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Abstract Two outer approximation algorithms for lower rank bilinear programming problems are devel­
oped. The first algorithm can generate an {-optimal solution rather efficiently when the rank of the objective 
function is less than five. The second algorithm is exact and finitely convergent, yet with slower convergent 
property, compared to t.he first. 

1. Introduction 
Among the rapidly developing field of global optimization, minimization of a nonconvex quadratic 
function: 

1 
(1.1) f(x) ~ ctx + "2xtQx 

over a polytope has been the subject of most extensive research. In particular, concave quadratic 
programming problems (CQP) and bilinear programming problems (BLP) have been studied by 
many researchers because they have a number of nice applications [2, 3, 7, 13] in production 
and inventory control problems, location-allocation problems, computational geometry, portfolio 
selection, combinatorial optimization, etc. Also, several algorithms [1, 5, 6, 12, 19! have been 
proposed for these problems using the fundamental property that they have optimal solutions 
among extreme points [18]. Unfortunately, however, general CQP's and BLP's with over one 
hundred variables are still beyond reach of general purpose algorithm from the practical point of 
view [16]. 

Very recently, a new and promising approach has been proposed for lower rank nonconvex 
quadratic programming problems [8, 11]. By lower rank problems, we mean problems in which the 
rank of Q is at most 4 or 5. 

One such example is linear multiplicative programming problems: 
(1.2) minimize{cbx + cix· c~x I x EX}, 
where X is a polytope. This problem, though simple looking, is known to be NP complete [15]. On 
the other hand, we showed in [11] that a variant of primal-dual parametric simplex algorithm can 
generate a global minimum of this function in more or less the same amount of computational time 
needed to solve a linear programming problem of the same size. Also, it has been shown [9] that 
this algorithm has the "average polynomial order property" under the probability distribution of 
the data commonly assumed in the probabilistic analysis of the simplex method for linear programs 
[17]. 

Another example is rank two bilinear programming problems: 
(1.3) minimize{cbx + dbY + cix· diy + c~x· d~y I x E X, yE Y}, 
where X and Y are polytopes. We showed in [20] that a two parameter primal-dual simplex 
algorithm can solve this problem in about 4 '" 5 times computational time required to solve an 
associated linear programming problem. In short, we can solve large scale nonconvex quadratic 
programming problems (1.2) and (1.3) with a few hundreds variables or even more. Yet another 
class of problems we have solved is rank two nonconvex quadratic programming problems: 
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Lower Rank Bilinear Programming Problems 231 

(1.4) minimize{cba; + c{x· c~x + c~x· c~x I x EX}. 
It has been shown that an alternative parametrization technique combined with outer approxima­
tion method works well for this class of problems. 

The purpose of this paper is to develop a practical algorithm for solving up to rank five 
bilinear programming problems for which there are yet no efficient algorithms. The reason why 
we are particularly interested in this class of problems are that (1) general concave quadratic 
programming problems can be converted to equivalent bilinear programming problems [5], and 
that (2) approximate optimal solutions of general concave quadratic programming problems and 
bilinear programming problems can be obtained by solving associated lower rank problems in the 
following way. 

Let Q be a real symmetric matrix, it is known that there exists an orthonormal matrix 

(15) p~ [:J 
such that 
(1.6) xtQx 

r;~ 

~= Ai(lx)2, 
;=,1 

where A is a diagonal matrix whose elements are eigenvalues Ai, i = 1, ... , n of Q. Let us assume 
that 

IAll;::: IA21 ;::: ... ;::: IAnl· 
Then we can obtain an approximation of the quadratic function by a lower rank quadratic function 
by taking the first p terms of (1.6). In fact, this approach turns out to be very efficient for certain 
class of real world problems including portfolio analysis [10]. 

In Section 2 we will introduce a parametric representation of rank p bilinear programming 
problem. In Section 3 we develop a practical algorithm which generates an f- optimal solution. 
Also some results of numerical tests will be reported. Finally in Section 4 we will propose an exact 
and finitely convergent outer approximate algorithm for the same problem. 

