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Abstract We present a greedy algorithm for minimizing a separable convex function over a finite jump 
system (E, F), where E is a nonempty finite set and F is a nonempty finite set of integral points in ZE 
satisfying a certain exchange axiom. The concept of jump system was introduced by A. Bouchet and W. 
H. Cunningham. A jump system is a generalization of an integral bisubmodular polyhedron, an integral 
polymatroid, a (poly-)pseudomatroid and a delta-matroid, and has combinatorially nice properties. The 
algorithm starts with an arbitrary feasible solution and a current feasible solution incrementally moves 
toward an optimal one in a greedy way. We also show that the greedy algorithm terminates after changing 
an initial feasible solution at most 

times, where for each e E E 

1. Introduction 

E {u(e) -/(e)} 
eEE 

u(e) = maxx(e), 
xE:F 

I(e) = minx(e). 
xE:F 

A. Bouchet and W. H. Cunningham [3] have recently introduced the concept of jump system. 
A jump system is a pair (E, F) of a nonempty finite set E and a nonempty set F of integral 
points in ZE satisfying an exchange axiom (a precise definition will be given later). We call 
a jump system (E, F) finite if F is finite. For a finite jump system (E, F), it is known ([3]) 
that the convex hull Co(F) of F is a bounded bisubmodular polyhedron, i.e., for a given 
finite jump system (E, F) there exists a bisubmodular function f : 3E --+ Z such that 

Co(F) = {x I x E RE, 'r:/(X, Y) E 3E 
: x(X) - x(Y) ::; f(X, Y)} (1.1 ) 

(the precise definition of bisubmodular function will also be given later). However, the set 
of integral points of Co(F) is not necessarily equal to F. Some non-extreme integral points 
of Co(F) may be missing in F. Therefore, a jump system is a proper generalization of an 
integral bisubmodular polyhedron [3, 4], which is the set of integral points of a bisubmodular 
polyhedron defined by an integral bisubmodular function. Hence, it generalizes an integral 
polymatroid [6], a pseudomatroid [4] and a delta-matroid [2]. An interesting example of a 
jump system arises from matchings in graphs (see [3,5]). 

Recently, we presented a greedy algorithm for minimizing a separable convex function 
over an integral bisubmodular polyhedron ([1]). We show in this paper that the algorithm 
given in [1] also works over a finite jump system (E,F). Our algorithm starts with an 
arbitrary initial feasible point and repeats coordinate-wise augmentations and/or exchanges 
in a greedy way. In our previous paper [1] we did not give an estimation of the number 
of the required transformations of feasible solutions but by examining the behavior of the 
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A Greedy Algorithm for a Finite Jump System 363 

greedy algorithm we will show that the greedy algorithm for a finite jump system (E, F) 
terminates after changing an initial feasible solution at most 

L:{u(e)--l(e)} (1.2) 
eEE 

times, where for each e E E 

u(e) = maxx(e), 
xEF 

l(e) = minx(e). 
xEF 

(1.3) 

2. Definitions 
Let E be a nonempty finite set. Denote by 3£ the set of all the ordered pairs (X, Y) of 
disjoint subsets X and Y of E. Let f : 3E 

-t Z be a function from 3E to the set Z of 
integers such that f(0,0) = 0 and for each (Xi, Yi) E 3E (i=1,2) 

f(XI, YI ) + f(X2 , Y2 ) 

2: f((XI LJ X 2 ) - (Yi u Y2 ), (YI u Y2 ) - (Xl U X 2 )) + f(XI n X 2 , Yi n Y2 ). (2.1) 

We call such an f a bisubmodular function, which was first considered by Chandrasekaran 
and Kabadi [4]. Define a polyhedron 

P*(f) = {x I x E ZE, V(X, Y) E 3E 
: x(X) - x(Y) :cs; f(X, Y)} (2.2) 

associated with f, where x(X) = EeEX x(e) for any X ~ E and x E ZE. Note that x(0) = 0 
for any x E ZE. We call the polyhedron P *(f) an integral bisubmodular polyhedron. 

