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Abstract In this paper, we study a local property of the zero set of a differentiable map F : Rn+d 
--+ Rn. 

We prove that, under a regular value condition, for each XE F-1
( 0), there exist a neighborhood U of X 

. T 
and a sign c E {-I, I} such that sign det[x(p)". = c· sgnu . sign det D",F(x(p)),,~ for all permutation u 
of degree (n + d), where p is ad-dimensional parametrization parameter vector of the zero set F-1 (0) in an 

. T 
open subset V of Rd and [x(p)".] := (OXj /OPl) T (j E u-1(n + 1, ... , n+ d), I E {I,· .. , d}), D",F(x(p)),,~ = 
[OFi(X(P))/OXk](i E {1,···,n},k E u- 1(1,· .. ,n)). This results naturally leads to an index theory. We 
show a local property of the change of the Morse index and the orientation of critical point set w.r.t. the 
multiparametric function 1 :Rn+d -+R. Finally, we discuss the change of the stationary index of the equality 
constrained multiparametric nonlinear programs. 

1 Introduction. 
In this paper, we discuss a local property of the zero set of a differentiable map F : mn+d 

-t 

mn. 
For the case d = 1, we can see many previous studies, so-called "homotopy methods". 

For solving nonlinear equations I(x) = 0 where I : mn -t mn
, we embed I into a one­

parameter family of homotopy equations H(x, t) = 0, for example H(x, t) = I(x) - tl(xo) 
or H(x,t) = t(x - xo) + (1 - t)f(x). Some basic and essential results have been given by 
Garcia and Gould [3]. For method of complementary pivoting, it is in a limiting, we can see 
[2, 18, 19]. 

In this paper, we treat of the case that d :::: 2. We prove that, under a regular value 
condition, for each x E F-1(0), there exist a neighborhood U of x and a sign C E {-I, I} 
such that 

sign det[x(p )JJ = c· sgn(J . sign detD.,F( x(p) )un 

for all permutation (J of degree (n+d), where p is ad-dimensional parametrization parameter 
vector of the zero set F-l(O) in an open subset V of ]Rd, i.e., there is a parametrization 
map x(·) defined on V such that xCV) = un F-l(O)) and 

[x(p)JJ:= (8xj/8pI)T (j E (J-l(n + 1,,,, ,n +d) and l E {I, ... ,d}), 
D.,F(x(p))un := [8Fi(x(p))/8xk] (i E {I, ... , n} and k E (J-l(l, ... , n). 

This result naturally leads to an index theory. 
As an application of the result above, we deal with the equality constrained multipara­

metric nonlinear programs. Multiparametric non linear programs are concerned with the 
analysis of the behavior of stationary solutions under perturbation [7, 14] and also mathe­
matical economics, e.g., Pareto optimality [23] and [24, Section 6]. We show the behavior of 
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stationary solutions and the change of the stationary index which characterizes a property 
of stationary solution, such as a local minimum, a saddle solution or a local maximum. 

The organization of this paper is as follows, In Section 2, we prove the main theorem 
(Theorem 2.3) and make a trivial extension. In Section 3, we discuss a local characterization 
of the change of the Morse index W.r.t. multiparametric functions. In Section 4, we deal 
with the equality constrained multiparametric llonlinear programs and show the change of 
stationary index (Theorem 4.3) as an application of Sections 2 and 3. 

2 Zero Set of System of Differentiable Equations. 
Let us consider a continuously differentiable (C l_ )map F : Ilr+d 

-t /Rn. Given c E /Rn, let 

F-l(C) :== {x E /Rntd: F(x) == cl, 
r:== {x E /Rn+d : rankDzF(x) < n}, 

where DzF is the n x (n+d) Jacobian matrix [C/Fi/axjJ of F w.r.t. x E /Rn+d. The set r is 
said to be the set of critical points of F, and F(r) the set of critical values of F. mn\F(r) 
is the set of regular values of F. 

