 

= ~ P(T. < X)Hl- V*(~ + A - A,B(W))} 
~ n - ~ + A - A,B(W) 

E[e-(HA-A6(mU(O)] Hl- V*(~ + A - A,B(W))} 

1 - V*(~ + A - Ah(~)) ~ + A - A,B(W) 
(3.2) 

Substituting Uo(~,w) into (2.9) we get 

E[e-wU(O)] w 
U* (~, w) = ~ _ w + A - A,B( w ) ~ - w + A - A,B( w ) 

x E[e-(HA-A6(mU(O)] • 1 - V*(~ + A - A,B(W)) (3.3) 
I-V*(~+A-Ah(O) ~+A-A,B(W) . 

Two special cases of (3.3) with U(O) = 0 and E[e-eU(O)] = ,B(~)i were obtained earlier 

by Keilson and Ramaswamy [10] and Takagi [17], respectively. 

One can show that if p < 1, E[V] < 00 and the distributions of service and vacation 

times are non-arithmetic, then the length of the busy cycle (Tn, Tn+1 ) also has a non­

arithmetic distribution with finite mean value. In that case, using a renewal argument as 

in Cohen [4], it can be shown that U(t) converges in distribution as t - 00. The LSt for 
the limiting distribution is given by 

E[e-WU] = lim~U*(~,w) = (1- p)w 
HO w - A + A,B(W) 

1 - V*(A - A,B(W)) 
A(I- ,B(w))E[V] 

From (3.4) we have 

E[U] = AE[S2] pE[V2] 
2(1- p) + 2E[V] . 

If p = 1, c = AE[S2] < 00 and E[V] < 00, then from (3.2) we get 

l(w) = lim ../lu;(~, w../l) = VAE[S2]/2, 
HO 

which is independent of w. Hence, by part (a) of Theorem 2, U(t)/VCi ~ IYI. 
If p > 1 and E[V] < 00, then 

100 ... E[e- A(1-6(O»U(O)] 
P(I(t) = O)dt = lim Uo (~, 0) = E[V] ( ( ))' 

o e!O 1 - V" A - Ah 0 

(3.4) 

(3.5) 
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which is finite because 15(0) = lim€lO 15(0 < 1. Hence U(t)/t ~ P - 1. 

Example 2. Single vacation and exhaustive service 
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In this queueing model, the server takes only one vacation of random length of time 

after each busy period. That is, if upon returning from a vacation there are no waiting cus­

tomers, the server stays idle until the first new customer arrives and then starts working. 

If customers arrive during a vacation, the server starts serving them as soon as that vaca­

tion terminates. Vacation times are i.i.d. non-negative random variables. The sequence of 

arrival times, the sequence of service times and the sequence of vacation times are assumed 

to be independent. Let V*(~) = E[exp( -~V)], where V is the random vacation time. 

Following the reasoning used in the previous example we have 

* E[e-(~+>'->'cS(O)U(O)] 

Uo(~,w)=: ~+A-A,B(W) 

x [1- V*(~ + A - A,B(W))](~ + A) + [~+ A - A,B(W)]V*(~ + A) ( ) 
[1 - V*(~ + A - Ab(~))](( + A) + [~+ A - Ab(~)]V*(~ + A)· 3.6 

Substituting Uo(~,w) into (2.9) we obtain 

E[e-wU(O)] E[e-(H>'->'cS(~»U(O)] 

U*(~,w)=~-W+A-A,B(W) -w e--W+A-A,B(W) 

x [1 - V*(~ + A - A,B(W))](~ +- A) + [~+ A - A,B(W)]V*(~ + A) (3.7) 
[1 - V*(e + A - Ab(~))](~ +- A) + [e + A - Ab(~)]V*(e + A) 

The result for U* (~, w) in the special case E'[e-~U(O)] = ,B( ~)i, where i is a non-negative 

integer, was obtained earlier by Takagi [17]. 

If p < 1 and E[V] < 00, then U(t) converges in distribution and the LSt for the 

limiting distribution is given by 

From the last formula we obtain 

Using (3.6) one can verify that 

(a) if p = 1, E[S2
J < 00 and E[V] < 00, then 

1 - V*(A - A,B(W)) + V*(A)(l - ,B(w)) 
(1 - ,B(w)){AE[V] + V*(A)} 

l(w) = lim ~U~(e, w/~) = /AE[S2]/2; 
€lO 

(b) if p > 1 and E[V] < 00, then (2.18) holds. 

