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Abstract Apportionment problem has a very long history of more than 200 years and has been challenged 
actively by many applied mathematicians and operations researchers. In the last 200 years many appor
tionment methods have been proposed and various types of properties, which they should desirably satisfy, 
have been proposed and investigated although the apportionment problem itself has not been completely 
solved yet. 

Unbiasedness is an important property for the apportJionment method, and has been studied intensively 
by Balinski and Young and others. In this paper we investigate the unbiasedness of parametric divisor 
method, comparing with that of most traditional apportionment methods. First we characterize parametric 
divisor method by explicitly showing the corresponding loeal measure of bias and deriving several useful facts 
concerning the unbiasedness of apportionment methods. Then we show the numerical results using Japan's 
House of Representatives data and exhibit parametric divisor method is preferable to other apportionment 
methods from the viewpoint of the unbiasedness by adJusting the parameter value appropriately in the 
certain range. Finally we discuss the possibility for the parametric divisor method to be accepted by our 
society in the future. 

1 Introduction 
In the present Japan's House of Representatives there are 511 seats available and there are 
130 political constituencies in the whole country. Among these 130 political constituencies 
the number of seats assigned to each ranges from 1 to 6 and in most constituencies they are 
between 3 and 5. Total number of seats, i.e., the house size, started from 466 in 1947, then 
it was increased several times reaching 511 in 1976, 512 in 1986 and currently 511 again 
after 1992. With the rapid and high economic growth in Japan in the 1960's, however, the 
distribution of our population drastically changed, i.e. our population has become heavily 
concentrated in big city areas while rural areas have been burdened by a serious "isolation" 
problem. In 1947 the largest number of seats per capita was 1.51 times the smallest. Since 
then, the largest-smallest ratio has begun to increase, reaching 3.21 in 1960, 4.83 in 1970, 
and 5.12 in 1985. Thus the "weight of one vote" in the populated areas became much less 
than that in the rural areas and the issue of weight gap between growing and declining 
political constituencies has become one of the most socially and politically controversial 
problems in our country. Our government revised the electoral system in order to reduce 
the weight gap among constituencies by increasing the house size by 19 in 1964 and by 20 
with the total number of seats 511 in 1975. Then in 1986 our government increased the 
number of seat allocations in 8 political constituencies and decreased it in 7 constituencies 
making the total 512, and again in 1992 the number of seat allocations was increased in 9 
political constituencies and decreased in 10 constituencies with the total number reaching 
511 again. 

In 1983 our Supreme Court gave a decision responding to the appeal that a weight gap 
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of more than 3.0 may be unconstitutional. Since then, several similar decisions have been 
given in various judicial courts. After the Recruit scandal in 1988 political reform including 
the change to the new electoral voting system has been a serious concern for the nation's 
political community, our ruling Liberal Democratic Party in the Diet has also recognized the 
importance of this problem. After very harsh arguments and struggles among politicians a 
new political reform bill passed the Diet in January, 1994. Our new electoral voting system 
includes reducing the total number of seats from the present 511 to 500 as a combination 
of 300 single seat constituency and 200 proportional representation seats. The new election 
system is believed to promote a new realignment of several political parties. 

Given the total number of seats and the distribution of each constituency's population 
the apportionment problem tries to allocate seats "fairly" among political constituencies. 
Let the set of N political constituencies be S = {1, 2, ... , N}, and let the population of 
political constituency i E S be Pi. Then the apportionment problem is to partition a given 
positive integer K into nonnegative integral parts {di liE S} such that 

(1.1 ) 

(1.2) di 2:: 0, integer, i E S 

and such that these parts are "as near as possible" proportional to a set of nonnegative 
integers {PI, P2, ... , P N }, respectively. 

Denoting the total population by P, and the total number of seats, i.e., the house size, 
by K, the "ideal" number of seats allocated to the constituency i, i.e., the "exact quota" 
qi, is given by 

(1.3) Pi K 
qi =-

P 
where P is the total population given by 

(1.4) 

Hence we have 

P=LPi 
iES 

(1.5) Lqi = K 
iES 

i E S 

Usually exact quotas {qi liE S} all have fractional parts. Therefore, the problem becomes 
how to round the fractions {qi liE S} to their "nearby" integral values keeping their sum 
equal to a given value K. 

Balinski and Young have done quite extensive work on the above problem (see e.g., 
[1,2,3,4,5,6,7,8,9]), and many apportionment methods have been proposed as mentioned in 
the next section (see e.g., [8,10,11,12,13,14,15] for surveying the methods). Several prop
erties are required for the apportionment method to satisfy. For example, we want the 
apportionment method to have the quota property that the number of seats given to each 
constituency is either rounded-up or rounded-down by an exact quota. We may want the 
house monotone property that a constituency should not be given less representation if the 
total number of seats increases and the distribution of population of each constituency re
mains the same. Bias is another important factor for the apportionment method. Namely 
the apportionment method cannot be accepted if it tends to be always biased in favor of the 
larger or the smaller constituencies. There are various "natural" requirements for accept
able apportionment methods. Some of these "requirements", however, are inconsistent. No 
matter which apportionment method is accepted, it will possess certain" defects". Namely, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Unbiasedness of Apportionment Methods 303 

we may have to decide in advance which propenies must be satisfied, and which" defects" 
are acceptable before we employ our own apportionment method. 

In this paper we consider the bias of several apportionment methods, focused on the 
parametric divisor method proposed in [13]. We investigate the unbiasedness of several 
traditional apportionment methods and compare them with the parametric divisor method. 
We then propose a range of appropriate parameter values for the parametric divisor method 
in order to obtain higher unbiasedness as well as impartialness and fairness with respect 
to the population size of each constituency. In Section 2 we review several representative 
apportionment methods and their bias property. Then we show our results related to char
acterizing parametric divisor method from the viewpoint of the local measure of inequity. In 
Section 3 we give the results of our numerical experiments using Japan's House of Represen
tatives data, and compare these results with the apportionment methods described therein. 
In the last Section, we conclude our paper by giving certain evaluations obtained from our 
results and numerical experiments. 

2 Apportionment methods and the bias 
One of the most common apportionment methods is the largest fraction method suggested 
by A. Hamilton at the United States Congress in 1791, and employed by the Congress from 
1851 until 1910, which we shall denote by LF M. The LF M first assigns each constituency 
i E S its lower quota LqiJ, where LqJ denotes the largest integer less than or equal to q. 
Then we define the fraction of each constituency ti as follows. 

