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Abstract Let G be an undirected graph with V vertices and E edges. We consider the problem of 
enumerating all spanning trees of G. In order to explicitly output all spanning trees, the output size is of 
8(NV), where N is the number of spanning trees. This, however, can be compressed into 8(N) size. In 
this paper, we propose a new algorithm for enumerating all spanning trees of G in such compact form. The 
time and space complexities of our algorithm are O(N + V + E) and O(V E), respectively. The algorithm is 
optimal in the sense of time complexity. 

1 Introduction 
In this paper we consider the problem of enumerating all spanning t.rees of an undirected 
graph with V vertices, E edges and N spanning trees. Several algorithms for this problem 
have been proposed (see [7], [8]' [4], [5], [6]). To explicitly enumerate all spanning trees, 
t.he total output size is 6(NV). For this requirement, Gabow and Myers' algorithm [4], 
and Matsui's [6] which require O(NV+V+E) time and O(V+E) space are best in sense 
of both time and space complexities. The spanning tree sequence of 6(NV) size, however, 
can be compressed into 6(N) size. Recently, Kapoor and Ramesh [5] gave an algorithm for 
outputting such 'compact' form, which requires O(N+V +E) time and O(V E) space. 

In this paper, we propose a new algorithm for out putting all spanning trees in a 'compact' 
form. The time and space complexities are O(N+V+E) and O(VE), the same as Kapoor 
and Ramesh's, but the structure is more simple. Our algorithm can be regarded as an 
application of the reverse search method proposed by Avis and Fukuda [3]. The reverse 
search method is a scheme for general enumeration problems (see [1], [2], [6]). From the 
standpoint of the reverse search scheme, our algorithm assumes that any spanning tree other 
than a specified spanning tree TO has a unique parent so that TO is the 'progenitor' of 
all spanning trees. It then outputs all spanning trees by reversely scanning all children of 
any spanning tree. In Section 3, we define a useful child-parent relation and propose a naive 
algorithm for scanning all children. In Section 4, we present an efficient implementation of 
our algorithm which attains the desired complexities. 

2 Preliminaries 
Let G be an undirected connected graph consisting of a vertex-set { Vl, •.. , vv} and 
an edge-set {el,··· ,eel. We consider the natural total orders (denoted by <) over the 
vertex-set and the edge-set according to subscripts. Let us call the smallest vertex Vl the 
root of G. Each edge e has two incidence vertices, written as a+e and a-e. Here we 
assume that a+e is smaller than or equal to a-e, and call these the tail and head of e, 
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respectively. A spanning tree of G is a connected subgraph of G which contains no circuit 
and which contains all vertices. Without loss of generality, we represent a spanning tree as 
its edge-set of size (V-I). For any spanning tree T and any edge f E T, the subgraph 
induced by the edge-set T \ f has exactly two components (we write a singleton U} 
as f, whenever there is no confusion.) The set of edges connecting these components is 
called a fundamental cut associated with T and f, and here written as C*(T\f). It is 
well-known that for any edge f E T and for an arbitrary edge 9 E C*(T\f), T\fUg is 
also a spanning tree. For any edge 9 rf. T, the edge-induced subgraph of G by TUg has 
a unique circuit, called a fundamental circuit associated with T and g. We denote the 
set of edges of the circuit as C(TUg). For any 9 rf. T and for any f E C(TUg), TUg\f 
is a spanning tree. Relative to a spanning tree T of G, if the unique path in T from 
vertex v to the root VI contains a vertex u then u is called an ancestor of v and v is 
a descendant of u. Similarly, for two edges e and f in T, we call e an ancestor of f 
and f a descendant of e if the unique path in T from f to the root VI contains e. 
A 'depth-first spanning' tree of G is a spanning tree which is found by some depth-first 
search of G. It is known that a depth-first spanning tree is defined as a spanning tree such 
that for each edge of G, its one incidence vertex is an ancestor of the other. 

