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Abstract This paper presents an analysis of a cyclic-service tandem queue (M/C/l type queue) with 
exhaustive services and multiple server vacations, in which a single server takes repeated vacations until it 
finds at least one message in the first queue after emptying the queueing system. It is assumed that the 
vacation time is generally distributed, and switch-over times are zero. This paper analyzes queue-length 
distributions and message sojourn time distributions. By using the results of the two-stage tandem-queue 
analysis and the decomposition property in vacation models, some explicit formulas are derived for the mean 
total sojourn time in the multi-stage tandem queue and the mean waiting time in the first stage. These 
results are applicable to the performance analysis for message processing in packet switching systems. 

1. Introduction 

Cyclic-service tandem queueing models attended by a single server may find a number 
of examples in the performance evaluation of computer operating systems, packet switching 
systems in telecommunication networks and production systems, Refs. [4, 8, 9, 14]. This 
paper considers such a cyclic-service tandem queueing model with multiple server vacations, 
in which the server takes repeated vacations until it find at least one message in the first 
queue after emptying the queueing system (multiple vacations [2, 13]). For example, in 
packet switching systems, the vacation time can be utilized for secondary priority tasks such 
as traffic data processing and aperiodic processing for systems maintenance and testing, 
while after the vacation period, the server returns to the main system to execute the primary 
message processing with higher priority [3]. 

There have been some analytical studies on cyclic-service tandem queueing models, the 
literature of which is given in the reference lists of [4, 5, 10], but the subject is not as 
well-investigated as polling models [7, 12]. Vacation models have been analyzecl for various 
queueing system, e.g. M[Xl/G/1, GI/G/l, priority queueing systems and so on, an impor­
tant result for which is the well-known decomposition property [1, 2, 13]. Doshi [2] presented 
an overview of the state of the art of vacation model analysis, as well as an extensive list of 
references. However, there are few studies in the literature treating the cyclic-service tandem 
queueing models with vacations. From such a point of view, we analyze a basic cyclic-service 
tandem queueing model with multiple server vacations which is a generalized model of the 
ordinary single-stage (M/G/l-type) vacation model. This queueing model is derived from 
message processing in packet switching systems. The analysis results are also summarized by 
taking account of the tandem queueing model without vacation times. It is useful to clarify 
the influence of vacation time on some performance measures in such switching systems. 

The rest of this paper is organized as follows: In Section 2, we describe a cyclic-service 
tandem queueing model with multiple server vacations. In Sections 3 and 4, we derive 
generating functions of joint queue-length distributions, Laplace-Stieltjes transforms (LSTs) 
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for waiting times in each stage and the total sojourn time in the tandem queueing system, and 
formulas on the mean performance measures. In Section 5, we give the explicit expression for 
the mean total sojourn time in an N(? 2)-stage tandem queue with vacations. We conclude 
the paper in Section 6. 

2. Cyclic-Service Tandem Queueing Model with Vacations 

This section presents a cyclic-service tandem queueing model with server vacations and 
introduces some notations. The queueing system is composed of two service stages connected 
in series. The n-th stage, n = 1,2 has a service counter Sn and a waiting room with 
infinite capacity Qn. Messages arrive at Ql according to a Poisson process with rate A. 
Each message requires exactly two services before leaving the queueing system, i.e. ,'1fter 
completion of the service (pre-processing) in S], the message goes to Q2 to receive the 
service (primary pTOcessing) in S2, and leaves the system after service-completion in S2. 
Service time Tn at each counter Sn, n = 1,2 are random variables with a general distribution 
function Hn(t), with finite first and second moments hn and h~2). The LST of Hn(t) is 
denoted by H~(s),n = 1,2. 