(2.1 ) i E S 

Sorting the set {ti liE S} from the largest, arbitrarily for the equal elements, we define 
the set of suffices of the first K - EiES LqiJ constituencies in the ordering by T. Then the 
LF M allocates an additional seat to the constituencies belonging to the set T; namely, the 
whole allocation {di liE S} of the LF M is given as follows. 

(2.2) i E T 
i 1- T 

Let us define the general divisor method. First, we give a divisor A in order to compute 
the quotient of each constituency i E S with the population Pi as q;(A) = ¥. Then, we 
round the quotients according to values of the number of seats in each constituency. Let us 
denote the integer value obtained from the quotient qi(A) = ¥ by [qi(A)]r = [¥]r. Then, in 
order that these quotients can be an apportionment, the following must hold. 

(2.3) 

Now we generalize the rounding process by defining the divisor function v( d) as follows. 
Let v( d) be a monotone increasing function defined for all integers d 2:: ° and also satisfying 
d ::; v( d) ::; d + 1. Then, for any positive real number x, there corresponds a unique integer 
d such that v( d - 1) ::; x ::; v( d). Namely we assume that v( d) can take either d or d + 1 in 
case x = v( d). We define the above rounding process by 

(2.4) i E S 

where 

(2.5) i E S 
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The apportionment method described above is called the divisor method based upon the 
divisor function v( d). The divisor method can be defined equivalently as follows. From (2.4) 
and (2.5), the parameter ,\ has to satisfy the following relation for all i E S 

for di > 0 

(2.6) 
for di = 0 

This means that we have the following max-min inequality 

(2.7) P' P' max _3_ < min ' 
di?o v(dj) - d.>O V(di - 1) 

where we permit dividing by 0 and assume that if > It if Pi > Pj. Defining the rank 
function r(Pi, di) for i E S as 

(2.8) Pi 
r(Pi,di) = V(di) 

we can write the above relation (2.8) as follows. 

i E S 

(2.9) max r(Pi,di) ~ min r(pj,dj -1) 
d.~O d,>O 

We denote the above apportionment method based upon the rank function r(p, d) ob
tained from the divisor function v(d) by A(v,p, K), which expresses a function giving 
N integral components db .. . , dN as an image of a given population distribution vector 
p = (PI, ... ,PN) and a total number of seats K. The function A(v,p,K) based upon the 
rank function r(p, d) related with the divisor function v( d) can be written as follows. 

(2.10) 

where d indicates an allocation vector given by d = (d1, ... , d N ). 

There exists an alternative way of expressing the general apportionment methods based 
upon the divisor function v( di) recursively. Let d~ indicate the number of seats allocated to 
the political constituency i E S given the total number of seats k E {O, 1, ... , K}. Then an 
iterative algorithm for the general divisor method can be written as follows. 
Algorithm (general divisor method) 

Step 1 df = 0, k E {0,1, ... ,K}, i E S. k = O. 
Step 2 

(2.11) 

(2.12) 

Step 3 k = k + 1. If k = K, then stop. Otherwise, go to step 2. 
~ shown in the above algorithm, for k = 0, the allocation must be zero for every 
constituency. Given that an allocation dk = (dt, ... , d'Jv) has been determined for a total 
number of seats k, an allocation for a size k + 1 is found by giving one more seat to the 
constituency i for which the rank function r(Pi, di) is a maximum. 

Based upon different divisor functions we can define an infinite number of different divisor 
methods (see e.g., [1,2,3,4,7,8,10,13,15]). There are five traditional divisor methods as well 
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as parametric divisor method (P DM) as shown in Table 1. The method of greatest divisors, 
which we denote by GDM, was also called the Jefferson method in Balinski and Young's 
papers. The method of major fractions, which we denote by M FM, was called the Webster 
method in their papers. Balinski and Young called the equal proportion method (EP M), the 
harmonic method (H M M), and the smallest divisor method (SDM) after the names oftheir 
advocates, i.e., the Hill method, the Dean method, and the Adams method, respectively. 

Table 1. Divisor method, divisor function and measure of inequity 
Divisor method Divisor function 

v(d) 

GDM d+1 

MFM d+0.5 

EPM 

HMM 

SDM 

PDM 

jd(d + 1) 

d(d + 1) 
d+ 0.5 

d 

d+t 

Measure of inequity 
E(Pi' di; Pj, dj) 

dp' 
~-d 

Pi J 

di _ dj 

Pi pj 

Using a parameter t such that 0 ::; t ::; 1, the divisor function of the parametric divisor 
method (refer to [13]), which we denote by PDM, can be written as follows. 

(2.13) vPD(d,t)=d+t 

Comparing the above function VPD( d, t) with those in Table 1, we find that t = 0, 1/2, and 
1 correspond to those functions of the S D M, M F M and G D M, respectively. 

Now the apportionment method based upon P DM can be described as follows. Let the 
parameter for P DM be A = APD, then ApD can be determined as the maximum A satisfying 

L l~ + 1 - tJ '2 K 
iES 

(2.14) 

If (2.14) holds as an equality for A = APD, then the allocation {di liE S} is given by 

(2.15) di = l ~ + 1 - tJ i E S 
ApD 

If (2.14) holds as a strict inequality, then let 

(2.16) E { . I' S p". } = z z E ,,-: mteger 
APD 

Since there exist more than one i such that ,2L is integer valued, E #- ~. Suppose 
"PD 

(2.17) 
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then we must decide that K' - K constituencies lose a seat. Hence let D be a subset of E 
with I D 1= K' - K (we can apply an ad-hoc rule to determine this), then the apportionment 
can be given as 

(2.18) d. = { >'~D 
I Pi 

--1 
>'PD 

i ~ D, i E E 

i E D 

Also we know parameter >'PD satisfies 

(2.19) pj < >. < Pi 
dj + t - PD - di - 1 + t i,j E S 

Hence the following relation holds 

P' Pi max __ J_ < mm 
jES dj + tiES di - 1 + t (2.20) 

There are several properties for each apportionment method to satisfy. If the allocation 
{di liE S} given by the method M satisfies 

(2.21 ) i E S 

then we say that apportionment method M satisfies the lower quota. Suppose the allocation 
{di liE S} satisfies 

(2.22) i E S 

then method M is said to satisfy the upper quota. If method M satisfies both the lower and 
the upper quota properties, we say that method M satisfies the quota property. No divisor 
method described above satisfies the quota property, while the LF M does it. 