Example 3. N-policy and set-up times 

In this queueing model, the server remains idle after each busy period until the 

queue length builds up to a preassigned desired level N (this period is called a build­

up period). Here N is a positive integer. Furthermore, a random set-up time T occurs 
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before starting a busy period. The set-up times are i.i.d. non-negative random variables. 

The sequence of arrival times, the sequence of service times and the sequence of set-up 

times are independent. This queueing model was discussed previously, among others, by 

Heyman [9], Medhi and Templeton [11] and Takagi [17]. 

Note that let) = 0 if and only if t is inside a build-up or set-up period. To compute 

U* (~, w) for this model we start with a simple situation: the system is empty at time O. 

For this initial condition we have 

cu.*(C ) - E[l . -wU(X)] _ E[I{I(x)=o,x<cde-wU(X)] 
<,. 0 <,., w - {I(X)=O}e - 1 _ P(X > Cl) , (3.8) 

where Cl is the length of the first busy cycle, i.e. the time from 0 to the end of the first 

busy period. 

It can be shown that 

(3.9) 

and 

N-l 

E[I{I(x)=o,x~cde--wU(X)] = L (>'/~ + >.)k(~/~ + >.),B(w)k 
k=O 

(>'/c ,\)N a( )N~{l- T*(~ +,\ - '\,B(w))} 
+ <,. + fJ W ~ + ,\ _ '\,B( w ) , (3.10) 

where T*(~) = E[exp( -~T)]. 
From (3.8)-(3.10) and using simple algebra we obtain 

* 1 1 - ('\,B(w)/~ + ,\)NT*(~ + >. - '\,B(w)) 
Uo(~,w) = ~ +,\ _ '\,B(w) 1- (>'8(~)/~ + ,\)NT*(~ +,\ - '\8(0) . (3.11) 

If the server is serving at time 0, then it takes a time Tl until the system becomes 

empty. In that case, Uo(~,w) equals the right-hand side of (3.11) multiplied by E[e-eTl]. 

In fact we have 

* E[e-(H,X-,Xo(e»U(O)] 1 - ('\,B(w)/~ + ,\)NT*(~ +,\ - '\,B(w)) 
Uo (~, w) = ~ +,\ _ >.,B(w) . 1 - (>'8(~)/~ + ,\)NT*(~ + >. - ,\8(0) . (3.12) 

Substituting Uo(~,w) into (2.9) we obtain U*(~,w). The result for U*(~,w) in the 
special case E[e-eU(O)] = ,B(~)i, where i is a non-negative integer, was obtained earlier by 

Takagi [17]. 

It can be shown that if p < 1 and E[T] < 00, then U(t) converges in distribution as 

t --t 00. The LSt for the limiting distribution is given by 

E[e-WU] = lim~U*(~ w) = (1 - p)w . 1- ,B(w)NT*('\ - ,\,B(w)). 
etO ' w+,\-,\,B(w) {N+'\E[T]}(l-,B(w)) 
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From the last relation we obtain 

E[U] = '\E[S2] pN E[T] p(N(N - 1) + ,\2 E[T2]) . 
2(1 - p) + N + ..\E[T] + 2..\(N + "\E[T]) 

One can verify that 

(a) if p = 1, E[S2] < 00 and E[T] < 00, then 

(b) if p > 1 and E[T] < 00, then 

100 

P(.l(s) = O)ds = ~N U;(~, 0) :S 1 _ b(O)N ~~~l- ..\15(0)) < 00. 

Example 4. Multiple vacations and semi-exhaustive service 

This is the same model as in Example 1 with the following change. If the server 

finds waiting customers at the end of a vacation, he starts working until the number of 

customers present is one less than the number of customers present upon his return from 

the last vacation. The server thell leaves for a new vacation. This service discipline is 

called semi-exhaustive. It has been introduced by Takagi [15), who studies it in a cyclic 

polling system with switchover times. A service discipline which is slightly different from 

the one described a.bove has been studied by Cohen [5]. He analyses a two-queue model 

with alternating semi-exhaustive service and obtains a number of interesting results. 

We denote by Tn the moment at which the nth vacation starts and by N n the number 

of customers present in the system at that time. To avoid complexity we assume that 

Tl = 0 and Nl = O. As in (3.2) we have 

CJ.*(C w) = ~ E[l -wU(T")j 1 - V*(~ +..\ - ..\f3(w)) 
o \" ~ {T.,~X}e ~ +..\ _ ..\f3(w) . 

Note that 

It can be shown that for n 2: 1 

Let 

zE[1{T.,+1:SX}ZN.,+1] =[z - b(O]V*(~ + ..\)P(Tn :S X, N n = 0) 

+ b(~)V*(,; +..\ - ..\z)E[l{Tn:SX}ZNn]. 