Messages in Ql and Q2 are served by a single server in accordance with the exhaustive 
service, i.e. two queues are served by the server in cyclic order, SI -+ S2 -+ SI -+ S:l···, 
and the server will continue to serve at Sn, n = 1,2 until Qn becomes empty. However, if 
there is no waiting message in Ql just after switching over to SI, the server then begins a 
vacation. The vacation may be repeated if the server finds that Ql is still empty upon his 
return (called multiple vacations). If any, the server continues serving messages in Ql in 
accordance with the exhaustive service. Messages in each queue are served in the order of 
their arrivals (FIFO). The vacation time V is a random variable with a general distribution 
function V(t), with finite first and second moments v and v(2). The LST of V(t) is denoted 
by V*(s). Service times Tl and T2 and vacation time V are mutually independent random 
variables. 

and 

For simplicity, the following notations are introduced: 

pn : = Ahn n = 1,2 p:= PI + P2 

'" : = AV 

H*(s) : = Hi(s)· H2(s) 

h : = hI + h2 h(2) ::= h~2) + h~2) + 2hlh2. 

(1) 

(2) 

Server utilization P = Ah is assumed to be less than unity for stability (see Remark 2.1). 
Here, let qn(k) denote the probability that k messages arrive at Ql during a service time 

00 

Tn, n = 1,2 and denote by Qn(x)(:= L: qn(k)xk ) the generating function for qn(k). Then, 
k=O 

we have 
Qn(x) = H~{A(1 - :c)} n = 1,2. (3.a) 

Similarly, we denote by r(k) the probability that k messages arrive at Ql during a vacation 
00 

time V, and denote by R(x)(:= L: r(k)xk ) the generating function for r(k), which yields 
k=O 

R(x) = V*{,\(1- x)}. (3.b) 
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Remark 2.1: The present model and the standard M/C/1 vacation model with arrival 
rate A, and the LSTs of service time distribution and vacation time distribution, H* (s) and 
V*(s), have the same distribution of the number of messages served in a busy period and 
the same vacation times, i.e. the same starting/teminating epochs for the vacations [2, 13]. 

o 

3. Queueing Analysis 
By the imbedded Markov-chain approach, we first derive a set of generating functions 

for joint queue-length distributions. Let tr, r = 1,2,3,," denote the successive epochs just 
after departure of messages from SI or S2. Let Ll (r) and L2(r) denote the number of waiting 
messages in Ql and Q2 at tr, respectively, and let O'(r - 0) = n denote the server location 
Sn(n = 1,2) at the point just before tr. Then, a vector chain {Yr} defined by 

becomes an imbedded Markov chain [4]. Let {7l"n(i,j)} denote the stationary distribution of 
the Markov chain {Yr}, i.e. 

7l"n(i,j):= lim Pr{Yr = (n,i,j)}. 
r-+oo 

(4.a) 

Further, let us introduce the generating functions, 

00 00 

IIn(x,y):= L L 7l"n(i,j)Xiyj 1 x 1,1 y I~ 1 n = 1,2. ( 4.b) 
i=O j=o 

Then, considering the events that occur during two successive service completion epochs tr 
and tr+b r = 1,2,3" ", we have the following relationships: 

00 I 

Pr{Yr+1 = (l,i, I)} = Pr{Yr = (2,O,0)} L r(O)m-l L r(i - k + l)ql(k) 
m=l k=O 

i 

+ L Pr{Yr = (2,i - k + 1,0)}Ql(k) for i 2 ° (5.a) 
k=O 

t 

Pr{Yr+1 = (1, i,j)} = L Pr{Yr = (1, i - k + 1,j - l)}ql(k) for i 2 O,j 2: 2 (5.b) 
k=O 

Pr{Yr+1 = (2,i,j)} = Pr{Yr = (l,O,j + 1)}Q2(i) 
I 

+ L Pr{Yr = (2, i - k,j + 1)}Q2(k) for i,j 20 (5.c) 
k=O 

where it should be noted that Pr{Yr = (l,i,O)} = ° for any i 2 0. From (4.a), (4.b) and 
(5.a)rv(5.c), we get the following functional relationships for IIn(x, y), n = 1,2: 