An apportionment method M is said to satisfy the house monotone property if no political 
constituency i E S decreases its allocation when the house size increases from k to k + 1. 
The violation of this property is often referred to as the "Alabama paradox". The word 
"Alabama paradox" originates from the fact that when the V.S. Congress was using the 
LF M in 1881, the state of Alabama was allocated 8 representatives, while they received 7 
when the total went to 300 from 299. Therefore, the LF M does not satisfy this property. 
All other divisor methods satisfy it. 

We consider the local measures of inequity between pairs of constituencies. Let the pop
ulation in the constituency i E S be Pi and the number of seats assigned be dj. We say that 
constituency i is favored over j when the number of seats per individual in the constituency i 
is greater than or equal to that in j; namely, 4L 2:: !b.., (i.e., El ~ EL). Huntington considered p. PJ d. dJ 

making ratios such as 4L or :& as equal as possible over all constituencies. That these ratios 
PI di 

are nearly equal means that, ideally, the relative or the absolute differences concerning ~ or 

5; become zero. Generally, we denote the measure of inequity between two constituencies i 
and j as E(Pi, diiPj, dj ). Then Huntington's rule says that we should transfer a seat from 
a more favored constituency i to a less favored constituency j when it brings a smaller 
measure of inequity. Namely, when ~ 2:: ~ and 

(2.23) 

we should transfer a seat from i to j. The objective of Huntington's rule is to minimize 
the measure of inequity between pairs of constituencies. So the "desirable apportionment" 
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is obtained when no switching of seats between constituencies can improve the measure of 
inequity between any such pair of constituencies. The attainment of this state is referred to 
as a stable allocation of seats. 

Huntington's rule was applied to several forms of the measure of inequity E(Pi, di; Pj, dj) 
as shown in Table 1. The local measure of inequity in Table 1 assumes that the constituency 
i is favored over j. For each measure of inequity in Table 1 we can obtain a stable assignment 
of seats. Moreover, the resulting stable apportionment obtained from each function indi
cating the measure of inequity, corresponds to the solution for the apportionment methods 
GDM,MFM,EPM,HMM and SDM, respectively. 

Now for the P DM we define that constituency i is favored over j when .4d! 2:: d1p+t for 
p. 1 

the given parameter t. Obviously this condition is equivalent to the original one when t=O 
for the P D M. Then we assume that we should transfer a seat from i to j when d~7t 2:: d~;t 
and the local measure of inequity EpD(Pi,di;Pj,dj;t) satisfies 

(2.24) 

where 

(2.25) 

for all pairs i and j with i favored over j. 
Using the above definitions we obtain the following theorem. 

Theorem 2.1 For the pair of constituencies i and j with populations Pi and Pj, appor
tionments di and dj, respectively, the following holds. 

(2.26) 

if and only if 

(2.27) ~< Pi 
dj + t - di - 1 + t 

i,j E S 

i,j E S 

Proof We do not admit any transfer of a seat from constituency i to j if 

di + t - (dj + t)Pi :::; dj + 1+ 1 - (di + t - l)Pj 
pj Pi 

(2.28) 

Namely for all i E Sand j E S we obtain as follows. 

d( Pi + 1) + t( Pi - pj) 2:: dj( Pj + 1) - (1 + pj) 
J Pi Pi Pi Pi Pi 

dj t(Pi-Pj) dj-1 -+ >--
Pi PiPj - Pi 

dj + t di -- 1 + t -->---
Pi Pi 

~<-~ 
dj + t - di -- 1 + t 

Therefore comparing the above relation with (2.20) we know that such an apportionment 
d = (db ... ,dN ) must be a PDM. Conversely, every PDM apportionment satisfies the 
above inequality (2.27), and its solution admits no transfer of a seat. 0 

Suppose that relation (2.27) holds for all i E Sand j E S. Then the assignment 
corresponds to the optimal convergent apportionment. Hence, comparing (2.27) with (2.20), 
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we can conclude that the above case in Theorem 2.1 is equivalent to the case that the divisor 
function is given as vPD(d) = d+t. In other words, the pairwise transfering procedure given 
by the criterion in Theorem 2.1 gives the same apportionment solution as P DM. 

Whether an apportionment method is generally in favor either of the larger constituencies 
or of the smaller ones is very important in order to evaluate the bias of the apportionment 
method. Namely no apportionment method can be accepted if it has a persistent bias toward 
the larger or the smaller constituencies. However measuring the bias of the apportionment 
method is difficult. There has not yet been established a completely acceptable definition 
or a model for determining whether or not an apportionment method is biased. 

Given two apportionment methods M and M' Balinski and Young [8] defines that the 
method M' favors smaller constituencies relative to M if for allocations d = (di) and d' = (dD 
by the methods M and M', respectively, the following holds 

Pi < pj =} d~ ;::: di or dj ::; dj 

Let the divisor functions for the apportionment methods M and M' be v( d) and v' (d), 
respectively, then we obtain the following theorem due to Balinski and Young (corresponding 
to Theorem 5.1 in [8]). 
Theorem 2.2 Let M and M' be two divisor methods with divisor functions v(d) and v'(d), 
respectively, satisfying v( d) = v' (d) + c for 0 < c < 1. Then the method M' favors small 
constituencies relative to M. 
Proof Let dE A(v,p,K) and d' E A(v',p,K) be the allocations obtained from methods 
M and M', respectively. Suppose for d = (di) and d' = (dD the method M' does not favor 
small constituencies relative to M. Then for some Pi < pj we have d~ < di and dj > dj. 
Combining with the fact di ::; dj, we have d~ < di ::; dj < dj. Hence dj - 1 > d~ ;::: 0 leads 
to v' (dj - 1) ;::: 1 since d ::; v' (d) ::; d + 1. These allocations satisfy the following relations 

Pj >~ 
v' (dj - 1) - v' ( d~ ) 

and 

Using the above relation we obtain the following 

P v'(d'. - 1) v(d" - 1) - c v(d" - 1) v(d) ...l..> J = J > J > J 
Pi - v'(dD v(dD - c v(dD - V(di - 1) 

~> Pi 
v(dj) V(di - 1) 

The above contradicts the assumption. Thus the assumption d: < di and dj > dj never 
occurs, which completes the proof. 0 

The above theorem leads to the following Corollary. 
Corollary 2.3 Let the PDM's Ml and M2 be based upon divisor functions v(d) = d + tl 
and v( d) = d + t2 for parameters tl and t2 such that 0 ::; tl < t2 ::; 1, respectively. Then 
the method Ml favors small constituencies relative to M 2. 