00 

a(~, z) ~f L E[l{T.,:SX}ZNn]. 
n=l 

From (3.14)-(3.16) and simple calculation we get 

a(~ z) = z - [b(~) - z]V*(~ + ..\)a(~, 0). 
, z - b(~)V'(~ + ..\ - ..\z) 

(3.13) 

(~U4) 

(~U5) 

(~1.l6) 

(:~.17) 
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To find a(~, 0) we consider the standard M/C/1 queue with arrival rate ,\ and the service 

time V. Let Lv and N v be the length of a busy period and the number of customers 

served during that busy period, respectively. Write bv(~, z) for E[e-eL• zN.] and put 

Because z = ,(0 for ~ 2: 0 is a unique zero in [0,1] of the denominator in (3.17), it must 

be a zero of the numerator. Therefore 

( ) ,(0 
eT ~,O = (15(0 - ,(O)V*(~ +,\). (3.18) 

Substituting (3.18) into (3.17) results in 

We now have 

U'*( w) _ 1 (3(w) - ,(~) 
o~, -1 - V*(~ +,\ - '\,(~» (3(w) - b(~)V*(~ +,\ - ,\(3(w» 

1 - V*(~ +,\ - ,\(3(w» (3.20) 
x ~ + ,\ _ '\(3( w ) . 

Substituting Uo(~,w) into (2.9) we obtain U*(~,w). 
The LSt for the limiting distribution of U(t) as t -t 00 is given by 

E[e-WU
] =lim~U*(t;,w) 

00 
(1 - p)w (1 - Pv)(l- (3(w» 

w - ,\ + ,\(3(w) . V*(,\ - ,\(3(w» - (3(w) 
1 - V*('\ - >.(3(w» 
>'(1 - >.(3(w»E[V] , 

where P < 1 and Pv = >'E[V] < 1 are necessary for the existence of a limiting distribution. 

From the last equation we obtain 

Let us now assume that P = 1, c = >'E[S2] < 00 and Pv = >'E[V] < 00. It is not 

difficult to verify that for w > 0 

{
VcJ2 

l(w) = lim JeU~(~,wJe) = Pv 
eta /2Tc + (Pv - l)w 

if Pv S 1, 

if Pv > 1. 
(3.21) 

If Pv S 1, then l(w) is independent of wand hence, by part (a) of Theorem 2, 

U(t)/..[d ~ IYI, where Y has the standard normal distribution. If Pv > 1, then l(w) 
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depends on w. In this case, however, U(t)/.jCi still converges in distribution but the limit 

is not normal. 

Theorem 3. Consider the multiple vacation model with semi-exhaustive service. Let 

p = 1, E[V] < 00 and c = AE[S2] < 00. Assume that Pv = AE[V] > 1. Then 

1 cl 
r:;U(t) ~ Y as t ~ 00, 

yet 

where Y has an absolutely continuous distribution with density 

and 

(3.22) 

(3.23) 

(3.24) 

Proof. We first notice that the relations (2.23) and (2.24) are still valid when Pv > 1. 

From (2.24) and (3.21) we get 

lim [00 e-{"'d",Ft(x) := ~ ~v )' (3.25) 
t---+oo lo 2e + Pv - 1 w 

where Ft(x) is as defined in (2.22). With the help of (29.3.37) in Abramowitz and 

Stegun [1] we find 

where 

vd = [00 e-{"'f(w,x)dx, 
2e + w lo 

1 w 2 /2100 
2 f(w,x) = -- - _e'v '" e-Y dy. 

V27rx Vii w# 
We obtain from (3.25) and (3.26) by applying the extended continuity theorem 

lim Ft(x) = FW(x) = Pv r f((pv -1)w,y)dy for x ~ O. 
t---+oo lo 

The same argument as in the proof of (2.26) gives 

lim [1 e-4>t({)"'dx Ft(x) = [1 e-e"'/2d",FW(x) for e > 0 and w > o. 
t---+oo lo lo 

Letting t ~ 00 in (2.23) results in 

lim E[e-{U(t)/Vct] = ee /2 [1 - ep" (e-e"'/2 f((pv - l)e, X)dX]. 
~oo h 

(3.26) 

(3.27) 

(3.28) 

The last integral can be simplified by applying Fubini's theorem. After some routine 

simplification we obtain 

lim E[e-{U(t)/Vct] = exp(e /2) erfc (~/h) 
t---+OC} 2 - Pv 

_ (Pv - 1) ex~~p;v - 1)2e /2) erfc ((Pv -1)e/h), (3.29) 
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where erfc (x) is the complementary error function, i.e. 