3 Algorithm for finding all spanning trees 
Given a graph G, let us consider the graph S( G) whose vertex-set 7 is the set of all 
spanning trees of G and whose edge-set A consists of all pairs of spanning trees which 
are obtained from each other by exchanging exactly one edge using some fundamental cut 
or circuit. For example, the graph S(Gt} of the left one G l is shown in Figure l. 

Our algorithm finds all spanning trees of G by implicitly traversing some spanning 
tree D of S(G). In order to output this sequence of all spanning trees, 0(171· V) time 
is needed. However, if we output explicitly only the first spanning tree, and restrict the 
output of all others to the sequence of exchanged edge-pairs of G obtained by traversing 
D, then 0(171 + V) time is enough, because IDI = 171-1 and exactly two edges of G are 
exchanged for each edge of D. Furthermore, by scanning such a 'compact' output, one can 
construct all spanning trees. Since we adopt such a compact output, it becomes desirable to 
find the next spanning tree from a current one efficiently (in constant time.) In this section, 
we propose an algorithm for generating a compact sequence of spanning trees. The next 
section is devoted to an efficient implementation of our algorithm and its analysis. 

Hereafter we assume that G whose vertex-set {VI, ... ,Vv } and whose edge-set 
{ el, ... , e E} satisfies the following conditions: 

(1) a depth-first spanning tree TO of G is given ; 
(2) TO={ el, ... ,ev-d, and any edge in TO is smaller than its proper descendants; 
(3) each vertex v is smaller than its proper descendants relative to TO; 
(4) for two edges e,j rf. TO, e < f only if a+e'5:. a+j. 

For instance, graph G l of Figure 1 satisfies these conditions. In fact, one can find a depth­
first spanning tree TO and sort vertices and edges of G in O(V + E) time so that G 
satisfies the above conditions, by applying Tarjan's depth-first search technique [9]. We note 
that conditions (1) and (2) are sufficient in order to show the correctness of our algorithm. 
We, however, need further conditions (3) and (4) for an efficient implementation. 

Suppose that for any non empty subset S of the edge-set, Min(S) denotes the smallest 
edge in S. For convenience, we assume that Min(0) = ev. 
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Figure 1: graph Cl and graph S(Cd 

Lemma 3.1. Let TC be an arbitrary spanning tree other than TO. Under conditions 
(1) and (2), il 1= Min(TO \ TC) then 

IC(TcUf) n C*(TO\f) \ I1 = 1, 

where I· I denotes its cardinality. 
Proof. Since TC '" YO and I = Min(TO \ TC), I E YO and I ~ TC. Let us 
consider the unique path from f)-I to a+1 in TC. Obviously, the fundamental circuit 
C(TcUJ) is the union of this path and f. The set TO \ I has exactly two components 
such that one of these contains a-I and the other a+f. Thus the path passes through at 
least one edge in C*(TO\J) \ I, that is, C(T"Uf) n C*(TO\f) \ I ¥ 0. Since TO is a 
depth-first spanning tree, without loss of generality, we assume that the head of any edge 
is a descendant of its tail relative to TO. Suppose that e is the first edge in the path from 
a-f with e E C*(TO\f) \ f. Then, the tail a--e of e is an ancestor of a+f relative to 
TO, and the head a-e is a descendant of a-f. From condition (2) and the minimality of 
I, a+e and a+1 are connected in TC n TO. Thus, e is a unique edge in C(TcUf) with 
e E C*(TO\f) \ I, that is, IC(TcUf) n C*(TO\f) \ I1 = 1. • 
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Figure 2: all child-parent relations in S( G l ) 

C(Tcuf) = {e2, e4, e6}, 

C*(TO\f) = {e2,eS,e6}. 