Applying the above corollary to the apportionment methods SDM, PDM, MFM and 
GDM with divisor functions v(d) as d, d + t for 0< t < ~, d + ~ and d + 1, respectively, 
we know that these methods tend to favor small constituencies in this order since we have 
d < d + t < d + ~ < d + 1 for all d. The following theorems give the properties related to the 
parameter value At satisfying (2.14) and the allocation of seats obtained from the PDM. 

Theorem 2.4 Let the P DM based upon the divisor function (2.13) be given by finding 
a maximum parameter At satisfying (2.14). Then the maximum parameter At is strictly 
decreasing with respect to t. 
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Proof Let the parameters t and u satisfy 0 ~.( < u ~ 1. Then parameters At and A1£ be 
the maximums satisfying 

and 
L L fi + 1 -u J 2: f{ 
iES u 

respectively. Suppose Au > At. Then since u > t we have for each i E S 

Pi Pi -+l-t>--+l-u 
At A., 

P' p' 
L~+l-tJ 2: L-~+l-uJ 

At ).u 

The above relation implies that 

p'O' LL-'!'+l-tJ 2LL~2-+1-uJ 2:K 
. 5 At . 5 ,\u sE lE 

which contradicts that At is the maximum. 0 

Theorem 2.5 Let the PDM's M t and Mu be based upon the divisor functions vt(d) = d+t 
and Vu (d) = d + u for parameters t and u such that 0 ~ t < u ~ 1, respectively. Let the 
allocation of seats to the constituency i E 5 with the population Pi by the methods M t and 
Mu be denoted by d! and df, respectively. Suppose Pi < pj and d} - dj 2: 1, then the 
following holds. 

(2.29) d~ - d1!- < dt - dU 

I S - J J 

Proof Suppose (2.29) does not hold, i.e., d! - d;r > 1 when d} - dj 2: 1. Let the maximum 
parameters for the methods Mt and Mu be At and Au , respectively. Then the allocation of 
seats for the constituency i can be given as 

d!=L~:+l-tJ 

and 
du LPi J i = Au + l. - u 

respectively. Since d} - d'J 2: 1, we have 

which implies 
1 1 

u - t > pj( - - -) 
An At 

On the other hand from the assumption d! - df > 1 we have to have 

P' P ~ + 1 - t - (---.!... -+- 1 - u) > 1 
At A1£ -

which implies 
1 1 

u - t > Pi ( - -_. -) + 1 
A1£ At 
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The above contradicts 0 < u - t < 1 since At 2:: Au from Theorem 2.4. This completes the 
proof. 0 

The above relation (2.29) can be written as 

dJ-dt. <du_du 
I J - I J 

which implies that d! - d} for Pi < Pi increases with respect to t when d} changes. 

3 Numerical experiments 
There are 130 political constituencies in Japan's House of Representative (HOR), each 
(CNST.) of which has a population (PPL.), quota(QTA.) and a current allocation (CRT) of 
representatives as shown in Table 2. Applying six apportionment methods (G D M, M FM, 
EP M, H M M, SDM and LF M) to Japan's HOR data based upon the 1990 Census, we 
obtain the results given in Table 2. First we recognize that in Japan's current allocation 
of HOR seats to smaller constituencies, which are mostly in rural areas, are favored over 
larger constituencies, which are mainly in urban areas. The results in Table 2 show that the 
apportionment methods GDM, MFM, EPM, HMM and SDM are, in this order, rela
tively more favorable to those constituencies with larger population, and Japan's current 
allocation of HOR seats is rather close to that of the SDM. The apportionment method 
LF M always satisfies the quota property since the allocation by the LF M is either rounded 
up or rounded down from the exact quota, i.e., stays within the quota. We believe that the 
LF M is the most unbiased method since it satisfies the quota property although, unfortu
nately, it violates the house property. The result in Table 2 also shows that the method 
LF M gives similar apportionment to M F M or EP M. In the 1910's and 1920's in the 
United States there was a very intense controversy over whether the M F M or the EP M 
was more unbiased (see, e.g., [8,10]). From our numerical results and historical arguments 
done so far, we can say that "impartial (unbiased to both larger or smaller constituencies) 
and appropriate" apportionment methods should be either M F M or E PM, or between or 
around these methods. 

Applying the P DM to our HOR data we obtain the apportionment results as given in 
Table 3 using the parameter value t for 0 :::; t :::; 1. The results in Table 3 indicate that the 
P D M with a smaller parameter value t is more favorable to smaller constituencies while 
that with a larger parameter value t is more favorable to larger constituencies as obtained 
from Theorem 2.2. 

Table 3. Final apportionments by parametric divisor method 

CNST. PARAMETER 
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

HKID-l 10 10 10 9 9 9 9 9 9 9 8 
FKOK-l 9 9 9 8 8 8 8 8 8 8 8 
TKYO-ll 8 8 8 8 8 8 8 8 8 7 7 
KNGW-2 8 8 8 8 8 8 8 8 7 7 7 
CHBA-l 8 8 8 8 8 8 8 7 7 7 7 
CHBA-4 8 8 8 8 8 7 7 7 7 7 7 
KNGW-4 8 8 8 7 7 7 7 7 7 7 7 
HYOG-2 8 8 7 7 7 7 7 7 7 7 7 
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CNST. PARAMETER 
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