Lemma 2.1.(see [8, Theorem 3.2], also [10, page 100]): Let F : m n+d 
-t mn be a 

Cl-map and 0 E mn a regular value of F. Then F-l(O) is ad-dimensional Cl-orientable 
~~ . 

Thus, if F is Cl-map and 0 E mn is a regular value of F, for x E F-I(O) there exists an 
open neighborhood U of x (w.r.t. m n+d ) such that Un F-I(O) is Cl-diffeomorphic to some 
open subset V of mJ, i.e., UnF-l(o) is described by x(1') such that x: V -t U and whose 
derivative, denoted by [:i:(1')J :== (aXj/apI), is offull rank (== d). Furthermore, for any l' E V 
such that x(1') E un F-l(O), we have rankDzF(x(1')) == nand DzF(x(1'))· [:i:(1')J == o. 
Remark 2.2. By the Morse-Sard Theorem [8, Theorem 1.3J, if F : m n+d 

-t /Rn is 
a (d + I)-times continuously differentiable (Cd.t-! )-map, then F(r) has measure zero and 
/Rn\F(r) is residual. Therefore, for a sufficiently smooth map F, we may assume that 0 is 
a regular value of F. 

The following theorem is related to Theorem :2 of Garcia and Gould [3J for one parametric 
case. 

Theorem 2.3. Let F : /Rn+d -t mn be a Cl -map and 0 E mn be a regular value of F. 
Let U of x and V of l' are as above. For each ].I E V, 

corank[:i:(1')~:J == corankDzF(x(1'))",n, 

where corankA:== min{n,m} - rank A for an (n x m)-matrix A. 
Moreover, there exists a sign c E {-1, 1} such that 

sign det[:i:(1' )JJ == c· sgna ' sign detDzF( x(1') )",n 

for any l' E V and any permutation a of degree (n + d). 

Proof. It is clear by Lemmas (A), (B) of Appendix and the fact that, since the matrix 

[ Dz~~r)) ] is nonsingular, the sign of its determinant is constant on V. • 
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Corollary 2.4. Let F : lRn+d ---> lRn be a Cl-map and 0 E lRn a regular value of F. 
Suppose for some subset {jl,'" ,jd} of {1, 2"", n + d}, the submatrix of D.,F(x) defined 
by 

roFi(x)/oXj) (i E {l,···,n},j E {l,···,n+d}\{jI,···,jd}) 

is nonsingular for all x in a particular open subset U. Then, U nF- I (0) can be parameterized 
by {xh, ... ,Xjd}' in the sense of diJJeomorphy. 
Proof. By Theorem 2.3, (OXjk/OPI)T (k E {1,···, d}) is nonsingular on U. Hence, the 
assertion is clear. • 

3 Morse Index and Orientation. 
By Theorem 2.3, we can locally characterize a property of the change of sign detD.,F(x)(]"n 
by the change of sign det[x(p);} 

Let f : m n+d 
---> m : (x, t) ~ z be a C2-multiparametric function, where x E mn is a 

variable vector, t E md a parameter vector. Let 

r.,(f) := {(x, t) E m n+d : D.,f(x, t) = o} : a critical point set of f, 
r .,(D.,f) := {(x, t) E r "(f) : rankD;f(x, t) < n} : a degenerate critical point set of f. 

r .,(f)\r .,(D.,f) is said to be a nondegenerate critical point set of f. For each critical point 
(x*, t*) E r .,(f), we define the Morse index to be the number of negative eigenvalues of 
D;f(x*, t*) and denote it by index(x*lf(', t*)), see [20]. 