2. Rank p Bilinear Programming Problems 
Let us consider a rank p bilinear programming problem: 

p 

minimize cbx + dbY + L dx . dly 
;=1 (2.7) 

subject to x E X, Y E Y, 
where C; E Rnl, d; E Rn2 (i = 0, 1, ... ,p) and 
(2.8) X = {x E Rnl I Alx S bd, 

(2.9) Y = {y E Rn
2 I A2Y S b2}, 

where Al E Rml xnl , bl E Rml , A2 E Rm2 xn2 , b2 E Rm2. We assume that c;'s and dj's are linearly 
independent and that X, Y are non-empty and bounded polytopes. 

To solve (2.7), we will introduce p + 1 auxiliary variables: 
(2.10) ~i = d~y, i:: 0,1, ... ,p, 

and define the problem: 

(2.11) 

where 

p 

minimize cbx + ~o + L ~i . dx 
;=1 

subject to x E X, Y E Y, 
~=Dy, 
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(2.12) D~ [11 
The following relationship between (2.7) and (2.11) is obvious. 
Theorem 2.1 Let (x*, y*, ~o, ~i, ... , ~;) be an optimal solution of (2.11), then (x*, y*) is an opti­
mal solution of (2.7). 

Let 
(2.13) G = {~ E RP+1 I ~ = Dy, A2Y ~ b2}, 
and let us define a subproblem: 

p 

(2.14) minimize f(x;~) == cbx + ~o + L~i' dx 

subject to x E X. 
Also, let ~ E G and 
(2.15) F(~) = minimize{f(x; 0 I x EX}. 

Lemma 2.2 F(~) is a concave function. 

Proof Let A E (0,1) and e, ~2 E G. 
F('\e + (1 - A)e) 

;=1 

p p 

= min{A(cbx + ~6 + L~lc!x) + (1 - '\)(cbx + ~5 + L~rdx) I x EX}, 
i=1 

p 

~ Amin{(cbx + ~6 + L~lc!x) I x E X} 
;=1 

p 

+(1- '\)min{(cbx +~5 + L~rc~x) I x EX}, 
;=1 

i=l 

o 

Thus problem (2.7) is reduced to the following concave minimization problem with p + 1 
variables. 
(2.16) I minimize F(~) 

subject to ~ E G. 
It is well known that a global minimum of (2.16) is attained at one of the vertices of G. 

3. Algorithm for t-Optimal Solution 
We will apply an outer approximation algorithm for solving the concave minimization problem 
(2.16). 

For this purpose, let 
i; = min{~i I (~o, 6,···, ~p)t E G}, i = 0,1, ... ,p, 
- t } ~i=max{~i I (~o,6, ... ,~p) EG, i=O,l, ... ,p, 

which can be obtained by solving 2(P + 1) linear programming problems: Note that ~'s and [;'s 
are finite since Y is bounded. Thus G is contained in a hypercube: 

GO={~ERp+11i;~~i~~i' i=O,l, ... ,p}. 
Thus we define the initial relaxation problem: 

(3.17) (BP)o I minimize F(O 
subject to € E GO, 

whose optimal solution is attained at either one of the 2p+1 vertices of the hypercube GO. 
Let us consider the kth relaxation problem: 
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Figure 3.1: Figure of Cut 

(3.18) (BP)k I min~mize F(O 
subject to ~ E C k

, 
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where CO J Ck 2 G and let ~k be an extreme optimal solution of (BP)k. If ~k does not belong to 
C, we define the following affine function 

p 

k '"' 'k k 'k (3.19) I (~) = L)~i - ~i )(~i - ~i ) 
i=O 

where 
(3.20) ~k = argmin{1I ~ - ~k 11 I ~ E C}. 
The hyperplane lk (0 = 0 supports C at ~k, which can be obtained by solving the following convex 
quadratic problem: 

(3.21) 

p 

minimize L(~i - ~f)2 
i=O 

subject to y E Y, 
~i = d!y, i = 0, ... ,po 

It is easy to see that if e ~ C then 
lk(~k) < 0, lk(~);::: 0, v~ E C. 

Whence we can construct CHI by adding a cut 
(3.22) Lk = {~ E W+I IZk(O ;::: O} 
which cuts off ~k. 