(6.a) 
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1 
Ih(x, y) = {II2(x, y) - II2(X, 0)}Q2(X)­

y 
1 + II1(0, y)Q2(X)-. 
Y 

By using (3.a), (3.b), Eqs. (6.a) and (6.b) can be rewritten as 

yHiP.(l-x)} [ 7r2(0,0) * ] 
IIl(X, y) = x _ yHi{).,(l _ x)} ~(x) -),(Y) - 1 _ ,(a) [1 - V {).,(1 - x)}] 

HH)"(l - x)} [ ] 
II2(x,y) = y _ HH)"(l-- x)} ),(y) - ~(x) 

where 
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(6.b) 

(7.a) 

(7.b) 

(7.c) 

It is necessary to determine the unknown probability 7r2(0,0) and unknown functions 
~(x) and )'(y) on the right-hand sides of (7.a) and (7.b). 

(1) Determination of 7r2 (0, 0) 
The unknown probability 7r2(0, 0) should be determined by the normalization condition, 

(8) 

From (8) and the relationships derived by letting x, y -+ 1 in (7.a) and (7.b), we get simul­
taneous linear equations with five unknowns [4], the solution of which is given by: 

and 

where 

7r2(0,0) _ 1 - P 
1 - ,(a) - 21] 

1 
IIn ( 1, 1) = 2 n = 1, 2 

n;y(O, 1) = ),'(1) =~, n~x(l,O) = ~'(1) = ~P2 

II~y(a,b):= [! IIn(x,y)] 
uy x=a,y=b. 

(We use the same notation below.) 

(9.a) 

(9.b) 

(9.c) 

A probabilistic interpretation for (9.a) is given by using the decomposition theorem on 
workload in the vacation system [1,2]: The probability Po that there is no message at an 
arbitrary time in the ordinary M / G /1 vacation system with arrival rate)., and the LSTs of 
service time and vacation time, H*(s) and V*(s), respectively, is given by 

PO=(I-p)·~oo~--___ I~/)"-------- (lO.a) 
L mv· {r(o)m-l(1 - ,(a))} 
m=l 

1/ )., 
= (1 - p) . v/(1 _ ,(a)) 
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The first factor on the right-hand side of (10.a), 1 - p, stands for the probability that the 
workload is zero at an arbitrary point in the M 1 G 11 queue without vacations. The second 
factor represents the probability that the workload is zero at an arbitrary point in a vacation 
period in the MIG/1 vacation system, where the numerator, 11>" represents the mean time 
interval that there is no message in the system and the denominator, vl(l-r(O)), represents 
the mean vacation period. Further, it is derived from the property of the MIG/1 type queue 
(Burke's theorem and PASTA property [13]) that Po = 71"0, where 71"0 denotes the probability 
that there is no message in the system at the message departure epoch. We also get 

71"2(0,0) 
71"0 = Il2(1, 1)" 

Hence from (9.b), (10.a) and (10.b), we get (9.a). 

(2) Determination of unknown functions 'IjJ( x) and if'(Y) 
On the right-hand side of (7.a), 

x - yH;P.(l - x)} = ° 

(10.b) 

(11 ) 

has exactly one root, say x = c5(y), in the unit circle 1 x I::; 1 under the condition: PI ::; 1 
and 1 y I::; 1. An explicit expression for c5(y) is given by (17.b) known as Takacs' lemma [11]. 
From the regularity of III (x, y) and Il2(x, y), the numerators on the right-hand sides of (7.a) 
and (7.b) shol,lld be equal to zero for x = c5(y) and y = H2{.-\(l - x)}, respectively. Thus, 
we obtain a simultaneous functional equation for two unknowns: 

'IjJ(c5(y)) - if'(y) = 1 - P[l- V*P.(l- c5(y))}] 
2", 

if'[H2{'-\(l - x)}]- 'IjJ(x) = 0. 