A {O, ±1 }-vector with a unique nonzero component is called a step. For any x, yE ZE a 
step s from x to y is a step such that EeEE Ix(e) + s(e) - y(e)1 = EeEE Ix(e) - y(e)l- 1. We 
denote by St( x, y) the set of all the steps from x to y. A jump system on E is a pair (E, F) 
of a non empty finite set E and a nonempty F ~ ZE which satisfies the 2-step axiom: 

(2-SA) For any x, y E F and s E St(x, y) with x + s ~ F there exists t E St(x + s, y) such 
that 

x+s+tE::F. (2.3) 

We see from a result in [3] that an integral bisubmodular polyhedron satisfies the axiom 
(2-SA). However, it should be noted that F does not always constitute of all the integral 
points of its convex hull (see [3]). 

3. A Greedy Algorithm 
Let W : RE -t R be a separable convex function given by 

W(x) = L: w,.(x(e)), (3.1 ) 
eEE 

where for each e E E We is a convex function on R. Consider a discrete optimization problem 
described as 

P: Minimize L we(x(e)) 
eEE (3.2) 

subject to :r E F, 

where (E, F) is a finite jump system, i.e., a jump system with a finite F. We describe a 
greedy algorithm for solving the above problem P. The validity is shown in the next section. 

Denote by S the set of all the steps in ZE. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



364 K Ando, S. Fujishige & T. Naitoh 

A greedy algorithm 
Input: a finite jump system (E, F), a separable convex function w : E -+ R and a vector 

xO E :F. 

Output: an optimal solution x of Problem P. 
Step 0: Put x f- xO. 

Step 1: If neither of the following two conditions is satisfied, then stop (x is an optimal 
solution). 
(1) There exists a step s E S such that x + sE F and w(x + s) < w(x). 
(2) There exist steps s, t E S such that x + s r/: F, x + s + t E F and 

w(x+s+t)<w(x). 
Step 2: Put 

Wl f- min{w(x+s)lstepssatisfyingCondition (1) inStep 1}, (3.3) 

W2 f- min { w( x + s) I steps s, t satisfying Condition (2) in Step 1}, (3.4) 

where the minimum over the empty set is defined to be +00. 
Put ill f- min{wl,w2}. 
If we have ill = Wl, let [, be the step s that attains the minimum of (3.3), put X f- X + oS 

and go to Step 1. 
If ill :f:. Wl, let sand i be the steps sand t that attain the minimum of (3.4), put 
x f- X + oS + i and go to Step 1. 

(End) 

It should be noted that in (3.4) not w(x + s + t) but w(x + s) is minimized and that 
each step s in the above algorithm is chosen in a greedy way. 

Denote by xk the current x obtained after the kth execution of Step 2 of the greedy 
algorithm. During the execution of the greedy algorithm, if the current xk is not an optimal 
solution, then xk is changed into either xk+1 f- xk + oS or Xk+lf- xk + oS +i in Step 2. Denote 
such steps oS and i by sk and tk. Then, we have 

Remark 3.1: For any s E 5' such that Xk + sE F, 

(3.5) 

o 

Remark 3.2: For any s, t E S such that xk+s r/: F, xk+s+t E F and w(xk) > W(Xk+S+t) 
we have 

4. Validity of the Greedy Algorithm 

(3.6) 

o 

In this section we prove the validity of the greedy algorithm. It should be noted that the 
algorithm terminates in finitely many steps since F is finite and the value of the objective 
function is reduced every time Step 2 is executed. For each step S E S let e( s) be the 
element e of E such that s( 1") = 1 or -l. 

Theorem 4.1: The greedy algorithm described in Section 3 finds an optimal solution of 
Problem P. 
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Proof: Let x be the solution found by the greedy algorithm when it terminates. 