Algorithm A 
Stepl Let k = O. 
Step2 Compute an optimal solution ~k of the relaxation problem (BP)k. 
Step3 Construct the cut Lk by (3.19) and (3.20). 
Step4 If 11 ~!: - ~k 11 < f then stop. Otherwise, let 

CHI = C k n Lk, k = k + 1, 

and return to Step 2. 
o 

Theorem 3.3 The algorithm A generates a sequence of points ~k which converge to an f- optimal 
solution C of (2. 16}. 

Proof See [4] (Theorem II.3). 0 

Note that even if ~k ~ G, the associated (xk, yk) is always a feasible solution of the original problem. 
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Table 3.1: Results of (3.23) when p = 4 and f = 10-5 

m 80 80 100 100 120 120 
n 60 100 100 120 120 140 
CPU time (in seconds) 

Av. 144.71 446.34 574.61 824.16 1604.06 1931.06 
S.d. (30.43) (278.09) (144.49) (269.93) (838.22) (712.34) 

# of cuts 
Av. 27.1 33.1 31.3 32.4 32.4 33.4 
S.d. ( 3.11) ( 9.54) ( 4.58) ( 4.63) ( 7.81) ( 8.10) 

# of vertices 
Av. 255.4 350.0 322.8 329.8 324.0 334.6 
S.d. (46.04) (161.77) (76.96) (70.33) (102.98) (127.26) 

Table 3.2: Results of (3.23) when p = 5 and f = 10-5 

m 50 50 80 80 100 100 
n 40 60 60 100 80 100 
CPU time (in seconds) 

Av. 60.89 113.21 351.96 848.73 1088.75 1386.38 
S.d. (35.44) (50.17) (181.59) (401.07) (475.82) (533.41) 

# of cuts 
Av. 30.2 35.4 38.7 43.3 44.3 44.8 
S.d. (8.02) (6.30) (10.61) (8.58) (8.80) (5.78) 

# of vertices 
Av. 788.0 959.1 1112.9 1387.4 1490.8 1476.7 
S.d. (404.71) (305.09) (537.20) (465.97) (481.93) (318.37) 

Computational Experiments 
Here we will report the results of numerical experiments. We solved the following rank p bilinear 
programming problem: 

p 

minimize Lclx'dly 
;=1 
A 1x ~ bl, X ~ 0, 

(3.23) (BP) . 
subject to 

A2Y ~ b2, y ~ 0, 
where ci,di,X,y ERn, A l ,A2 E Rmxn, b1,b2 E Rm. All of these elements are randomly generated 
over the unit interval [0,1]. The algorithm was coded in C language and was tested on a SUN4/75 
workstation. We solved ten problems for each size. The tolerance was always fixed at f == 10-5 . The 
following tables show the average number of CPU time in seconds, those of cuts, those of vertices 
and their standard deviations, respectively. The number of cuts corresponds to the number of 
convex quadratic programs solved for each example. Also, the number of vertices corresponds to 
that of linear programming subproblems F(O. Table 3.1,3.2 and 3.3 show the results when p is 
4,5 and 6, respectively. Table 3.4 shows the results when (m, n) = (80,60) and p ranges from 3 to 
6. 

We see from these tables that the number of cuts and vertices grows quite slowly 3.'3 the size of 
m or n grows, while those of cuts and vertices mainly depend on p. In other words, computational 
time is almost dominated by that needed for solving convex QP (3.21) and subproblems F(O. The 
efficiency of the algorithm would be improved by more elaborate implementation of algorithms for 
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Table 3.3: Results of (3.23) when p = 6 and f = 10-5 

rn 30 30 50 50 80 
n 20 40 40 60 60 
CPU time (in seconds) 

Av. 113.59 463.81 834.02 997.70 2207.06 
S.d. (90.06) (534.87) (672.50) (613.65) (1013.95) 

# of cuts 
Av. 31.6 41.3 46.4 47.1 54.9 
S.d. ( 5.48) ( 9.03) (10.42) ( 7.80) ( 8.84) 

# of vertices 
Av. 2133.3 3688.0 4M1.7 5077.0 6315.0 
S.d. (898.32) (1920.59) (2035.60) (1847.97) (1953.47) 

Table 3.4: Results of (3.23) when (rn, n) = (80,60) and f = 10-5 

P 3 4 5 6 
CPU time (in seconds) 