Therefore, C(TcUf) n C*(TO\f) \ f = {e6}. 
Given a spanning tree TC i'To and the edge f = Min(TO \ TC), let g be the unique 

edge in C(TcUf) n C*(TO\f) \ f. Clearly, TP = TCUf\g is a spanning tree. We call TP 
a parent of TC and TC a child of TP. For any spanning tree other than TO, Lemma 3.1 
guarantees the existence and uniqueness of its parent. Since ITPnTol = ITcnTol+1 holds, 
TO is the 'progenitor' of all spanning trees. In Figure 2, arrows show such child-parent 
relations among the spanning trees of graph G l . Each arrow points from a child to its 
parent. 

Let V be a spanning tree of S( G) rooted at TO, such that the edges of V consist of 
all child-parent pairs of spanning trees. Our algorithm implicitly traverses V from TO by 
recursively scanning all children of a current spanning tree. Thus we must find all children 
of a given spanning tree, if they exist. The next lemma gives a useful idea for this. 

Lemma 3.2. For any spanning tree TP of G and jor two arbitrary edges j and g, 
let TC = TP\jUg. Under conditions (1) and (2), TC is a child of TP if and only if the 
following conditions hold 

(3.1) 
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Proof. We remark that the first condition of (3.1) guarantees .f E TP n TO under 
condition (2), and that the second condition says 9 f/. TP U TO. Thus if (3.1) holds then 
Te is a spanning tree different from T° . On the other hand, this also holds if TC is a 
child of TP. The above equivalence is proved by the following implications: 

TC = TP\.fUg is a child of TP , 
~ [from the definition] 

J = Min(yD \ TC) and 9 E C(TCU!) n C*(TO\!) \ J, 
~ [because gEC(TCU!) <=} gEC*(TP\!)] 

J = Min(yD \ TC) and 9 E C*(TP\!) n C*(TO\!) \ J , 
~ [because TC = TP\.fUg] 

J = Min(yD \ (TP\.fUg)) and 9 E C*(TP\!) n C*(TO\!) \ J , 
~ [because J E TP and 9 f/. T°] 

el ~ J < Min(TO \ TP) and 9 E C*(TP\!) n C*(TO\!) \ f. • 

Let ek be the largest edge less than Min(TO \ TP). This lemma says that we can find 
all children of TP if we know the edge-sets C*(TP\ej)n C*(TO\ej) \ ej for j = 1,2,· .. , k. 
For example, 'consider the graph C = Cl defined in Figure 1 and TP = Tl. In this case, 
for all edges {el,f2,e3} smaller than Min(TO \ Tl) = f4, 

C*(Tl\et) n C*(TO\et) '. el 

C*(Tl\e2) n C*(TO\e2) \ e2 

C*(Tl\e3) n C*(TO\e3) \ e3 = 

{el,C5}n{el,e5}\el = {e5}, 

{e2,c4,e5} n {e2,e5,e6} \ e2 = {e.s}, 

{e3,c5} n {e3,e5} \ e3 = {e.s}. 

Therefore, Tl has three children 1'2 = Tl\elUe5, 1'3 = Tl\e2Ue5, and 1'4 = T l \el Ue5' 
By applying the characterization (3.1) of children, our algorithm scans all spanning 

trees. Procedure find-children( ) plays an important role in it. The procedure has two 
arguments TP and k which represent a spanning tree in question and an edge ek less than 
Min(TO \ TP). It outputs all children TC of TP not containing ek and re cursively calls 
itself for two purposes: for outputting all children of TC (i.e., all grandchildren of TP not 
containing ek) and for outputting all children of TP containing ek. For the first purpose, 
arguments are set as Te and k-1 because if k > 1 then ek-l is the largest edge less than 
Min(TO \ TC). For the second purpose, the second argument decreases by 1. From the above 
explanation, by initially calling find-children( ) with arguments T° and V-I, one can 
output all spanning trees. For convenience, we shortly write C*(TP\ej) n C*(TO\ej) \ ej 
as Entr(TP, ej) on grounds that any edge in C*(TP\ej) n C*(TO\ej) \ ej can be 'entered' 
into TP in place of ej. Our algorithm is formally described as below. 