KYOT-2 8 8 7 7 7 7 7 7 7 7 7 
OSAK-3 8 7 7 7 7 7 7 7 7 7 7 
KNGW-3 7 7 7 7 7 7 7 7 7 7 7 
SITM-2 7 7 7 7 7 7 7 7 7 6 6 
MIYG-l 7 7 7 7 7 7 7 6 6 6 6 
OSAK-5 7 7 7 7 7 7 7 6 6 6 6 
TKYO-7 7 7 7 7 7 7 7 6 6 6 6 
TKYO-lO 7 7 7 7 7 7 6 6 6 6 6 
OSAK-4 7 7 7 6 6 6 6 6 6 6 6 
SITM-4 6 6 6 6 6 6 6 6 6 6 6 
HYOG-l 6 6 6 6 6 6 6 6 6 6 6 
AITI-2 6 6 6 6 6 6 6 6 6 6 6 
SZOK-l 6 6 6 6 6 6 6 6 6 6 6 
KNGW-l 6 6 6 6 6 6 6 5 5 5 5 
NARA-l 6 6 6 6 5 5 5 5 5 5 5 
AITI-4 6 5 5 5 5 5 5 5 5 5 5 
SITM-5 5 5 5 5 5 5 5 5 5 5 5 
GIFU-l 5 5 5 5 5 5 5 5 5 5 5 
SITM-l 5 5 5 5 5 5 5 5 5 5 5 
HRSM-l 5 5 5 5 5 5 5 5 5 5 5 
MIEE-l 5 5 5 5 5 5 5 5 5 5 5 
SIGA-l 5 5 5 5 5 5 5 5 5 5 5 
OKNW-l 5 5 5 5 5 5 5 5 5 5 5 
SZOK-2 5 5 5 5 5 5 5 5 5 5 5 
OSAK-7 5 5 5 5 5 5 5 5 5 5 5 
OSAK-2 5 5 5 5 5 5 5 5 5 5 5 
IBRK-l 5 5 5 5 5 5 5 5 5 5 5 
KNGW-5 5 5 5 5 5 5 5 5 5 5 5 
KMMT-l 5 5 5 5 5 5 5 5 5 5 5 
AITI-6 5 5 5 5 5 5 5 5 5 5 5 
HKID-5 5 5 5 5 5 5 5 5 5 4 4 
TCHG-l 5 5 5 5 5 5 5 4 4 4 4 
SZOK-3 5 5 5 5 5 5 4 4 4 4 4 
TKYO-4 5 5 5 5 5 5 4 4 4 4 4 
AITI-l 5 4 4 5 4 4 4 4 4 4 4 
TKYO-3 4 4 4 4 4 4 4 4 4 4 4 
AITI-3 4 4 4 4 4 4 4 4 4 4 4 
TKYO-2 4 4 4 4 4 4 4 4 4 4 4 
IBRK-3 4 4 4 4 4 4 4 4 4 4 4 
FKOK-2 4 4 4 4 4 4 4 4 4 4 4 
OKYM-2 4 4 4 4 4 4 4 4 4 4 4 
AOMR-l 4 4 4 4 4 4 4 4 4 4 4 
HKID-4 4 4 4 4 4 4 4 4 4 4 4 
HYOG-3 4 4 4 4 4 4 4 4 4 4 4 
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CNST. PARAMETER 
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

OKYM-1 4 4 4 4 4 4 4 4 4 4 4 
NGSK-1 4 4 4 4 4 4 4 4 4 4 4 
CHBA-3 4 4 4 4 4 4 4 4 4 4 4 
HRSM-3 4 4 4 4 4 4 4 4 4 4 4 
CHBA-2 4 4 4 4 4 4 4 4 4 4 4 
TKYO-5 4 4 4 4 4 4 4 4 4 4 4 
SAGA-1 4 4 4 4 4 4 4 4 4 4 4 
FKOK-4 4 4 4 4 4 4 4 4 4 4 4 
FKOK-3 4 4 4 4 4 4 4 4 4 4 4 
TKYO-9 4 4 4 4 4 4 4 4 4 4 4 
TCHG-2 4 4 4 4 4 4 4 4 4 4 4 
YMNS-1 4 4 4 4 4 4 4 4 4 4 4 
HYOG-4 4 4 4 4 4 4 4 4 4 4 4 
KGSM-1 4 4 4 4 4 4 4 4 4 4 4 
KYOT-1 4 4 4 4 4 4 4 4 4 4 4 
YMGC-2 3 4 4 4 4 4 4 4 4 4 4 
IWTE-1 3 3 3 4 4 4 4 4 4 4 4 
TKSM-1 3 3 3 4 4 4 4 4 4 4 4 
KOTI-1 3 3 3 4 4 4 4 4 4 4 4 
FUKI-1 3 3 3 3 3 3 3 3 4 3 3 
OITA-1 3 3 3 3 3 3 3 3 3 3 3 
ISKW-1 3 3 3 3 3 3 3 3 3 3 3 
TKYO-6 3 3 3 3 3 3 3 3 3 3 3 
FKSM-1 3 3 3 3 3 3 3 3 3 3 3 
SIMN-1 3 3 3 3 3 3 3 3 3 3 3 
GIFU-2 3 3 3 3 3 3 3 3 3 3 3 
NIGT-3 3 3 3 3 3 3 3 3 3 3 3 
NIGT-1 3 3 3 3 3 3 3 3 3 3 3 
FKSM-2 3 3 3 3 3 3 3 3 3 3 3 
MYZK-1 3 3 3 3 3 3 3 3 3 3 3 
GNMA-3 3 3 3 3 3 3 3 3 3 3 3 
YMGC-1 3 3 3 3 3 3 3 3 3 3 3 
AKTA-1 3 3 3 3 3 3 3 3 3 3 3 
HKID-2 3 3 3 3 3 3 3 3 3 3 3 
AITI-5 3 3 3 3 3 3 3 3 3 3 3 
OSAK-1 3 3 3 3 3 3 3 3 3 3 3 
YMGT-1 3 3 3 3 3 3 3 3 3 3 3 
KMMT-2 3 3 3 3 3 3 3 3 3 3 3 
OSAK-6 3 3 3 3 3 3 3 3 3 3 3 
HRSM-2 3 3 3 3 3 3 3 3 3 3 3 
GNMA-1 3 3 3 3 3 3 3 3 3 3 3 
IBRK-2 3 3 3 3 3 3 3 3 3 3 3 
WKYM-1 3 3 3 3 3 3 3 3 3 3 3 
TOYM-1 3 3 3 3 3 3 3 3 3 3 3 
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CNST. PARAMETER 
1.0 0.9 O.S 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

SITM-3 2 3 3 3 3 3 3 3 3 3 3 
TOTR-1 2 3 3 3 3 3 3 3 3 3 3 
NGSK-2 2 2 3 3 3 3 3 3 3 3 3 
NGNO-1 2 2 2 2 3 3 3 3 3 3 3 
IWTE-2 2 2 2 2 2 2 3 3 3 3 3 
NGNO-3 2 2 2 2 2 2 3 3 3 3 3 
FKSM-3 2 2 2 2 2 2 2 3 3 3 3 
MIEE-2 2 2 2 2 2 2 2 3 3 3 3 
MIYG-2 2 2 2 2 2 2 2 3 3 3 3 
NIGT-2 2 2 2 2 2 2 2 3 3 3 3 
KAGW-1 2 2 2 2 2 2 2 3 3 3 3 
GNMA-2 2 2 2 2 2 2 2 2 2 3 3 
HKID-3 2 2 2 2 2 2 2 2 2 3 3 