Claim: Suppose that x is not an optimal solution of Problem P. Then, there exists an 
optimal solution .r* (=I x) that satisfies the following three conditions: 

(i) If sE St(x*,:r) and x* + sE F, then w(x*) < w(x* + s). 
(ii) If sE St(x*, x), t E St(x* + s, x), .T* + S ~~ F and x* + s + t E F, then 

w(x*) < w(x* + s + t). 
(iii) There exists some s E St( :r*, x) such that w( x*) < w( x* + s ). 

(Proof of Claim) We can easily find an optimal solution x* that satisfies (i) and (ii) (see the 
similar argument in the proof of Theorem 4.1 in [1]). 

We will show that this x* also satisfies (iii). On the contrary, suppose that x* does not 
satisfy (iii), i.e., for any s E St(x*,x) 

w(x* + s) :::; w(x*). (4.1 ) 

We will prove that this leads to a contradiction. 
Since F satisfies (2-SA) and x* satisfies (i), for any s E St( .T*, x) we have x* + s ~ F and 

there exists s' E St( x* + s, x) such that x* + s + s' E F. Let s be an element of St( x*, x) 
that satisfies 

w(x*) - w(x* + s) = max {w(x*) - w(x* + t)}, 
tESt(x' ,x) 

and choose s' E St(x* + s, x) such that x* + s -+- s' E F. 
Let us consider the following [Case a] and [Cage b]. 

[Case a]: s =I s'. 
As in the proof of the claim in Theorem 4.1 in [1], we can show that 

w(x' + s + s') ~; w(x*). 

This contradicts the fact that x* satisfies (ii). 

[Case b]: s = s'. 
From (ii) we must have 

w(x*) < w(J:* + 2s). 

Since 
- S E St(x, x* + 8) = St(x, x*), 

by the separable convexity of w we have 

w(x* + 2s) - w(x* + s) :::; w(x) - W(.T - s). 

It follows from (4.1), (4.4) and (4.6) that 

( 4.2) 

(4.3) 

( 4.4) 

(4.5) 

(4.6) 

o :::; w(x*) - w(x* + s) < w(x* + 2s) -. w(x* + s) :::; w(x) - w(x - s). (4.7) 

Since x is the solution found by the greedy algorithm when it terminates, we have x - S ~ F. 
So, from (4.5) and (2-SA) there exists -t E St{.r - s,x*) = St(x,x*) such that 

x - s - t E F. ( 4.8) 

We have from the separable convexity of w 

w(x - t) - w(x) :::; w(x*) - w(x* + t) (4.9) 
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and from (4.2) 
w(x*) - w(x* + t) :::; w(x*) - w(x* + s). 

If si- t, then we have from (4.7), (4.9) and (4.10) 

w(x) - w(x - s - t) {w(x) - w(x - s)} + {w(x) - w(x - t)} 
> {w(x*)-w(x*+o5)}-{w(x*)-w(x*+t)} 

> 0, 

(4.10) 

(4.11) 

where the equality is due to the separability of w. If 05 = t, then from the separable convexity 
of w, (4.5) and (4.4) we have 

w(x) -- w(x - 205) 2:: w(x* + 205) - w(x*) > 0. ( 4.12) 

Both (4.11) and (4.12) contradict the assumption that x is the solution found by the greedy 
algorithm when it terminates. 
(The end of the proof of Claim) 

Now, suppose that x is not an optimal solution of Problem P. Then, we can choose an 
optimal solution 1:*( i- x) that satisfies the conditions (i)"-'(iii) of the above claim. 

Let 05 be an element of St( .r*, x) that satisfies 

w(x* + 05) - w(x*) = max {w(x' + t) - w(x·)}. 
IESt(x',x) 

As in the proof of Theorem 4.1 in [1], we have 

x - 05 f/. F, 

w(x') < w(x* + 05), 

w(x) - w(x - 05) > 0, 

w(x - 05 - t) 2:: w(x), 

where -t E St(x - 05, x*) such that x - 05 - t E :F. 
Let us consider the following [Case 1J and [Cage 2J. 