(12.a) 

(12.b) 

Here, eliminating 'IjJ(c5(y)) from (12.a) and (12.b) after setting x = c5(y) in (12.b)" we obtain 
a non-homogeneous linear functional equation for if'(y), 

where 

if'[J(y)] - if'(y) = g(y) 

f(y) : = H2'P.(l - c5(y))} 

g(y) : = 1 - P[l - V*{'-\(l - c5(y))}]. 
2", 

(13.a) 

(13.b) 

Using an iterative scheme, e.g. [4, 6], if'(y) can be determined as follows: First, let us 
introduce a sequence of {y;} and a function defined by 

Yo = Y 0::; Y ::; 1 

Yi = f(Yi-I) i = 1,2,3,··· 

and 
9{Yi 1 Yo = y}:= 9(Yi) 

Then, it follows from (13.a) that 

i = 0,1,2,···. 

if'(Yi+l) - if'(Yi) = 9(Yi) i = 0,1,2,···. 

(14.a) 

(14.b) 

(15.a) 
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Using this relationship repeatedly, we have 

00 

<p(y) =" - L9{Yi I YO = y} (15.b) 
i=O 

where" is a constant which is independent of the sequence of {yd. The convergence of 
the infinite sum in (15.b) is ensured under the condition P < l(i.e. PI < 1 and 11'2(0,0) # 0 
as also shown in Appendix in [6]). From a boundary condition, <p(0) = lll(O,O) = 0, the 
constant" can be determined as 

00 

,,= L9{Yi I Yo = O}. (15.c) 
i=O 

Thus, the unknown function <p(y) has been determined, and ~(x) is obtained from (12.b). 
In this way, the generating functions lln(x,y),n = 1,2 have been completely determined. 
We thus obtain the following theorem. 

Theorem 1. The generating functions lln(x, Y), n = 1,2 for the joint queue-length distri­
bution {1I'n( i, jn are given by (7.a), (7.b) and 

<p(y) = G(O) - G(y) 
~(x) = G(O) - G[H;{A(l- x)}] 

where 

where H~j)(t) is the j-th iterated convolution of HI(t) with itself. 

4. Sojourn Time Analysis 

(l6.a) 

(16.b) 

(17.a) 

(17.b) 

o 

Let On, n = 1,2 denote the sojourn time in the n-th stage, i.e. the time elapsed from 
the arrival of a message at Qn to the departure from Sn, and denote by 0 n(t), n = 1,2 
the distribution function of On. Similarly, let W n, n = 1,2 denote the waiting time in the 
n-th queue and denote by Wn(t), n = 1,2 the distribution function of W n. In addition, let 0 
denote the total sojourn time, i.e. the time elapsed from the arrival of a message at QI to the 
departure from S2, and denote by 0(t) the distribution function of O. Let 0~(s), W:(s), n = 
1,2 and 0*(s) denote the LSTs of 0 n(t), Wn(t),n = 1,2 and 0(t), respectively. 

From the usual argument that a message departing from SI will leave behind messages 
in QI which arrived during its sojourn time OI because of the FIFO queueing discipline [4, 
6], it follows that 

A similar equation holds for 0*(s): 

0*{A(1 - xn = ll2(X,X). 
ll2(1,1) 

(IS.a) 

(IS.b) 
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Thus, we get 

T. &tayama 

8i(s) = 2TIl(1- slA, 1) 

8*(s) = 2TI2(1- slA, 1- sIA). 