algorithm all-spanning-trees( C) ; 
input: a graph C with a vertex-set {VI, ... , uv} and an edge-set {el,"" e E} ; 

begin 
by using a depth-first search, execute 

. find a depth-first spanning tree TO of C, 

. sort vertices and edges to satisfy assumptions (2), (3) and (4); 
output( "el, e2, ... , ev -1, tree,") ; {output TO} 
find-children(TO,V -1) ; 

end. 
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procedure find-children(TP,k) ; 
input: a spanning tree TP and an integer k with ek < Min(TO \ TP) ; 

begin 
if k::; 0 then return ; 
for each g E Entr(TP, t'k) do begin {output all children of TP not containing ed 

TC := TP\ekUg ; 
output( "-ek, +g, tree,") ; 
find-children(TC,k-1) ; 
output( "-g, +ek,") ; 

end; 
find-children(TP,k-1) ; 

end. 

{find the children of TC} 

{find the children of TV containing e d 

Theorem 3.3. Algorithm all-spanning-trees( ) outputs each spanning tree exactly once. 
Proof. From Lemma 3.2, every spanning tree different from TO is output once for each 
time its parent is output. From Lemma 3.1, for any spanning tree TC other than TO, 
its parent always exists and is uniquely determined. Although the algorithm outputs the 
symmetric difference of TO and the last spanning tree at the end, TO is output only at 
the beginning. Since TO is the 'progenitor' of all spanning trees, the algorithm outputs 
each spanning tree exactly once. • 

4 An efficient implementation 
The performance of our algorithm is decided by the efficiency of the method of finding the 
edge-set Entr(TP, ek). Since it can be found in O(V + E) time, a naive implementation 
should require O( E . N + V + E) time, where N denotes the number of all spanning 
trees. Entr(TP, ek), however, can be efficiently constructed by using the information from 
previous steps. By using this idea, we present an implementation whose time complexity is 
O(N + V + E) and whose space complexity O(V E) in this section. This implementation is 
optimal in the sense of time complexity. 

The pair (TP, k) of arguments of procedure find-children( ) expresses the state of 
our algorithm. At state (TP, k), to output all children of TP not containing ek, 
only the entering edge-set Entr(TP, ek) is required. After moving the current state to 
(TC, k-1) (or (TP, k-l),) the requirement of the entering edge-set Entr(TC, ek-d 
(or Entr(TP,ek_d) occurs for the first time. Thus, when the current state moves to the 
next one, it is useless to update entering edge-sets Entr(TP, ej) for j = 1,···, k-l. 
Our implementation records and maintains sets Can( ej; TP, k) defined below, instead of 
entering edge-sets Entr(TP, e j). Let TP be a spanning tree and k a positive integer with 
ek < Min(TO \ TP). For an edge ej (j = 1,· .. , k), we define Can(ej; TP, k) by: 

(4.1 ) 
k 

Can(ej;TP,k) = Entr(TP,ej) \ U Entr(TP,eh). 
h=j+l 

Here we use this notation in the sense that C an( ej; TP, k) is a set of 'candidates' of 
the entering edges Entr(TP,ej) for a leaving edge ej at state (TP,k). We note that 
Can(ek;TV,k) = Entr(TP,ed from the definition (4.1). This says that it is enough to 
maintain Can(*;*,*). The next two lemmas state the benefits of Can(*;*,*). 
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Lemma 4.1. Under conditions (1), (2) and (3), for j = 1,"" V-I, 

(4.2) Can( ej; TO, V-I) = {e I e f/. TO, {)-e = {rej and a+e ~ a+ej}. 