By Lemma 2.1 and the fact that Dzf : mn+d 
---> mn is a Cl-map, if 0 is a regular 

value of D.,f, i.e., rankD(z,t)D.,f(x, t) is of full rank for all (x, t) in the critical point set 
r .,(f), then r Z(f) is a d-dimensional differentiable manifold. Thus, as the previous section, 
r .,(f) can be locally parameterized by pE md such that [x(p)Tli(p)T] is of full rank, i.e., 
rank[x(p)Tli(p)T] = d. 
Theorem 3.1. Let f : m n+d 

---> m be a C2 -map. Suppose that 0 E m Tl is a regular value 
of Dzf. If (x*,e) E r.,(f) is a degenerate critical point of f ((x*,t*) E r,.,(D.,f)), then 
the Morse index can locally change at most corank[i(p*)](::; d). To be concrete, there are 
open sets V of md, U of m n +d and a C1-parametrization (x(·),t(·)) : V ---> U such that 
Un r .,(f) = {(x(p), t(p))lp E V} and (x(p*), t(p*)) = (x*, t*) for some p* E V and 

m::; index(x(p)lf(-, t(p))) ::; m + corank[i(p*)] 

for any pE V where m is the number of the negative eigenvalues of D;f(x(p*), t(p*)). 
Moreover, there exists a sign c E {-1, 1} such tha t 

(_l)index(,,(p)lf(·,t(p))) = c. sign det[i(p)] 

for any (x(p), t(p)) E un [f ,.,(f)\r .,(D,.,f)]. 
Proof The first assertion is obvious since corank[i(p*)] = corankD;f(x(p*), t(p*)) and 
the continuity of the elements of the matrix. Remark that 

(_l)inde,,(z(p)lf(·,t(p))) = sign detD;f(x, t). 

By Theorem 2.3, sign det[i(p)] = c· sign detD;f(x, t). Then the assertion is clear. • 
Of course, the above formulation 

m::; index(x(p)I!(-, t(p))) ::; m + corank[i(p*)] 

is also true in the case that (x, t) is a nondegenerate critical point. In this case, 

index(x(p)lf(" t(p))) = m, 

i.e., the Morse index is locally constant around a nondegenerate critical point. 
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4 Application to Equality Constrained Multiparametric Nonlinear Programs. 
In this section, we deal with the equality constrained multiparametric nonlinear programs 
as an application of Sections 2 and 3. 

Multiparametric nonlinear programs are concerned with the analysis of the behavior of 
stationary solutions under data perturbations and also mathematical economics, e.g., Pareto 
optimality [23] and [24, Section 6]. 

There are many papers treating of the one-parametric nonlinear programs, e.g., [5, 9, 
11, 12, 13, 15, 17,21,22,27]. But for the multiparametric nonlinear programs, the situation 
becomes much more complicated and there are few papers, e.g., [7, 14, 24]. 

The multiparametric nonlinear programs with inequality constraints (and equality con­
straints) are complicated, see [14, 17]. Hence, we treat of the multiparametric nonlinear 
programs with "equality constraints" only. To be concrete, we deal with the following: 

N.cP(f(. t)): minimize 
, such that 

!o(x, t) 
x E X(t), 

where x E JRn is a variable vector, t E IIf- a parameter vector, X (t) := {x E JRn : 
!e(x, t) = 0 (e E En a feasible set at a parameter t E IIf-, IEI < 00 and fa, fe (e E E) C2

_ 

functions from JRn+d to JR. We know that, under a certain kind of constraint qualifications, 
a local minimum becomes the so-called Karush-Kuhn-Tucker stationary solution (shortly, 
stationary solution). 

The aim of this section is to discuss the change of the stationary index on the stationary 
solution set L:: 

L '- {(x, t) E JRn+d : x be a Karush-Kuhn-Tucker solution to N.cP(f(·, t))} 
= {(x, t) E JRn+d: x E X(t), D.Jo(x, t) = L YeD.Je(x, t) with 3y E JRIEI}. 

eEE 

For the purpose, we consider another set IT, the set of all such triples (x, y, t), i.e., 

IT := {(x, y, t) E JRn+IEI+d : D.,!o(x, t) = L YeD.,!e(x, t)}. 
eEE 

We call a triple (x, y, t) E IT a stationary point and IT the stationary point set to N .cP( f(', t)). 
Using Kojima equation [16, Equation (1-2)], the set IT is equal to the zero set of the following 
Cl-map 

._ ( D.,fo(x, t) - L YeD.,!e(x, t) ) 
P(x, y, t) .- eEE , 

fe(x, t) (e E E) 

i.e., IT = p-l(O). Note that P(x, y, t) is the derivative of the Lagrange function W.r.t. 
(x, y) where y denotes the associated Lagrange multiplier vector. 