(19.a) 

(19.b) 

Next, we shall derive 8 2(s). First, we denote by 82(t I (1, i,j)) the conditional probabil­
ity that the sojourn time of a message that has arrived at Q2 shall be less than or equal to 
t, i.e. (h :::; t, under the condition of the state (1, i,j). Further, we denote by 8 2(s I (1, i,j)) 
the LST of 8 2(t I (1, i,j)). From the FIFO discipline at 52, it then follows that 

(20) 

where B* (s) is the LST of a one-busy period at 51 and satisfies the equation, 

B*(s) = Hi[s + A - AB*(s)]. (21) 

(From Takacs' lemma [11], the explicit expression for B*(s) is given by (25)). By uncondi­
tioning of 8 2(s I (1, i,j)), if follows that 

8 2(s) = f f ~1~~,j/) 8 2(s I (1, i,j)) 
I=OJ=1 1 , 

= 2TIl[B*(s),Hi(s)]. (22) 

Hence, we obtain the following results by using the relation 8~(s) = W:(s)H~(s),n = 1,2. 

Theorem 2. The LSTs of waiting time distributions Wn(t) , n = 1,2 and the total sojourn 
time distribution 8(t) are given by: 

Wi(s) = s _ A(12~ Hi(s)) [CP(l) - cp(Hi(s)) + 1 :;, P (1 - V* (s))] (23.a) 

* 2Hi{A(1 - B*(s))} 
W2 (s) = B*(s) _ H2'(s)Hi{A(l _ B*(s))} 

. [CP[H2{A(1- B*(s))}]- cp(Hi(s)) - 1 :;'P[l - V*{>.(l - B*(s))}]] (23.b) 

8*(s) = s _ ~t1~~(S)) [cp(Hi(s)) - cp(l - sIA)] (24) 

where cp(y) is given by (16.a), and B*(s) is explicitly expressed by 

(25) 

o 

Remark 4.1: Eqs. (23.a) and (24) yield a generalization of the previous results in Refs. [8, 
14] to the case with vacation time. The LST W;(s) may be a new result. It is obvious that 
Wi (s) is not of a form of e* (s ) I (8i (s ) Hi (s )) because of the dependence of Wl and W2. From 
Theorem 2, we can derive the covariance of the sojourn time in the first stage and that in the 
second stage, Cov(fh,fh), by using a relationship Var(O) = Var(OI)+ Var(02)+2Cov(OI,02). 

o 
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Here, we consider some mean performance measures derived from Theorem 2. We need 
to calculate tp'(I) which is already given by (9.b) and tp"(I) to obtain the mean waiting times 
and so on [4,6]. The expression for tp"(I) which can be also obtained by putting y = 1 after 
differentiating twice both sides of (13.a) with respect to y is given by 

where we have used a relationship, 8(y) = yHiP(1- 8(y))}, in order to get 8(1) = 1,8'(1) 
and 8"(1). Thus, the results are summarized in the following corollaries. 

Corollary 1. The mean waiting time in the n-th queue, E(wn),n = 1,2, and the mean 
total sojourn time E(9) are given by: 

(27.a) 

P v(2) 
E(W2) = E(W2)O + ---'---

I - PI + P2 2v 
(27.b) 

1 + P (2) 
E(9) = E(9)o + 2 V 

1·- PI + P2 2v 
(27.c) 

where E(wn)o, n = 1,2 and E(9)o denote the mean waiting times and the mean total sojourn 
time in the corresponding queueing system without vacations, respectively and are given by: 

E(wI)o := PIP2 h2 + A(1 - PI) (h~2) + h~2») 
(1 - p)(l - PI + P2) 2(1 - p)(1 - PI + P2) 

(28.a) 

E(W2)O := p(1 - pI) hI + Ap (h~2) + h~2») 
(1 - p)(1 - PI + P2) 2(1 - p)(1 - PI + P2) 

(28.b) 

E(9)o:= (1 - PI)(1 + P2) hI + h2 + A(1 + P2) (h~2) + h~2»). 
(1-- p)(I- PI + P2) 2(1- p)(I- PI + P2) 

(28.c) 

o 

Remark 4.2: Substituting h2 = h~2) = 0 into (27.a), it can be seen that (27.a) is consistent 
with the results of the ordinary M/G/l vacation system [13], which is given by (32.a) and 
(32. b) below. It seems not easy to give a probabilistic interpretation for the second terms 
on the right-hand sides of (27.a) to (27.c). 0 

From Corollary 1, we can derive a relationship between E(wI) and E(W2) called the 
pseudo-conservation law [1, 2]. 