,EHIM-2 2 2 2 2 2 2 2 2 2 3 3 
YMGT-2 2 2 2 2 2 2 2 2 2 3 3 
EHIM-1 2 2 2 2 2 2 2 2 2 2 3 
AOMR-2 2 2 2 2 2 2 2 2 2 2 2 
NGNO-4 2 2 2 2 2 2 2 2 2 2 2 
AKTA-2 2 2 2 2 2 2 2 2 2 2 2 
TKYO-1 2 2 2 2 2 2 2 2 2 2 2 
TOYM-2 2 2 2 2 2 2 2 2 2 2 2 
NGNO-2 2 2 2 2 2 2 2 2 2 2 2 
KGSM-2 2 2 2 2 2 2 2 2 2 2 2 
KAGW-2 2 2 2 2 2 2 2 2 2 2 2 
EHIM-3 2 2 2 2 2 2 2 2 2 2 2 
WKYM-2 2 2 2 2 2 2 2 2 2 2 2 
OITA-2 2 2 2 2 2 2 2 2 2 2 2 
MYZK-2 2 2 2 2 2 2 2 2 2 2 2 
TKYO-S 2 2 2 2 2 2 2 2 2 2 2 
NIGT-4 2 2 2 2 2 2 2 2 2 2 2 
ISKW-2 1 1 2 2 2 2 2 2 2 2 2 
KGSM-3 1 1 1 1 1 2 2 2 2 2 2 
HYOG-5 1 1 1 1 1 1 2 2 2 2 2 
KGSM-4 1 1 1 1 1 1 1 2 2 2 2 

Total 511 511 511 511 511 511 511 511 511 511 511 

Comparing the results of Table 3 with the allocation by the LF M in Table 2, we can 
easily recognize that if the parameter value t satisfies t >0.5, larger constituencies get more 
seats and smaller ones have less, while if t <0.4" smaller constituencies obtain more seats 
and larger ones less. Thus we can conclude that the P D M should be taken into account for 
the parameter t such that 0.4 :S t :S 0.5 since a parameter t larger than 0.5 makes the P DM 
too favorable to larger constituencies and t less than 0.4 makes the method too favorable to 
smaller constituencies (see Table 4). 
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Table 4. Final apportionments by parametric divisor method 

CNST. PARAMETER 
0.50 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 

HKID-1 10 10 10 10 10 10 10 10 9 9 9 
FKOK-1 9 9 9 9 9 9 9 9 9 9 9 
TKYO-11 8 8 8 8 8 8 8 8 8 8 8 
KNGW-2 8 8 8 8 8 8 8 8 8 8 8 
CHBA-1 8 8 8 8 8 8 8 8 8 8 8 
CHBA-4 8 8 8 8 8 8 8 8 8 8 8 
KNGW-4 8 8 8 8 8 8 8 8 8 8 8 
HYOG-2 7 7 7 7 7 7 7 7 7 7 7 
KYOT-2 7 7 7 7 7 7 7 7 7 7 7 
OSAK-3 7 7 7 7 7 7 7 7 7 7 7 
KNGW-3 7 7 7 7 7 7 7 7 7 7 7 
SITM-2 7 7 7 7 7 7 7 7 7 7 7 
MIYG-1 7 7 7 7 7 7 7 7 7 7 7 
OSAK-5 7 7 7 7 7 7 7 7 7 7 7 
TKYO-7 7 7 7 7 7 7 7 7 7 7 7 
TKYO-10 7 7 7 7 7 7 7 7 7 7 7 
OSAK-4 6 6 6 6 6 6 6 6 6 6 6 
SITM-4 6 6 6 6 6 6 6 6 6 6 6 
HYOG-1 6 6 6 6 6 6 6 6 6 6 6 
AITI-2 6 6 6 6 6 6 6 6 6 6 6 
SZOK-1 6 6 6 6 6 6 6 6 6 6 6 
KNGW-1 6 6 6 6 6 6 6 6 6 6 6 
NARA-1 6 6 6 6 6 6 6 6 6 6 6 
AITI-4 5 5 5 5 5 5 5 5 5 5 5 
SITM-5 5 5 5 5 5 5 5 5 5 5 5 
GIFU-1 5 5 5 5 5 5 5 5 5 5 5 
SITM-1 5 5 5 5 5 5 5 5 5 5 5 
HRSM-1 5 5 5 5 5 5 5 5 5 5 5 
MIEE-1 5 5 5 5 5 5 5 5 5 5 5 
SIGA-1 5 5 5 5 5 5 5 5 5 5 5 
OKNW-1 5 5 5 5 5 5 5 5 5 5 5 
SZOK-2 5 5 5 5 5 5 5 5 5 5 5 
OSAK-7 5 5 .5 5 5 5 5 5 5 5 5 
OSAK-2 5 5 5 5 5 5 5 5 5 5 5 
IBRK-1 5 5 ,5 5 5 5 5 5 5 5 5 
KNGW-5 5 5 5 5 5 5 5 5 5 5 5 
KMMT-1 5 5 5 5 5 5 5 5 5 5 5 
AITI-6 5 5 5 5 5 5 5 5 5 5 5 
HKID-5 5 5 5 5 5 5 5 5 5 5 5 
TCHG-l 5 5 5 4 4 4 4 4 4 4 4 
SZOK-3 4 4 4 4 4 4 4 4 4 4 4 
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CNST. PARAMETER 
0.50 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 