2 [00 2 

erfc (x) = v'7r J", e-u 
duo 

Hence U(t)/VCi ~ Y as t --+ 00. The probability density function of the random variable 

Y can be obtained from (3.2~1) by noting that 

o 

Example 5. Multiple vacatiolls alld gated service 

This is the same model a.s in Example 1 with the following change. When returning 

from a vacation the server only gives service to those, if any, who were waiting when the 

server returned. After doing this the server leaves for another vacation. If upon returning 

from a vacation there are no waiting customers, the server leaves for a new vacation. We 

assume that at time 0 the system is empty and the server is about to take a vacation. 

Let Tn be the moment at which the nth vacation starts. We have 

~*(C w) = ~ E[l e-wU(Tn)] 1 - V*(~ + A - A{3(W)) 
o <" ~ {Tn~X} ~ + A - A{3(W) . (3.30) 

Let N n be the number of customers present in the system at the beginning of the nth 

vacation. Clearly 

For n ~ 1 we have, omitting the details 

Set 

E[I{Tn+l~X}ZNn+l] =V*(~ + A - A{3(~ + A - AZ)) 

X E[I{Tn~X}{3(~ + A - AZ)Nn]. 

1/Jl(~'W) =V*(~ + A - A{3(W)), 

1/Jk(~' w) =1/Jk-l (~, ~ + A - A{3(W)), 
00 n 

1j'(~,w) = L IT 1/Jk(~'W). 
n=lk=l 

From (3.31)-(3.33) we obtain 

00 

L E[I{Tn'5:x}e-wU(Tn)] = 1 + 1/J(~,~ + A - A{3(W)), 
n=l 

and hence 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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The time-dependent result for U(t) is now given by 

U* (~, w) = 1 ___ w_---,--_ 
. ~ - W + A - A{3( W ) ~ - W + A - A{3( W ) 

1- V*(~ + A - A{3(W» 
x[I+1/!(~,~+A-A{3(w»] ~+A-A{3(W)' (3.36) 

With some algebraic manipulations, one can verify that (3.36) is identical to (4.78) in 

Takine and Hasegawa [19]. 

If p < 1 and E[V] < 00, we have 

(3.37) 

(see [17] or the appendix for a direct computation). 
The LSt for the limiting distribution of the workload is given by 

-wU . * (1- p)w rroo 
1 - V*(A - A{3(W» 

E[e ] = ~~~U (~, w) = W _ A + A{3(W)' . n=21/!n(O, w)· A(1 - {3(w»E[V] . 

From the last formula we obtain 

E[U] = AE[S2] + p2 E[V] + P E[V
2
]. 

2(I-p) I-p 2E[V] 

Remark 4. In Example 5 the question concerning the convergence in distribution of 

U(t)/# for t -t 00 when p = 1, c = AE[S2] < 00 and E[V] < 00 is still open. At present 

we are unable to answer this question. 

Appendix: Proof of relation (3.37) 

Because 

it suffices to show that 
. I- p rr

oo 

~m ~1/!(~,w) = E[V] n=l 1/!n(O, w). 

Let 
jh(~,w) ~f {3(w), 

where ~ 2 0 and v.; 2 O. Then 

It can be shown by induction that if {3(w) ::; 8«(), then 

'lj;'n(~'w) = V*(~ + A - A{3n(~""'»::; V*(~ + A - A8(0). 

(:~.38) 

(:1.39) 
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Hence, we have for w > 0 and ~ sufficiently small 

7n1t 00 n 

1jJ(~,w) = L IT 1jJk(~'W) + L IT 1jJk(CW) 
n=l k==l n=Tn+l k=l 

Multiplying both sides of (:~.40) by ~, then letting' 1 0 and finally letting m --t 00 we 

obtain 

. I-PIT"" 
limsup ~1jJ(€,w) ~ E[V] 1jJk(O,W). 

HO k=l 

To show an inequality for liminf we note that 

Using (3.38)-(3.39) and applying (3.41) successively we obtain 

11jJn(~'w)-V*(~ + A - A8(~))1 ::; AE[V]I,8n(~'w) - 8(€)1 

::;AE[V]AE[S]I,8n_l(~'W) - 8(~)1 ::; AE[V]pn-l. 

It follows that for m sufficiently large and n > m 

n n 

IT 1jJk(~' w)? IT {V*(~ + A - A8(O) - AE[V]l-l} 

Hence 

(3.41 ) 

(3.42) 

Multiplying both sides of (3.42) by ~, then letting ~ 1 0 and finally letting m --t 00 we 

obtain 

o 
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