Proof. Since Bntr(TO,ej) = C*(TO\ej) \ ej, Can(ej;TO, V-I) can be written a<;: 

V-I 

Can(ej;TO, V-I) = [C*(TO\ej) \ ej] \ U [C*(TO\eh) \ eh]. 
h=j+1 

Under conditions (1) and (3), an edge e f/. TO belongs to C*(TO\ej) if and only if a-e 
is a descendant of a-ej and a+e is an ancestor of a+ej relative to TO. In addition, 
under condition (2), for e f/. rn, ej is the largest edge with e E C*(TO\ej) if and only 
if a-e = a-ej and a+e is an ancestor of a--ej relative to TO, that is, if and only if 
a-e = a-ej and a+e:::; a+ej. Hence (4.2) holds. • 

By using (4.2), one can construct sets Can(ej;TO,V-l) for all j = 1,"',\/-l in 
O(V + E) time by using the depth-first search technique. 

Lemma 4.2. Let TP be a spanning tree and k a positive integer with ek < 
Min(TO \ TP). Under conditions (1), (2) and (2:), the following relation holds 

C . ( "T~ k-l) = {can(ej;p,k) U [Can(ek;TP,k) n {ela+e<a+edJ if a-ej = a+ek, 
an eJ " C ( . TP k) 'f a- ..J. a+ an ej, , z ej r ek, 

( 4.3) 
and furthermore, for any edge g E Can( ek; TP, k) and for a child TC = TP\ekUg, 

C ( "Tc k'-I) = {can(ej;TP,k) U [Can(ek;TP,k) n {ela+e<a+g}] if a-ej = a+g, 
,an eJ " C ( . TP k) 'f a- ..J. a+ an ej, , z ej r g. 

( 4.4) 
Proof. Here, for two edges e, f E TO, we say that e is an ancestor of f or f is a 
descendant of e omitting the phrase 'relative to TO,' for convenience. For an edge 9 tf TO, 
we also define its ancestors as ancestors of the edge e E TO with a+g = a-e if e exists. 

We show the first relation (4.3). From the definition (4.1), 

k 

Entr(TP, ej) = Can(ej;TP, k) U U (Entr(TP, eh) n Entr(TP, ej)). 
h=j+1 

This and (4.1) imply 

Can(ej; TP, k-l) = [can(ej ; TP, k) U h~+~Bntr(TP, eh) n Entr(TP, ej ))] \ 

k-I 

U Entr(TP, eh) 
h=i+1 

= Can(ej; TP, k) U 

[( Entr(T', 'k) n Entr(T', 'i)) \ ,1t~ntr(T" ,,)]. 

k-I 

because Can(ej;TP,k)n UEntr(TP,eh)=0. Since TO is a depth-first search tree, if ej 
h=j+1 

is not an ancestor of ek then C*(TO\ej) n C*(TO\ek) = 0, that is, the set in the brackets 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



338 A. Shioura & A. Tamura 

of the above equation is empty. Thus Can(ej;TP,k-1) = Can(ej;TP,k). Suppose that 
[)-ej = a+ek. Since eh (h = j+1,"', k-1) is not an ancestor of eb from conditions (2) 
and (3), the set in the brackets equals to 

Entr(TP, ek) n Entr(TP, ej) = Can( ek; TV, k) n {ela+e<a+ed. 

Supposethatejisanancestorof ek and a-ej:f;a+ek. Then Entr(TP,eJ.:)nEntr(TP,ej)~ 
Entr(TP, et) where et is an ancestor of ek with a-et = a+ek. Since j < t < k, in this 
case, Can( ej; TP, k-1) = Can( ej; TP, k). This concludes the proof of (4.3). 