[Case 1]: 05 = t. 
From (4.16) and (4.17) we have 

w(x - 205) > w(x - 05). 

( 4.13) 

(4.14) 

(4.15) 

(4.16) 

( 4.17) 

( 4.18) 

Since -05 E St(x - o5,x'), it follows from (4.18) and the separable convexity of w that 

w(x*) - w(x' + 05) 2:: w(x - 205) - w(x - 05) > 0, 

which contradicts (4.15). 

[Case 2]: 05 i- t. 
As in the proof of Theorem 4.1 in [1], we can show 

w(x') - w(x' + t) 2:: w(x - t) - w(x) > 0, 

and there exists tf E St( x* + t, x) such that x' + t + tf E :F. 
[Case 2J is divided into [Case 2-1J and [Case 2-2J. 

(4.19) 

(4.20) 
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[Case 2-1]: t f. t' . 
As in the proof of Theorem 4.1 in [1], we have t' E St(;r*,x) and 

This contradicts (4.13). 

[Case 2-2]: t = t'. 

w(.r* + t') - w(:r*) > w(.r* + s) - w(x*). 

From (ii) of the above claim and (4.20) we haw 

w(x* + 2t) > w(x* + t). 

Since t = t' E St( .r* + t, x), it follows from the separable convexity of w that 

w(x) - w(x - t) ~ w(x' + 2t) - w(x* + t) > 0, 

which contradicts (4.20). This completes [Case 2]. 

367 

(4.21) 

(4.22) 

(4.23) 

From the arguments for [Case 1] and [Case 2] x must .be an optimal solution of Problem P. 
o 

Now, we give a characterization of optimal solutions of Problem P in terms of a local 
optimality. A vector x E F is called a local opt'imal solution of Problem P if the following 
two hold: 

(L1) For any s E S such that x + sE F, we have w(x) :S w(x + s). 
(L2) For any s, t E S such that x + s ~ F and :r + s + t E F, we have w(.r) :S w(x + s + t). 

From Theorem 4.1 we have the following. 

Corollary 4.2: Every local optimal solution of Problem P 
Problem P. 

5. Properties of the Greedy Algorithm 

is also an optimal solution of 
o 

During the execution of the greedy algorithm the current xk, if not optimal, is changed 
into either xH ! f-- ;r;k + s or xH ! <- xk + s + i (xk + .5 ~ F) in Step 2. Recall that such 
steps sand i are denoted by sk and tk. The main purpose of this section is to show the 
following theorem, which is crucial for the estimation of the number of steps required by 
our algorithm. 

Theorem 5.1: If.r;k-! is changed into .rk and further xk into xH ! successively by the g1'eedy 
algorithm, then 

(5.1 ) 

o 
If F is the set of integral points of an integral polymatroid and the starting point ;ro is 

the origin 0, the greedy algorithm carries out only augmentations and hence (5.1) becomes 

W(Xk- l ) _ w(xk) ~ w(Xk) - w(x.k+l ). (5.2) 

This is a fundamental property of the incremental greedy algorithm of Federgruen and 
Groenevelt [7]. 

First, we show basic properties of our greedy algorithm as Lemmas 5.2,,-,5.6. 

Lemma 5.2: If xHl = xk + sk + tk, then 

w(xk + sk) :S w(xk + tk). (5.3) 
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Proof: It suffices to consider the case when e( sk) i' e( tk). If xk + tk ~ F, then from 
Remark 3.2 we have (5.3). If xk + tk E F, (5.3) is due to the definition of Step 2. 0 

Lemma 5.3: 
(5.4) 

Proof: If xk+l = xk + sk, then (5.4) is trivial by the definition of Step 2. Suppose xk+l = 
xk + sk + tk. 

Let us consider the following two cases (note that t k i' _sk). 