Corollary 2. The mean waiting times in each queue satisfy 

(29) 

o 
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2 

It should be noted that the value of 2: PnE( wn) / P is variant for different service disciplines, 
n=l 

like in the case that v(2) /2v = o. 

We will present a simpler but more general explanation of (29) by using the well-known 
decomposition property for the queue with vacations [1, 2, 13J. Here, we use the following 
notations: 

E(U) : the expected workload at an arbitrary time in the queuing system with 
vacations introduced in Section 2. 

E(X) : the expected workload at an arbitrary time in the queueing system without 
vacations, which is equivalent to the mean waiting time in the ordinary M / G /1 
queue with arrival rate>. and the LST of service time distribution, H* (s). 

E(Y) : the expected workload at arbitrary time during a vacation period. 
E( Qn) : the expected number of messages in Qn, n = 1,2 excluding the one being 

served at an arbitrary time. 
E(R) : the expected residual workload of a message in service at an arbitrary time. 

Recalling that two queues are connected in series, E(U) and E(R) are obtained by 

E(U) = E(Ql)(h1 + h2) + E(Q2)h2 + E(R) 

= pE(Wl) + P2E(W2) + E(R) 

and 

(30.a) 

(30.b) 

where h~2) /2hn, n = 1,2 represents the mean residual service time at Sn, n = 1, ~~. The first 

term on the right-hand side of (30.b), h~2) /2h l + h2, represents the expected workload of a 
message in the first stage in service at an arbitrary time [1 J. The decomposition property 
leads to 

where 

E(U) = E(X) + E(Y) 

).h(2) 
E(X) = 2(1- p). 

(31.a) 

(31.b) 

From the assumption in Section 2 that the workload is zero in the queueing system with 
vacations when the server begins a vacation, it follows by using the mean elapsed vacation 
time, v(2) /2v, [1, 13J that 

V(2) v(2) 
E(Y) = >. 2v . (hl + h2) = p 2v . (31.c) 

Hence, from (30.a) to (31.c), we obtain (29). 

Next, we consider a structure of the mean total sojourn time E(O). First, let us denote 
by E(w)v the mean waiting time in the ordinary M/G/l vacation system with arrival rate 
). and the LSTs of service time and vacation time, H* (s) and V* (s), respectively. From the 
results of the M / G /1 vacation system analysis, e.g. see [2, 13], we have 

E(Y) 
E(w)v = E(W)M/G/l + -­

p 
(32.a) 
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>'h(2) 

E(W)M/G/l := 2(1 _ p) 

v(2) 
E(Y):= p-. 

2v 
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(32.b) 

Then, we obtain the following result, where we have used (7.b), (9.b) and (26) in order to 
derive (33.c) below. 

Corollary 3. The mean total sojourn time E( 0) is decomposed into a summation form as 
follows: 

where 

E(O) = E(w)v + h + hlE(Q~) 
>.h(2) v(2) 

= 2(1 _ p) + "2t;- + h + hlE(Q~) 

E(Q~) := rr. (~ 1) [: Ih(l,y)] _ 
.2, Y y-l 

(33.a) 

(33.b) 