Before proving the second relation (4.4), we show the following claim: 

( 4.5) E t (TC ) {Entr(TP,ej ) n r e·-
, J - Entr(TP,ej) \ Entr(TP,ek) 

if ej EA 
ifejr/.A 

for j = 1, ... , k-1, where A denotes the set of ancestors of g. A vertex is a descendant of 
a-ek relative to TP if and only if it is a descendant of a-g relative to TC. Then, if ej is an 
ancestor of g then the entering edge-set is unchanged, i.e., Entr(TC,ej) = Entr(TP,ej). 
If ej is an ancestor of ek but not of g then Entr(TC, ej) ~ Entr(TP, ej). More precisely, 
any edge e E Entr(TP, ej) such that a-e is a descendant of a-ek relative to TP does 
not belong to Entr(TC, ej), and the other edges obviously belong to Entr(TC, ej). If ej 
is an ancestor of neither ek nor g, Entr(TC, ej) = Entr(TP, ej) holds, however, in this 
case, Entr(TP, ej) n Entr(TP, ek) = 0. 

We finally prove (4.4). By combining the definition (4.1) with the relation (4.5), we 
obtain the equation: 

Can(e' T C k-1) = J' , Entr(TC, ej) \ 

[ 
kU (Entr(TP, eh) \ Entr(TV, ek)) 

h=j+l,eh~A 

= Entr(TC, ej) \ 

[h~+fntr(TP, eh) \ (Entr(TP, ek) \ h=j:Y:hE~ntr(TP, eh)) ] 

~ [Entr(T", ej) \ h=Y+ ~ntr(T", eh)] U 

[Entr(Tc,ej ) n (Entr(TP,ek)\ .1J Entr(TP,eh))] 
h=J+l,ehEA 

~ [ Entr(T", ej) \ h=Y+ ~ntr(T" eh) 1 U 

[
(Entr(TC, ej) n Entr(TP, ek)) \ iJ Entr(TP, eh)]. 

h=j+l,ehEA 
(4.6) 

In either case ej E A or ej r/. A, the first term of the right-hand side of (4.6) is equal to 
Can(ej;TP,k). If ej r/. A, then the second term is empty from (4.5). Let us assume that 
ej is an ancestor of g. If a-ej = a+g then the second term of (4.6) is equivalent to 
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T~ 

If f)-ej :f. f)+g then the second term is empty because Entr(TP, ej) n Entr(TP, ek) C 

Entr(TP,et) for the ancestor et of g with f)-et = f)+g and because t > j. We conclude 
the proof. • 

Lemma 4.2 guarantees that at most one of sets Can(*;TP,k) is updated when state 
(TP, k) moves. Figure 3 shows how the state and edge-sets Can(*; *, *) change during the 
algorithm with input G1 in Figure 1. For example, at the initial state (To, 4), 

C an( el ; ro, 4) = 0, 
Can(e2; TO, 4) 0, 
Can(e3;TO,4) { e5}, 

Can( e4; TO, 4) = { e6}. 

At the succeeding states (T1,3) and (TO,3), Can(*;*,*) become 
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Can(e2;TI ,3) 0, 
Can( e3; TI, 3) { e5}, 

and 

Can(el;To,3) 0, 
Can(e2;TO,3) { e6}, 

Can(e3; TO, 3) { e5}' 

We note that relations (4.3) and (4.4) are identical except for the difference between ek 

and g. Thus, one can use the same procedure for maintaining sets C an( *; *, *) when state 
(TP,k) moves to either (TC,k-1) or (TP,k-1). We note that none of sets Can(*;TP,k) is 
updated if and only if either Can(ek;TP,k) = 0 or the tail of g is less than or equal to 
the tail of the smallest edge in C an( ek; TP, k), where g is ek or g. 

Corollary 4.3. Suppose that T is a spanning tree and that k is a positive integer 
with ek < Min(TO \ T). For' each ej (j ~ k), let gj denote either ej or an arbitrary edge 

in Can(ej; T, k). Under conditions (1), (2) and (3), T' = T \ {el,'" ,ed U {gl,"', gd 
is a spanning tree. 

Proof. Let Tj = T \ {ej,' . " ed U {gj,"" gd for j = 1"" ,k. Obviously, Tk is 
a spanning tree. We suppose that Tj is a spanning tree. If j ~ 2, from Lemma 4.2, 
Can(ej_I;T,j-1) ~ Can(ej_I;Tj,j-1). Thus, Tj-l = Tj\ej_IUgj_1 is a spanning tree . 