[Case 1]: tk i'sk. 
Since W(Xk+l) < w(xk), we have 

o > w(xk + sk + t k) - w(xk) 

= {w(xk + sk) - w(xk)} + {w(xk + tk) _ w(xk)} 

> 2{w(xk + sk) - W(Xk)}, 

where (5.6) is due to the separable convexity of wand (5.7) to Lemma 5.2. 

[Case 2]: t k = Sk. 
From w(xk+l) < w(xk), we have 

From (5.8) and the separable convexity of w we have (5.4). 

Lemma 5.4: If 

and 

then we have (5.1). 

Proof: We have 

e( sk-l) i' e( sk), 

xk- 1 + sk ~ F, 

Xk- 1 + sk + sk-l E F 

W(Xk- 1 + Sk + sk-l) _ w(Xk- 1) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

o 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

{W(Xk- 1 + sk) _ W(Xk- 1)} + {w(xk- 1 + sk-l) - W(Xk- 1)} (5.13) 

{w(xk + sk) _ w(xk)} + {w(xk- 1 + sk-l) - W(xk-l)} (5.14) 

< 0, (5.15) 

where (5.13), (5.14) and (5.15) are, respectively, due to (5.9), (5.12) and Lemma 5.3. Then, 
from Remark 3.2 we have 

(5.16) 

Inequality (5.1) follows from (5.12) and (5.16). o 
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Lemma 5.5: Suppose Xk = x k- I + sk-I + tk-I. If 

and 

then we have (5.1). 

e(sk-I) =I- e(sk), e(tk- I ) =I- e(sk), 

e( sk-I) =I- c( t k- I ), 

x k
-

I + Sk ~ F 

Proof: It follows from (5.17) that 

W(xk) _ w(xk + sk) = w(:l-I) _ W(xk- I + sk). 

369 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21 ) 

If w(xk- I + sk + tk- I ) < W(Xk- I ), then (5.1) follows from Remark 3.2. Therefore, suppose 
W(Xk- 1 + sk + t k- I ) 2:: W(Xk- I ). Then, we have from e(sk) =I- e(tk- I ) and the separability of 
w 

(5.22) 

By the definition of the greedy algorithm we have w(xk- I +sk-l +tk - 1 ) = w(xk) < w(:rk- 1), 

and hence, from (.5.18) and the separability of ID we have 

From (5.21), (5.22) and (5.23) we have (5.1). 

Lemma 5.6: Suppose Xk+l = Xk + sk + tk. If 

and 

X
k

-
I + sk ~ F, 

Xk- I + sk + tk E F, 

W(Xk) _ w(xk + sk) = w(:rk- 1 ) _ W(Xk- 1 + sk) 

W(Xk- 1 + sk + tk) _ w(xk-I) = w(xk + sk + t k ) _ w(xk), 

then we have (5.1). 
Proof: We have 

(5.23) 

o 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

from (5.27) and the definition of the greedy algorithm. The same argument as in the proof 
of Lemma 5.4 applies to the rest of the proof, and hence, we have (5.1). 0 

To show Theorem 5.1 we consider the following five cases, each of which is treated as a 
lemma as indicated below. 

(1) e(sk-l) = e(sk) (Lemma 5.7). 
(2) e(sk-I) =I- e(sk). 

(2-1) xk = Xk- 1 + Sk-I and Xk+l = Xk + sk (Lemma 5.8). 
(2-2) xk = xk- 1 + 8k- 1 and :rk+l = xk + sk + t k (Lemma 5.9). 
(2-3) Xk = Xk- 1 + sk-l + t k- I and Xk+1 = Xk + sk (Lemma 5.10). 
(2-4) xk = Xk- 1 + sk-l + t k- 1 and .rk+! = xk + sk + tk (Lemma 5.11). 
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Lemma 5.7: Suppose that Xk- I is changed into x" and further xk into Xk+1 by the greedy 
algorithm. Ife(s"-:I) = e(s") holds, then we have (5.1), i.e., 

Proof: Suppose s" = -s"-I and let e = e(s"-I). Then, from Lemma 5.3 we have 

w,,((x"-I + s"-I)(e)) < we(x"-I(e)), 

we((x" - S"-I )(e)) < we(x"(e)). 