TKYO-4 4 4 4 4 4 4 4 4 4 4 4 
AITI-l 4 4 4 4 4 4 4 4 4 4 4 
TKYO-3 4 4 4 4 4 4 4 4 4 4 4 
AITI-3 4 4 4 4 4 4 4 4 4 4 4 
TKYO-2 4 4 4 4 4 4 4 4 4 4 4 
IBRK-3 4 4 4 4 4 4 4 4 4 4 4 
FKOK-2 4 4 4 4 4 4 4 4 4 4 4 
OKYM-2 4 4 4 4 4 4 4 4 4 4 4 
AOMR-1 4 4 4 4 4 4 4 4 4 4 4 
HKID-4 4 4 4 4 4 4 4 4 4 4 4 
HYOG-3 4 4 4 4 4 4 4 4 4 4 4 
OKYM-1 4 4 4 4 4 4 4 4 4 4 4 
NGSK-l 4 4 4 4 4 4 4 4 4 4 4 
CHBA-3 4 4 4 4 4 4 4 4 4 4 4 
HRSM-3 4 4 4 4 4 4 4 4 4 4 4 
CHBA-2 4 4 4 4 4 4 4 4 4 4 4 
TKYO-5 4 4 4 4 4 4 4 4 4 4 4 
SAGA-l 4 4 4 4 4 4 4 4 4 4 4 
FKOK-4 4 4 4 4 4 4 4 4 4 4 4 
FKOK-3 4 4 4 4 4 4 4 4 4 4 4 
TKYO-9 4 4 4 4 4 4 4 4 4 4 4 
TCHG-2 4 4 4 4 4 4 4 4 4 4 4 
YMNS-l 4 4 4 4 4 4 4 4 4 4 4 
HYOG-4 4 4 4 4 4 4 4 4 4 4 4 
KGSM-1 4 4 4 4 4 4 4 4 4 4 4 
KYOT-1 4 4 4 4 4 4 4 4 4 4 4 
YMGC-2 3 3 3 4 4 4 3 3 4 4 4 
IWTE-l 3 3 3 3 3 3 3 3 3 3 3 
TKSM-1 3 3 3 3 3 3 3 3 3 3 3 
KOTI-1 3 3 3 3 3 3 3 3 3 3 3 
FUKI-1 :J 3 3 3 3 3 3 3 3 3 3 
OITA-1 3 3 3 3 3 3 3 3 3 3 3 
ISKW-1 3 3 3 3 3 3 3 3 3 3 3 
TKYO-6 3 3 3 3 3 3 3 3 3 3 3 
FKSM-1 3 3 3 3 3 3 3 3 3 3 3 
SIMN-1 3 3 3 3 3 3 3 3 3 3 3 
GIFU-2 3 3 3 3 3 3 3 3 3 3 3 
NIGT-3 3 3 3 3 3 3 3 3 3 3 3 
NIGT-1 3 3 3 3 3 3 3 3 3 3 3 
FKSM-2 3 3 3 3 3 3 3 3 3 3 3 
MYZK-1 3 3 3 3 3 3 3 3 3 3 3 
GNMA-3 3 3 3 3 3 3 3 3 3 3 3 
YMGC-1 3 3 3 3 3 3 3 3 3 3 3 
AKTA-1 3 3 3 3 3 3 3 3 3 3 3 
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CNST. PARAMETER 
0.50 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 

HKID-2 3 3 3 3 3 3 3 3 3 3 3 
AITI-5 3 3 3 3 3 3 3 3 3 3 3 
OSAK-1 3 3 3 3 3 3 3 3 3 3 3 
YMGT-1 3 3 3 3 3 3 3 3 3 3 3 
KMMT-2 3 3 3 3 3 3 3 3 3 3 3 
OSAK-6 3 3 3 3 3 3 3 3 3 3 3 
HRSM-2 3 3 3 3 3 3 3 3 3 3 3 
GNMA-1 3 3 3 3 3 3 3 3 3 3 3 
IBRK-2 3 3 3 3 3 3 3 3 3 3 3 
WKYM-1 3 3 3 3 3 3 3 3 3 3 3 
TOYM-1 3 3 3 3 3 3 3 3 3 3 3 
SITM-3 3 3 3 3 3 3 3 3 3 3 3 
TOTR-l 3 3 3 3 3 3 3 3 3 3 3 
NGSK-2 3 3 3 3 3 3 3 3 3 3 3 
NGNO-l 2 2 2 2 2 2 2 2 2 2 2 
IWTE-2 2 2 2 2 2 2 2 2 2 2 2 
NGNO-3 2 2 2 2 2 2 2 2 2 2 2 
FKSM-3 2 2 2 2 2 2 2 2 2 2 2 
MIEE-2 2 2 2 2 2 2 2 2 2 2 2 
MIYG-2 2 2 2 2 2 2 2 2 2 2 2 
NIGT-2 2 2 2 2 2 2 2 2 2 2 2 
KAGW-l 2 2 2 2 2 2 2 2 2 2 2 
GNMA-2 2 2 2 2 2 2 2 2 2 2 2 
HKID-3 2 2 2 2 2 2 2 2 2 2 2 
EHIM-2 2 2 2 2 2 2 2 2 2 2 2 
YMGT-2 2 2 2 2 2 2 2 2 2 2 2 
EHIM-l 2 2 2 2 2 2 2 2 2 2 2 
AOMR-2 2 2 2 2 2 2 2 2 2 2 2 
NGNO-4 2 2 2 2 2 2 2 2 2 2 2 
AKTA-2 2 2 2 2 2 2 2 2 2 2 2 
TKYO-l 2 2 2 2 2 2 2 2 2 2 2 
TOYM-2 2 2 2 2 2 2 2 2 2 2 2 
NGNO-2 2 2 2 2 2 2 2 2 2 2 2 
KGSM-2 2 2 2 2 2 2 2 2 2 2 2 
KAGW-2 2 2 2 2 2 2 2 2 2 2 2 
EHIM-3 2 2 2 2 2 2 2 2 2 2 2 
WKYM-2 2 2 2 2 2 2 2 2 2 2 2 
OITA-2 2 2 2 2 2 2 2 2 2 2 2 
MYZK-2 2 2 2 2 2 2 2 2 2 2 2 
TKYO-8 2 2 2 2 2 2 2 2 2 2 2 
NIGT-4 2 2 2 2 2 2 2 2 2 2 2 
ISKW-2 1 1 1 1 1 1 2 2 2 2 2 
KGSM-3 1 1 1 1 1 1 1 1 1 1 1 
HYOG-5 1 1 1 1 1 1 1 1 1 1 1 
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CNST. PARAMETER 
0.50 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.41 0.40 