From now on, we assume the following condition; 
Regular Value Condition 

o E JRn+IEI is a regular value of the map F, i.e., the Jacobian matrix 

is of full rank. • 
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Set N(z, t) := D;fo(z, t) - L YeD;fe(z, t) and 
eEE 

._ _ ( N(z,t) 
M(z, y, t) .- D(:E,,1)F(z, y, t) - D",fE(Z, t) 

By Lemma 2.1, the stationary point set II(= F-l(O)) is ad-dimensional C1-orientable 
manifold, if the Regular Value Condition holds. 

Remark 4.1. Under the Regular Value Condition, the following constraint qualification 
holds at all the feasible solution z E X (t): 

Linear Independence Constraint Qualification (shortly LICQ) 
We say that LICQ holds at z* E X(t*) if the set of vectors 
{D:Efe(z*,t*) (e E E)} is linearly independent. • 

For the stability of the stationary solutions, the number of negative eigenvalues of the 
matrix B(Z*,t*)TN(z*,y*,t*)B(z*,t*) plays a quite important role, see [1, 4, 6,16,26]' 
where (z*, to) is a stationary solution of N CP(f(', t*)), y* is the associated Lagrange mul­
tiplier vector and B( z*, to) is a matrix whose column forms a basis of the tangent subspace 

W(z*, to) := {v E !Rn : Dzfe(z*, to) T V = 0 (e E E)} (see Kojima [16, Section 5]). 

Definition 4.2 (Section 5 of [16]): For the triple (z*, y*, to) such that z* is a station­
ary solution to the problem NCP(f(', to)) and y* is an associated multiplier vector, we 
define the stationary index; 

s.index(z*IN CP(f(', to)))· := the number of the negative eigenvalues of the matrix 
B(Z*,t*)TN(z*,y*,t*)B(z*,t*) . 

• 
Note that the definition of the stationary index does not depend on a choice of B( z*, t*). 
The stationary index is a natural generalization of the Morse index ([20]) and the quadratic 
index ([10]). 

St~s,={( t) ~. B(z,t)TN(z,y,t)B(z,t)isnonsingular } Th 
e . x, E . with the unique associated Lagrange multiplier vector y . en, 

the set ~s is the set of (strongly) stable stationary solutions ([16, Corollary 4.3]). The sta­
tionary index completely determines the type of stable stationary solution to N CP(f(', t*)), 
i. e., if z* is stable stationary solution to N CP(f ( ., t*)), then 

(a) x* is a local minimum if and only if s.index(z*IN CP(f(', to)) = 0, 
(b) x* is a saddle solution if and only if 1 :S s.index(z*IN CP(f(', to)) :S n -IEI- 1, 
(c) z* is a local maximum if and only if s.index(z*INCP(f(·, to)) = n -IEI, 

see [17, Theorem 3.1]. Therefore, it is important to discuss the change of the stationary 
index for the analysis of the non linear programming under data perturbations. 

Theorem 4.3. Let x* be a stationary solution to the multiparametric non linear pro­
gram NCP(f(·,t*)), i.e., (z*,t*) E ~. Suppose that Regular Value Condition holds for 
the problem. Then there ar'e open sets V of grI, U of !Rn+d and a C1-parametrization 
(z(-), t(·)) : V ~ U such that U n ~ = {(z(p), t(p))lp E V} and (x(p*), t(p*)) = (x*, to) 
for some p* E V and 

m :S s.index(z(p)IN CP(f(', t(p)))) :S m + corank[i(p*)] 
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for any p E V, where m is the number of the negative eigen'llalues of the matrix 

B(x*, to) T N(x*, y*, t*)B(x', to). 