Furthermore, from the greedy algorithm we have 

/x"(e) - x"-I(e)/ ~ 2. 

From (5.30) '" (5.32)-and the convexity of We we obtain 

xl.: = x"-l + 2S"-I. 

Therefore, we have 

as required. 

W(x") - w(.r" + s") w(x") - w(x" - s"-I) 

w(x") - w(x"-I + s"-I) 

< w(xk- 1) _ w(X"-1 + s"-I) 

(5.29) 

(5.30) 

(5.31 ) 

(5.32) 

(5.33 ) 

(5.34) 

Also, if s" = sk-I, we have (5.1) from sk-I E St(Xk-l,xk) and the separable convexity of 
w. 0 

Lemma 5.8: Suppose that :rk- I is changed into xk = xk- I + sk-I and further xk into 
Xk+1 = xk + s" by the greedy algorithm. Then, (5.9) implies (5.1). 
Proof: From (5.9) and the separability of w we have (5.12). If Xk- I + sk E F, then from 
Remark 3.1 we have (5.1). Otherwise, since .rk+1 = xk- I + s"-I + sk E F, we have (5.1) 
from Lemma 5.4 . 0 

Lemma 5.9: Suppose that Ik-I is changed into Xk = Xk- I + Sk-I and further Xk into 
xk+1 = xk + sk + t" (xk + sk if. F) by the greedy algorithm. Then, (5.9) implies (5.1). 

Proof: From (5.9) we have (.5.12). 
First, suppose tk = Sk-I Then, we have xk+1 = xk- I + sk + 2sk-l. Hence, Sk E 

St(xk-l,xk+l ) and sk-I E St(xk - I + sk,xk+l) = {Sk-I}. So, if xk- I + sk ~ F, then from 
(2-SA) we have Xk- I + sk + sk-I E F, which contradicts xk + sk ~ F. Therefore, we have 
xk- I + sk E F and (5.1) follows from Remark 3.1 and (5.12). 

Next, suppose t" = _sk-1. Then, Xk+1 = xk + sk - S"-I = xk- I + sk E F and (5.1) 
follows from Remark 3.1 and (5.12). 

Therefore, we can suppose e(sk-I) :j; e(tk). Let us consider the following two cases (i) 
and (ii). 
(i): xk-l + Sk E :F. 
In this case, Remark 3.1 and (5.12) give (5.1). 
(ii): x"-I + Sk ~:F. 
Since sk E St(.rk-l,xk+I), St(Xk- 1 +sk,Xk+l) = {sk-l,tk} and xk- I +sk +05"-1 ~ F, (2-SA) 
implies x"-I + sk + tk E :F. Also, since e( sk-I) :j; e( s") and e( sk-I) :j; e( tk), we have (5.27). 
Hence, by Lemma 5.6 we have (5.1). 0 
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Lemma 5.10: Suppose that x k- I is changed into xk = x k- I + sk-I + t k- I (xk- I + sk-I ~ F) 
and further Xk into Xk+1 = Xk + Sk by the greedy algorithm. Then, (5.9) implies (5.1). 

Proof: Suppose e(sk) = e(tk- I ). We have sk i- _tk- I since otherwise we have a contradic
tion: F 7J x k- I + sk-I = x k+1 E F. Hence, we have sk = tk-I. Since e( sk-I) i- e( sk) (i.e., 
e(sk-I) i- e(tk- I )), from Lemma 5.2 and the separable convexity of w we have 

as desired. 

(0 <) W(Xk) - w(.rk + sk) 

< w(xk - Sk) - w(.1)') 

= W(Xk_tk-I)-W(Xk) 

W(X k- 1 + sk-I) _ W(X k- 1 + Sk-I + t"'-I) 
W(xk- I ) _ W(Xk- l + t k- I ) 

< W(Xk- l ) _ w(xk- l + sk-I) (5.35) 

Therefore, we can also suppose e(tk- I ) i- e(.sk). Then, we have (5.12). Let us consider 
the following two cases (i) and (ii). 