KGSM-4 1 1 1 1 1 1 1 1 1 1 1 
Total 511 511 511 511 511 ;511 511 511 511 511 511 

Balinski and Young [8] proposed a model of bias to conclude that Webster's method 
(M F M) is the most preferred method. In this section we apply a similar approach to theirs 
to Japan's House of Representative (HOR) data, then we investigate the unbiasedness of 
the apportionment method by comparing our P D M with other methods. Given the pop
ulation distribution p = (Pl, ... ,PN) and its corresponding apportionment d = (dI, ... ,dN) 
let SL and Ss be two disjoint subsets of S = {1, ... , N} indicating the larger constituen
cies and the smaller constituencies, respectively. Then the apportionment d = (d1, ... , dN) 

E d '. d favors the smaller constituencies if ~ > ~~ and favors the larger constituencies 
2-ss p] t~SL Pi 

E d E d 
~< ~ where Ess dj indicates EjES" dj and so on. Among Japan's 130 (=N) 
L..-Ss P3 L..-SL Pi 

HOR constituencies we define SL as the largest one-third, i.e., 1 SL 1=43, and Ss as the 
smallest one-t.hird, i.e., 1 Ss 1=43. 

We originally define the measure of bias related to the apportionment method as follows. 

(3.1 ) ms = 1 E dj - E qj 1 

Ss Ss 

(3.2) ~ = maxims, md 
Table 5 shows the above measure of bias for six traditional apportionment methods. In 

Table 4 we give the numerical results of the P D M for the parameter values 0.4 ::; t ::; 0.5. 
Using the numerical results of the PDM in Table 3, we can calculate the measure of bias 
~t for parameter values 0 ::; t ::; 1 as shown in the Fig.1. From Table 4 we obtain Fig.2 
showing the details of the measure of bias ~t for 0.35 ::; t ::; 0.5. We can easily recognize 
that ~t takes the minimum at around 0.43 ::; t ::; 0.44. 

Table 5. Measure of biases ~ for the apportionment methods 

Method GDM MFM EPM HMM SDM LFM 
mL 11.956 0.956 0.044 0.044 13.044 0.044 
ms 9.754 0.754 0.246 1.246 10.256 0.754 
~ 11.956 0.956 0.246 1.246 13.044 0.754 

Now we define another measure of bias as follows. 

(3.3) 

(3.4) e=(~~-1)X100 
The above definition is equivalent to Balinski and Young's ([8], p.126). Numerical results 
for the measure of bias et are given in Table 6 for six traditional apportionment methods. 
Fig.3 shows the measure of bias et for parameter values 0 ::; t ::; 1. Fig.4 shows the details 
of et for 0.35 ::; t ::; 0.5. We can conclude that the absolute value of the bias e, i.e., 1 et 1 
takes the minimum at around 0.43 ::; t ::; 0.44. 
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Fig. 1 lIeasure of Bias t:,. t 
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Table 6. Measure of biases 0 for the apportionment methods 

Method GDM MFM EPM HMM SDM LFM 
kL 1.046 1.004 1.000 1.000 0.950 1.000 
ks 0.897 0.992 1.003 1.013 1.108 0.992 
0 -14.26 -1.19 0.26 1.31 16.65 -0.79 

From the above results we believe we can say that the most unbiased apportionment 
method could be the P DM for the parameter values, approximately 0.43 ~ t ~ 0.44. From 
the numerical results in Table 2 we know that the EP M gives exactly the same allocation 
of seats to our 130 constituencies as the LF M. Comparing the allocation of the M F M with 
that of the EPM, we know that the latter method gives one less seat to TCHG-l (larger 
constituency) and one more seat to YMGC-2 (medium size constituency). From Table 
4 we know that the P DM for parameter values 0.48 ~ t ~ 0.50 gives exactly the same 
allocation as the M FM, while the P D M for parameter values 0.45 ~ t ~ 0.47 gives the 
same allocation as the EP M, i.e., the LF M. The P DM for parameter values 0.43 ~ t ~ 
0.44 gives one less seat to the medium sized constituency YMGC-2 and one more seat to the 
smaller constituency ISKW-2 compared with the EP M, i.e., the LF M. Furthermore The 
P DM for parameter values 0.40 ~ t ~ 0.42 gives one less seat to the largest constituency 
HKID-l and one more seat to the medium sized constituency YMGC-2 compared with the 
EP M for parameter values 0.43 ~ t ~ 0.44. 

4 Summary and conclusion 
In this paper we investigated the unbiasedness of the PDM based upon the parameter t 
given in (2.13). As mentioned in sections 2 and 3, P DM satisfies the house monotone 
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property for any t such that 0 5 t 5 1 as it belongs to the divisor method. It does not 
guarantee the quota property as do other apportionment methods (with the exception of the 
LF M ). In section 2 we characterized the P DM from the viewpoints of the local measure of 
inequity, which was originally proposed in our work (see [13]). Then we found the properties 
of the P D M related to the maximum parameter values and the allocation obtained from 
the P D M, which we expect would be useful to gain more insights into the allocation by the 
P DM. As shown in section 3, from the results of our numerical experiments as illustrated 
in Tables 5 and 6 we can conclude that the apportionment method LF M is located between 
M F M and E P M from the viewpoint of biasedness to the population size of the constituency. 
As history shows (see e.g. [8, 10]), there was a harsh controversy in the U.S. Congress in the 
1950's over whether the M F M or the EP M should be accepted. Although Balinski and 
Young [8, 10] insist that the M F M is the only unbiased divisor method, we believe that 
generally the M F M is more favorable to larger constituencies as most numerical examples, 
although they are hypothetical and not real data, violate the upper quota property (see e.g. 
[10, 12]) and as our own numerical experiments also show. 

In conclusion, we believe that the method LF M, which satisfies the quota property, 
gives" a most reasonable and impartial" assignment of seats to the constituency although 
it does not satisfy the house monotone property. Based upon our numerical experiments 
related to 1990 census data of Japan's House of Representatives we would like to strongly 
recommend the P DM with the parameter value 0.43 5 t 5 0.44 since it gives almost the 
same assignment as the LF M as shown in section 3, and importantly, it satisfies the house 
monotone property. In this sense we evaluate tl:.e unbiasedness of the Condorcet method 
(see, e.g., Balinski and Young [8]), which is equivalent to t=O.4 for the PDM and is close 
to our recommendation of the parameter value. 

Presently we are investigating other properties of population monotonicity, constituency 
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Fig. 3 Measure of bias 8 t 
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and so on for the P D M to see if this method can be made to more closely satisfy these 
properties. 
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