Moreover, there exists a sign c E {-I, I} such tha t 

(_1)s.index(z(p) IN.cP(f(.,t(P))11 = c· sign det[t(p)] 

for any (x(p), t(p)) E U n ~s. 
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Proof. It is a direct consequence of Theorem 2.3 and the proof of Theorem 3.1. Note that 
the number of the negative (resp. zero) eigenvalues of M( x*, y*, t*) is equal to the number 
of the negative (resp. zero) eigenvalues of B(x*, t*)T N(x*, y*, t*)B(x*, to). • 

Remark 4.4. We make a short remark for the general nonlinear programs; 

N.cP(f(·,t)) : 
minimize 
such that 

fo(x, t) 
fe(x, t) = 0 (e E E), 
J;(x, t) ~ 0 (i E 1). 

In the case I =I 0, the property we obtained bl) Theorem 4.3 are not obvious, since the 
Karush-Kuhri-Tucker stationary solution set to N.cP(f(-' t)) is not defined by the zero set 
of Cl-map. If I =I 0, the stationary solution set is the zero set of a piecewise continuously 
differentiable (PC1-)map (see Kojima [16]). But, for the general nonlinear programs (of 
course, the definition and the characterization theorem of the stability is more complicated, 
[16, Corollary 4.3 and Theorem 7.2]), the following generic property is obtained by [7, 
Corollary 3.8], see also [25]; 

m ~ s.index(x(p)IN.cP(l(·, t(p)))) ~ m + d. 

• 
Acknowledgments. 
The authors wish to thank anonymous referees and editors for useful comments and sugges­
tions. 

Appendix. 
Lemma A: Let [AIB] be an n x (n + m)-matrix of full rank with an n x n-matrix A and 
[CID] be an m x (n + m)-matrix of full rank with an m x m-matrix D. Suppose that 

[ ~ I ~ ] is nonsingular and [AIB]· [ ~~ ] = o. Then corankA = corankD. 

Proof. Without loss of generality, we may assume that A = [:n-r I ~r] and D 

[:m-r' ~r'] where Ep is a p x p-identity matrix and Oq is a q x q-zero matrix. We have 

only to show that r = r'. Remark that the square matrix [ ~ I ~ ] is of full rank, i.e., 

B 

E m - r , 0 
is nonsingular. 

o Or' 
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Set the matrix 

n-r r m-r 

B 

- [ 
En-r 0 B(l) 

0 Or B(3) 
C(l) C(2) E m- r, 
C(3) C(4) 0 

r 
B(2) 
B(4) 

0 

Or' 

n-r 
r 

m-r 
r' 

Assume that r > r' (similar argument in case r < r'). From [AIB] . [ ~~ ] = 0, we can 

easily see that 

[ 
C(1)TIC(3f ] [B(l) I ]-

o + B(3) 0 - o. 

Hence, B(3) = 0 (and C(3) = 0). From the fact that [ ~ I ~ ] is nonsingular, it follows 

that an {r x (n + m)}-submatrix of [ ~ I ~ ], 

o Or 0 B(4) ] r 
n-r r m-r' r' 

is offull rank. It is not possible since r > r' (it is a contradiction). Then r = r', i.e., 

corankA = corankD. 

• Lemma B: Let [AIB] be an n x (n + m)-matrix with an n x n nonsingular matrix A and 
[CID] be an m x (n + m)-matrix with an m x m nonsingular matrix D. Suppose that 

[ ~ I ~ ] is nonsingular and [AIB]· [ ~~ ] = o. Then 

sign det [ ~ I ~ ] = sign detA x sign detD. 

Proof. Set matrices X and Y as follows; X := [ ~ I ~ ] and Y := [ ~T I ~~ ]. 

[
A.ATI 0 ] Then, we can see X . Y = * C . Cf + D . D 1 • Hence, 

detX x detY = detXY = det[A· AT] x det[C· C T + D· DT] > 0 

(since A and Dare nonsingular matrices and then A· AT and C· C T + D· DT are positive 
definite). Therefore, 

sign detX = sign detY = sign detA x sign detD. 

• 
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