(i): x k- I + sk E F. 
In this case, from Remark 3.1 we have (5.1). 

(ii): x k- I + sk ~ F. 
Since.sk E St(xk-I,Xk+l ) and St(Xk - 1 + Sk,.1:k+l) = {sk-I,tk- I }, from (2-SA) we have the 
following two subcases. 

(ii-1): Xk- I + Sk + Sk-I E F. 
In this case, (5.12) and Lemma 5.4 yield (5.1). 

(ii-2): x k- I + sk + tk- I E F. 
If t k- I = sk-I, Case (ii-1) applies. Therefore, suppose e(tk- I ) i- e(sk-I). Then, we have 
(5.1) from Lemma 5.5. 0 

Lemma 5.11: Suppose that Xk- I is changed into xk = x k- I + sk-I + t k- I (Xk- I + sk-I ~ F) 
and further xk into xk+1 = xk + sk + tk (xk + sk ~ F) by the greedy algorithm. Then, (5.9) 
implies (5.1). 

Proof: If Sk = tk -- I , then by the same argument in Lemma 5.10 we have (5.1). 
Moreover, if sk = -tk- I , it follows from the greedy algorithm that 

as desired. 

W(Xk) - w(xk + sk) = w(Xk) _ w(xk _ tk- I ) 

w(xk- I + sk-I + t k- I ) _ w(xk- I + sk-I) 

< w(xk-I) __ W(Xk- 1 + sk-I) (5.36) 

Hence, we can also suppose e(tk- I ) i- e(sk), which gives (5.12). Let us consider the 
following two cases (i) and (ii). 

(i): x k- I + sk E :F. 
In this case, from Remark 3.1 we have (5.1). 

(ii): :rk - I + sk ~ F. 
Since sk E St(xk- I , .rk+l) and St(.rk- l + sk, :rk+l) ~ {sk-I, tk- I , tk}, from (2-SA) we have the 
following two subcases. 

(ii-1): x k- l + sk -+ sk-I E For .1.1.:-1 + sk + tk- l E F. 
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We have (5.1) by Lemma 5.4 or Lemma 5.5 as in Case (ii) in the proof of Lemma 5.10. 

(ii-2): I k- l + sk + tk E F. 
If tk E {sk-l, tk- l }, then Case (ii-1) applies. If tk = _sk-l, then X Hl = xk + sk _ sk-l = 
xk- l + sk + tk-l. If tk = _tk- l , then X Hl = ;rk + sk _ tk- l = .rk- l + Sk + Sk--l. Hence, 
if tk E {_sk-l, _tk- l }, then again Case (ii-1) applies. Therefore, we can also suppose that 
e(tk) i- e(sk-l) and e(tk) i- e(tk- l ). Then, we have (5.27) and hence, we have (5.1) by 
Lemma 5.6. 0 

From Lemmas 5.7 ,...., 5.11 we have Theorem 5.1. 

6. The Main Result 
For each e E E let 

and 

l(e) = minx(e) 
xEF 

u(e) = maxx(e). 
xEF 

(6.1 ) 

( 6.2) 

We will show the following theorem, which gives an upper bound of the number of the 
required transformations of feasible solutions. 

Theorem 6.1: The greedy a.lgorithm executes Step 2 at most 

L{u(e)-l(e)} (6.3) 
eEE 

times. o 

This theorem can be shown by using the following two lemmas. Suppose that starting 
with an initial solution xD, the algorithm terminates with xn. Recall that xk is changed into 
x Hl +- xk + sk or xHl +- xk + sk + t k for 0 ~ k < n. 