1 [ >.2 (2) (2)] >. V(2) , 
= (1- p)(l- PI + P2) Pl(1- pt) + 2{hl + h2 } + 1- PI + P2 2v .(33.c) 

o 

In the same way as in [5], we will give a proba,bilistic interpretation for the decomposition 
of E(O) as expressed in the right-hand side of (33.a). Since services in each queue are 
performed according to the FIFO discipline, all messages in front of an arbitrary tagged 
message, C*, must first be served before C* leaves the system. Therefore, the mean total 
sojourn time E(O) of an arbitrary message C* is given by the following three terms as also 
shown in (33.a): The first term, E(w)v, represents the mean time interval in which the server 
needs to serve all messages in the queueing system on arrival of C* plus the mean residual 
vacation time on the arrival of C* since the tandem queueing system is equivalent to the 
standard M/G/1 vacation model as shown in Remark 2. 1. The second term, h, denotes the 
mean total service time of C* at SI and S2. The third term, hlE(Qi), represents the mean 
total service time for messages that have arrived at the system behind C*, to receive their 
services at SI during the total sojourn time of C*, where E( Qi) denotes the mean queue 
length in Q2 when message C* leaves the system. 

Remark 4.3: It is obvious that E(O) given by (33.b) agrees with (27.c) derived by the 
different procedure. Putting v(2) /2v = 0 in (33.c), it is also confirmed that E(Q2) agrees 
with the previous one for the exhaustive service by using Eq. (A1.3) in [5]. It seems not easy 
to give a probabilistic interpretation for the coefficient of v(2) /2v on the right-hand side of 
(33.c). 0 

5. Extension to Multi-Stage Tandem Queue with Vacations 
This section considers an N(?:. 2)-stage tandem queue with vacations which is an exten­

sion of the two-satge tandem queue with exhaustive services described in Section 2. In this 
section, we use the similar notations to those in Sections 2 and 3 such as H~ (s), hn , hh2

) and 
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Pn, n = 1,2,··· ,N and so on. We also use the same notation by adding abbreviation "N", 
i.e., E(W1)N,E(())N and Wt(S)N. 

Corollary 2 can be easily extended to the case of the N -stage tandem queueing system 
with non-preemptive work-conserving service disciplines in the same way as in previous 
section. Thus, we summarize only the result in theorem. 

Theorem 3. The mean waiting times in the n-th queue, E(Wn)N, n = 1,2,···, N satisfy 
the following relationship: 

where 

p:= >'h 
N 

h:= L hn 
n=l 

N N N 
h(2):= L h~2) +2Lhj L hj. 

n=l i=l j=i+1 

(34.a) 

(34.b) 

o 

Next, by u.sing the results obtained in previous sections, we derive explicit expressions 
for the mean waiting time in the first stage, E( WI)N, and the mean total sojourn time, 
E(())N. We can apply the same replacement method as used in [5] to this queueing model 
with vacations. First of all, we introduce a modified tandem queue with two stages defined 
as follows: Service time T1 := 71 at the first stage has the same distribution as the original 
tandem queue with N-stages. However, service time T2 at the second stage is equal to the 
sum of 72,73,· .. and 7N, i.e. T2 := 72 + 73 + ... + 7N. Everything else, e.g. arrival process, 
vacation process, server's switching rule is exactly the same as in the original tandem queue 
with N stage. 

Considering that the modified tandem queue with two stages is equivalent to the tandem 
queue treated in previous section by substituting H2(s)· H;(s)··· H'N(s) for HHs), we thus 
have the following relationships: 

and 

Wi(S)N = T#[Wi(s)] 

E(WI)N = T#[E(W1)] 

E(Q'N) = T#[E(Q2)] 

(35.a) 

(35.b) 

(35.c) 

where the capital letter T# denotes an operator resulting from substituting H2(s)· H3(s) ... 
H'N(s) for H2(S), and which represents the corresponding replacement defined by 

N N N N () N 
{Lhn-th2'Lh~2)+2Lhi L hj-th2

2
,LPn -tP2}. (36) 

n=2 n=2 i=2 j=i+1 n=2 

By operating T#, i.e. by replacing according to (36), for (27.a) in Corollary 1 and (33.b) 
in Corollary 3, we obtain the following formulae, where we have used the same way as in 
previous section in order to get (38) below. 
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Theorem 4. The mean waiting time in the first stage, E(wdN' in the N-stage tandem 
queueing system with exhaustive services is given by 