Av. 75.72 144.71 351.96 2207.06 
S.d. (26.56) (30.43) (181.59) (1013.95) 

# of cuts 
Av. 17.7 27.1 38.7 54.9 
S.d. ( 3.44) ( 3.11) (10.61) ( 8.84) 

# of vertices 
Av. 62.6 255.4 1112.9 6315.0 
S.d. (16.64) (46.04) (537.20) (1953.47) 

solving (3.21). 
Table 3.5 shows the results when f ranges from 10-2 to 10-6 while rn, n,p are fixed. In this 

table, the error corresponds to the ratio of the f-optimal value to that obtained by the exact 
algorithm (Algorithm B) we will show in the following sections. We see from this table that we 
can obtain an almost exact solution when f is 10-5. 

Based upon these data, we conclude that Algorithm A is fairly efficient for the lower rank 
bilinear programming problems. 

Table 3.5: Results of (3.23) when p = 4, (rn, n) = (60,80) 

f 10 2 10 :1 10 4 10 5 10 5 

Error 
Av. 1.04240 1.01997 1.00100 1.00013 1.00011 
S.d. (0.00020) (0.00111) (0.05275) (0.03275) (0.00021) 
# of cuts 
Av. 22.6 26.1 27.1 29.7 32.5 
S.d. (5.78) (7.13) (7.11) (7.27) (8.04) 
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4. An Exact and Finitely Convergent Algorithm 
Algorithm developed in the previous section generates a sequence offeasible solutions (x k , yk)which 
converges to an f- optimal solution where f > O. In this section, we propose an exact and finitely 
convergent outer approximation algorithm for solving the problem (2.7). Let D = (DB, DN) be 
the partition of the matrix D, where DB E R(p+l)x(p+l) is nonsingular, and DN E R(p+l)x(n2-p-I). 
Let us represent (2.10) in accordance with this partition: 

(4.24) e = DBYB + DNYN, 
where YB E RP+I, YN E Rn2-p-l. Also, let us represent Y accordingly: 

(4.25) A2BYB + A2NYN $ b2. 
By substituting 
(4.26) YB = DB-I(e - DNYN) 
into (4.25), we can rewrite C as follows: 
(4.27) C = {e I 3YN such that Ce + EYN - b2 $ O}, 
where C = A2BDJ.jl, E = A2N - A2BDJ.j1 DN. 
Theorem 4.4 C can be expressed by finitely many inequalities as follows: 

(4.28) C={elvit(Ce-~)$O, i=1,2, ... r}, 
where vi, i = 1, 2, ... r are the generators of the polyhedral cone 
(4.29) C={ulutE=O, u~O}. 
Proof The lemma of Farkas and Minkowski [14] states: 

e belongs to C if and only if 
(4.30) ut(Ce -~) $ 0, 'tu ~ 0 such that utE = O. 

Since C is a polyhedral cone, every u E C can be expressed as a finite combination with non-
negative coefficients of Vi, i = 1,2, ... r. 0 

Now we will introduce another cutting procedure. Let us assume that we have the kth relaxation 
as we defined in previous section. 

(4.31) (BP)k I min~mize F(e) 
subject to e E C k

, 

where Co::> C k 2 C. 
Let ek be an extreme optimal solution of (BP)k and define the following linear programming 

problem: 

I 
maximize ut(Cek - b2) 

(4.32) subject to ut E = 0, u ~ o. 

Theorem 4.5 Ifek belongs to C then an optimal value of (4.32) is zero. Otherwise problem (4.32) 
has infinite optimal value and an associated direction uk . 

Proof It is easy to see that problem (4.32) has either a zero optimal value or an infinite solution 
with an associated direction v. In former case ek satisfies all inequalities of (4.28). In latter case 
the constraint 
(4.33) uk'(Ce - ~) $ 0 
is violated at ek , which implies that ek tj C. 0 

Then we cut off ek by adding (4.33) to C k . 