Let us consider the following sequence of ordered pairs 

(6.4) 

For example, if sk = - Xe, then ~ = (xk( e), - Xe), where Xe is the unit vector with Xe( e) = 1 
and Xe( e') = 0 (e' E E - {e}). Denote by C the set of all the ck (0 ~ k < n), i.e, 

Then we have 

Lemma 6.2: 
ICI ~ L{u(e) -l(e)}. 

eEE 

(6.5) 

(6.6) 

Proof: Suppose (0:, s) E C. It follows from the greedy algorithm and the separable con
vexity of w that 

(Cl) the pair of 0: and e(s) uniquely determines s, which is either Xe(s) or -Xe(s), 

(C2) l(e(s)) ~ 0: ~ u(e(s)), 
(C3) 0: is not a minimizer of Wets) on the interval [l(e(s)), u(e(s))]. 

Hence, we have (6.6). 

Lemma 6.3: Let 0 ~ j, h < n. If j i- h, then cj i- ch. 

o 
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Proof: Suppose that for some c = (0', s) E C and some j, h with 0 ~ j < h < n, we have 

(6.7) 

(6.8) 

Put e = e( s) and suppose s = Xc without loss of generality. We will show a contradiction. 
By the present assumption, 

(1) when xi is changed into xHl, 0' = xi(e) is ehanged into xi(e) + 1 (or xj(e) + 2), 
and 

(2) when xh is changed into xh+l, 0' = xh( e) is changed into xh( e) + 1 (or Xh( e) + 2). 
Hence, for some k with j < k < h, when xk is changed into .rk+l, we have 

(3) xk(e) = 0' + 1 is changed into :rk+l(e) = 0', 

or 
(3') xk(e) = 0' +:2 is changed into .Tk+l(e) = 0', 

or 
(3") xk(e) = 0' + 1 is changed into .rk+l(e) = 0' - 1. 

From Lemma 5.3 and the separability of w we have 

Let us consider the following three cases. 

[Case 1]: (3) holds. 
In this case, (6.9) implies 

Also, from the greedy algorithm we have 

i.e., 
w(xk - Xe) - w(xk) < w(xk) - w(xk + sk), 

where note that e :j:. e(sk). Furthermore, from (1) and (3), we have 

we(xj(e)) - we(xi(e) + 1) 

we(n) - we(O' + 1) 

= w(:rk - Xe) - w(xk). 

Therefore, from (6.12) and (6.13) we have 

This contradicts Theorem 5.1. 

[Case 2]: (3') holds. 
(3') implies 

and 
k 

S = -Xe. 

(6.9) 

(6.10) 

(6.11 ) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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Also, we have 
we(a) < we(a + 2). 

It follows from (1), (3'), (6.16) and (6.17) that 

w(xj) - w(.rj + sj) we(xj(e)) - we(:rj(e) + 1) 

we(a) - we(a + 1) 

This also contradicts Theorem 5.l. 

[Case 3]: (3") holds. 

< we(a+2)-we(a+1) 

w(xk) - w(xk - Ae) 

= w(xk) _ w(xk + Sk). 

From (6.9) and the separable convexity of w we have 

From (3") we have 

(6.17) 

(6.18 ) 

(6.19) 

W(Xk) < w(xk+1
). (6.20) 

This contradicts the definition of the greedy algorithm. 
From Cases 1, 2 and 3, for any integers j and h with 0 ::; j < h < n we have d "# ch. 0 

From Lemmas 6.2 and 6.3 we have Theorem 6.l. 
Based on the results of Bouchet and Cunningham [3], we have the following theorem. 

Theorem 6.4 ([3]): For a finite jump system (E, F) the convex hull of F coincides with a 
bisubmodular polyhedron in RE. 0 

It follows from Theorem 6.4 that for a given finite jump system (E, F) there exists a bisub
modular function f such that the convex hull of F is given by 

Co(F) = {x I:r ERE, V(X, Y) E 3E 
: x(X) - x(Y) ::; f(X, Y)}. (6.21 ) 

By the use of such a bisubmodular function f we can also express the upper bound (6.3) 
given in Theorem 6.1 as 

l:{f({e},0) + f(0,{e})}. (6.22) 
eEE 
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