N 

PI L pn N 

E(W1)N = n=2 N L hn 
(1 - p)(l - PI + L Pn) n=2 

n=2 

+ A(l-pI) N [th~2)+2thi.t hj]+ I-p~ 
2(1 - p)(l- PI + L Pn) n=l 1=2 )=1+1 1 - PI + L Pn 

n=2 n=2 

v(2) 

2v . (37) 

The mean total sojourn time E(O)N in the N-stage tandem queueing system with exhaustive 
services is decomposed into the summation form as follows: 

AM2) v(2) N-1 
E(O)N = 2(1- ) + 2;- + h + L hnE(Qiv) 

P n=l 
(38) 

where 

N N N 

E(Qiv) := 

,\2[Lh~2)+2Lhi L hJ 
_1 ___ [P1(1 - pI) + n=l ;=2 j=;+l) + _AV_(2_)] 

N I-p 2(1-p) 2v 
1 - PI + L pn 

(39.a) 

n=2 

and 

N 

P := Ah h:= L hn 
n=l 

N N N 
h(2):= Lh~2)+2Lhj L hj. (39.b) 

n=l ·j=l j=i+l 

o 

Remark 5.1: 
(1) Putting v(2) /2v = 0 in (38), it is confirmed that E(O)N agrees with the previous one 

given by Lemma 2 in [5]. (The derivation of (38) in the case without vacation time is 
also given in the proof of Lemma 2 in [5]). It should be noted that the relationship (38) 
holds also for limited service and gated service as shown in [5]. Hence, to obtain B( O)N 
for the limited service or the gated service in the first stage, we need at least to derive 
E( Q2) in the corresponding two-stage tandem queueing system with vacations. 

(2) Eqs. (37) and (38) yield a generalization ofthe previous results, E(WN)ZS and E(ON)ZS 
given by Theorem 1 in [5] to the case with vacation time. 0 

Remark 5.2: 
From (19.b), we have 

( 40) 
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which leads to (27.c). Here, let IIN(X,O,··· ,O,y) denote the generating function in the N­
stage tandem queue corresponding to II2( x, y) in the two-stage tandem queue. Then, we 
have 

(41.a) 

and 
IIN(l, 0,··· ,0, y) = T# [II2(1, y)] 
IIN(l,O,···,O,l) II2(1,1) 

(41.b) 

Therefore, it follows from (40), (41.a) and (41.b) that 

E(O)N = IIN(l,~: ~., 0, 1) [II~x(l, 0,·· ·,0,1) + II~y(l, 0, ... ,0,1)] 

-=I T#[E(O)J. (42) 

This is a reason why we have used the relationship (38), i.e. (33.b) instead of (27.c) in order 
to get an expression for E(O)N. Furthermore, from (20), (21) and (22), we get 

(43) 

Hence, we can not use the simple replacement of (36) for E(W2) in (27.b) in order to obtain 
E(W2)N. 0 

6. Concluding Remarks 

In this paper, we have analyzed a cyclic-service tandem queueing model with exhaustive 
services and multiple server vacations. We have derived LSTs for waiting time distributions 
and sojourn time distributions, and mean performance measures, e.g. waiting times in each 
stage and total sojourn time in the queueing system. By using the results of two-stage, 
tandem-queue analysis, some explicit expressions are also derived for the mean total sojourn 
time in the multi-stage tandem queueing system and the mean waiting time in the first 
stage. Throughout the paper, we intend to give a probabilistic interpretation for the formulas 
obtained here by using the decomposition method. However, it remains an open problem to 
give an intuitive interpretation for E(wn ), n = 1,2 in Corollary 1 and E(Qi) in Corollary 3. 

Although the exhaustive service has been assumed throughout the paper, other policies 
such as gated and limited are often considered in vacation and polling models. It will be 
challenging to extend the approach of this paper to those queueing systems with limited or 
gated service disciplines. 
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