We can construct an alternative outer approximation procedure for solving (2.16). 
Algorithm B 

Step! Let k = O. 
Step2 Compute an optimal solution ek of the relaxation problem (BP)k. 
Step3 If the optimal value of (4.32) is zero then stop. Otherwise, add the nEW con­

straint (4.33) to C k . Let k = k + 1 and return to Step 2. 
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Table 4.1: Results of (3.23) when p = 3 

m 50 50 60 80 100 100 
n 40 60 80 100 100 120 
CPU time (in seconds) 
Algorithm A Av. 12.17 22.93 64.06 151.49 309.54 430.30 

S.d. (4.89) (9.98) ( 42.69) ( 43.43) (98.06) (125.30) 
Algorithm B Av. 14.16 34.92 70.52 191.55 432.53 531.18 

S.d. (5.60) (19.81) (31.52) (68.19) (251.49) (208.48) 
# of cuts 
Algorithm A Av. 14.4 15.6 18.1 17.9 20.7 20.0 

S.d. (2.24) (3.53) (5.79) (2.84) (4.4 7) ( 4.49) 
Algorithm 13 Av. 40.7 58.5 55.5 62.7 87.4 86.1 

S.d. (13.36) (27.08) (21.75) (17.39) (38.91) (30.02) 
# of vertices 
Algorithm A Av. 51.7 51.5 63.8 62.9 76.2 73.6 

S.d. (14.90) (15.16) (28.98) (14.26) (22.07) (23.61) 
Algorithm 13 Av. 187.5 274.0 255.4 299.7 442.4 429.0 

S.d. (68.58) (137.82) (121.46) (89.89) (217.31) (154.16) 

D 

Theorem 4.6 The algorithm B generates an exact optimal solution C of (2.16) in a finite number 
of iterations. 

Proof The number of constraints of G is finite and generated constraints are all different. D 

Computational Experiments 
We will briefly report the result of computational tests. We solved the same problems as in previous 
section. Tables 4.1 and 4.2 show some of the statistics when m and n are varied while keeping p 
constant. 

We see from these tables that the number of cuts of Algorithm B grows moderately as the 
size of the problems grows. The number of cuts generated by Algorithm B is about five times as 
many as that of Algorithm A. It turns out that Algorithm B is less efficient than Algorithm A. 
In Algorithm B, all inequalities which cut off ~k fj. G could be generated. When we found several 
infinite directions associated with some basis of (4.32) we chose the farthest cut from ~k among 
those. Not all infinite directions of (4.32) were considered. It appears that the efficiency depends 
upon the choice of them. How to find a good cut is yet to be analyzed. 

5. Conclusion 
In this paper, we proposed two outer approximation algorithms for rank k bilinear programming 
problems. The results of computational experiments show that Algorithm A is more efficient than 
Algorithm B when the rank is less than five. 

In Algorithm A, a cut is generated by solving a convex quadratic problem (3.21) which requires a 
lot of computational effort. However the total number of cuts generated by Algorithm A is smaller 
than that of Algorithm B. This means that a deep cut can be generated by convex quadratic 
problem (3.21). The same approach can be applied to other cutting plane procedures and may 
turn out to be effective. This point will be pursued further in the subsequent papers. 

Infinite rays of problem (4.32) can be generated easily. In general, however, many infinite rays 
are generated, so that it is necessary to find a method to choose the most efficient one among 
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Table 4.2: Results of (3.23) when p = 4 

m 30 50 50 60 80 
n 20 40 60 80 100 
CPU time (in seconds) 
Algorithm A Av. 2.41 33.38 74.01 143.28 446.34 

S.d. ( 0.69) (17.46) (52.74) (64.67) (278.09) 
Algorithm B Av. 4.45 118.00 164.70 424.38 1437.94 

S.d. ( 3.13) (59.01) (78.59) (370.20) (767.70) 
# of cuts 
Algorithm A Av. 16.6 24.5 28.5 29.2 33.1 

S.d. (2.73) ( 5.73) ( 6.52) ( 6.63) ( 9.54) 
Algorithm B Av. 32.2 113.7 115.8 127.5 173.2 

S.d. (12.27) (36.27) (31.10) (50.58) (43.48) 
# of vertices 
Algorithm A Av. 115.7 218.6 270.9 289.0 350.0 

S.d. (38.19) (91.93) (91.55) (99.45) (161. 77) 
Algorithm B Av. 366.7 1888.0 2132.5 2250.3 3145.6 

S.d. (208.95) (785.96) (751.59) (1047.95) (1055.58) 

them. The way how to choose it is yet to be analyzed. 
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