• 
Before formally writing our implementation, we briefly explain its outline. Procedure 

find-children( ) is implemented by splitting it into two procedures find-child( ) and sub­
child( ) which mutually call each other. Roughly speaking, find-child( ) is a natural im­
plementation of find-children( ) and sub-child ( ) is a sub-procedure of find-child( ) for 
maintaining Can( *; *, *). Procedure find-child( ) explicitly outputs all children of TP 
not containing eb and calls sub-child( ) for two purposes: the first is to find all children 
of T C = TP\ekUg for each gEEntr(TP, ed, and the second to find all children of TP 

containing ek. Procedure sub-child( ) maintains data according to Lemma 4.2, and calls 
find-child( ) for outputting all children of a current tree. Our implementation uses global 
variables leave and candi for representing a current state (TP, k) and sets Can( *; TP, k). 
Variables candi(ej) for j:= 1,"" k, represent Can(ej; TP, k), and variable leave the 
set {ej I j ~ k and candi( Cj) i 0}. That is, the last entry of variable leave corresponds 
to k. We note that our implementation does not have a data structure which explicitly 
represents a current tree. Our algorithm is written as below. 

algorithm all-spanning-trees( C) ; 
input: a graph C with a vertex-set {VI, ... , vv} and an edge-set {el,"', e E} ; 

begin 
eo: by using a depth-first search, (simultaneously) execute 

· find a depth-first spanning tree TO of C, 
· sort vertices and edges to satisfy assumptions (2), (3), (4), 
· for each eETo, candi(e):= Can(e; TO, V-I), 
· leave:= {eETOlcandi(e) i 0}, 

output("el,e2,···,eV_l,tree,") ; 
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end. 
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procedure find-child( ); {TP:current spanning tree} 
begin 

if leave = 0 return ; 
Q :=0; 
ek := the last entry of leave; 
delete ek from leave; 
while candi(ek) =f. 0 do begin 

9 := the last entry of candi( ek) ; 
delete 9 from candi(ek), and add 9 to the beginning of Q ; 
output( ".-ek, +g, tree,") ; {output TC := TP\ekUg} 
sub-child( ek,g) ; {find children of TC} 
output("·-g,+ek,") ; {reconstruct TP:= TCUek\g} 

end; 
move all entries of Q to candi( ek) ; 
sub-child( ek,ek) ; {find children of TP containing ed 
add ek to the end of leave; 

end. 

procedure sub-child( ek,g); {T:current spanning tree} 
begin 

if [candi(ek) = 0] or [a+g ~ a+(the first entry of candi(ek))] then {Case O.} 
find-child( ) ; {of T} 
return ; 

endif; 
I := the edge in TO with a-I = a+g ; 
if candi(f) =f. 0 then 

£1: S:= {eEcandi(ek)la+e < a+g} ; 
£2: merge S into candi(f) ; 

find-child( ) ; {of T} 
£3: delete all entries of S from candi(f) ; 

S:= 0; 
else {candi(f) = 0} 

£4: candi(f) := {eEcandi( ek)la+e < a+g} ; 
£5: insert I to leave; 

find-child( ) ; {of T} 
delete I from leave; 
candi(f) := 0 ; 

endif; 
end. 

{Case 1.} 

{Case 2.} 

341 

Finally, we analyze the time and space complexities of the above implementation. The 
complexities are dependent on data structures. We use a data structure for a given graph 
G such that two incidence vert ice::; of any edge are found in constant time, and one for the 
initial spanning tree TO such that for any vertex v other than root, the unique edge e 
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leave 

Figure 4: data structures for candi( *) and leave 

with 8-e = v is found in constant time. For representing a subset of the edges, we use an 
ascending ordered list L realized by a double linked list. Then the following operations 
are executable in constant time: 

check whether L is empty, 
find the first (or last) entry of L if L -:f 0, 
delete an entry from L, 
add an element which is smaller than all entries of L to the beginning of L, 
add an element which is greater than all entries of L to the end of L, 
clear L i.e., L:= 0, 
move all entries of L to an empty list. 

For example, we use data structures like the ones in Figure 4 for representing candi( *) 
and leave. 

By using such a data structure, one can execute in constant time a.lllines except the six 
lines eo, El, £2, £3, E4 and £5. The line eo initially requires O(V + E) time. Hence if the 
total time of five other lines is proportional to the number N of all spanning trees, the time 
complexity of our implementation is O(N + V + E). Since leave is an ordered list, the 
line £5 is completed in O( l{eEleavele<J}I) time. We recall that graph G satisfies 

(4) for two edges e, f f/. TO, e < f only if 8+e ~ 8+f. 

Under this condition, £1 and E4 require O( I{ eEcandi(ek)18+e<8+g}1 ) time, and E2 and £3 
O( l{eEcandi(ek)18+e<8+g}1 + Icandi(f)I) time. Procedure sub-child( ) deals with three 
cases. If none of Can( *; *, *) is updated (this is recognized in constant time,) the procedure 
just calls find-child(). From the above consideration, the two other cases respectively 
reqUIre: 
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Case 1 (candi( f) i- 0): O( \{eEcandi(ek)\a+e<8+g}\ + \candi(f)\) time, 
Case 2 (candi(f) = 0): O( \{eEcandi(ek)\C/+e<8+g}\ + \{eEleave\e<J}\) time. 

vVe split these two cases into the next four: 

Case A.l: ek f/. T (i.e" T=TC) and candi(f) i- 0, 
Case A.2: ek f/. T ( i.e., T=TC) and candi(f) = 0, 
Case B.l: ek E T (i.e., T=TP) and candi(f) i- 0, 
Case B.2: ek E T (i.e., T = TP) and candi(f) = 0. 

In Case A.l, l{eEcandi(ek)\8+e<8+g}1 + Icandi(f)1 is bounded by the number of children 
of Te not containing f. In Case A.2, l{eEcandi(ek)18+e<8+g}\ is bounded by the number 
of children of TC not containing f. Moreover, for each eEleave with e<f, there is a 
child of TC not containing e. Thus, if ek f/. T (in Case A) then the time complexity of 
sub-child( ) other than calling find-child( ) is O( the number of children of T). In Case B.l, 
from Corollary 4.3, T has at least ( I{ eEcandi( ek)18+e<8+g} I x Icandi(f)1 ) grandchildren 
which contain neither ek nor f. Thus, in this case, the required time of sub-child( ) is 
bounded by the number of grandchildren of T not containing ek. Similarly, in Case B.2, if 
{eEleavele<J} i- 0 then sub-child( ) requires ': at most) time proportional to the number 
of grandchildren of T not containing ek; otherwise it requires (at most) time proportional 
to the number of children of T not containing ek. From the above discussion, the total 
time complexity of our implementation is O(N +V +E). 

For each state (TP, k) of find-child( ) and suh-child( ), sets candi( e j) (j = 1, ... , k - 1) 
have no intersection with each other. However, these may have a non empty intersection 
with candi(eh) (h = k,'" ,V -1)). Thus, we need O(V E) space for candi. Obviously, 
the cardinality of leave is at most V. Since the size of local variable S is at most E 
and the depth of recursive call is at most V-I, the total space for local variables is 0(1/ E). 
Hence, the space complexity of our implementation is O(V El. 

Theorem 4.4. The time and space comple:rities of our implementation are O(N + V + 
E) and O( V E), respectively. 

In this paper, we have proposed an efficient algorithm for scanning all spanning trees. 
This is optimal in sense of time complexity. The remaining question is whether the space 
complexity can be reduced to O(V +E). 
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