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Abstract Many kinds of reorder point - reorder quantity policies with an emergency order, in which 
we can decide when the expedited order point is reached and then we place an expedited replenishment 
order, have been presented in earlier contributions. Very few studies on cyclic inventory control with an 
emergency order, however, have been reported. The purpose of this paper is to establish some analytical 
results on the continuous review cyclic inventory policy with two kinds of lead times. We derive necessary 
and sufficient conditions for the existence of the optimal ordering time which minimizes the long-run average 
or the expected total discounted costs. Also, we give explicit formulae of the expected costs by specifying 
demand processes. Poisson and Brownian motion processes are assumed as the demand processes. Finally, 
we numerically calculate the optimal ordering time and the optimal order quantity, and refer to t.he sensitivity 
of model parameters for the optimal policy. 

1. Introduction 
Many kinds of reorder point - reorder quantity policies with an emergency order, in which 

we can decide when the expedited order point is reached and then we place an expedited 
replenishment order, have been presented in earlier contributions. By taking account of 
the emergency order, Barankin [3], Hadley and Whitin [7], Neuts [12] and Rosenshine and 
Obee [15] have considered somewhat different inventory models. Recently, Moinzadeh and 
Nahmias [11] have discussed an approximated (QI, Q2, RI, R2) policy with an emergency 
order, which is a natural extension of the ordinary (Q,R) policy. The result simplifies the 
more general analysis by Whittmore and Saunders [17]. 

Very few studies on cyclic inventory control with an emergency order, however, have 
been reported so far as we know. The purpose of this paper is to establish some analytical 
results on the continuous review cyclic inventory policy with two kinds of lead times along 
the seminal contributions by AlIen and D'Esopo [1, 2]. The inventory model considered 
here is the following: Order items are regularly delivered after a lead time if the stock is 
not still depleted until a prespecified time. On the other hand, if the stock level becomes 
o until the prespecified time, the expedited order is made at that time. The first problem 
is to determine the ordering time for the regular order. We derive necessary and sufficient 
conditions for the existence of the optimal ordering time which minimizes the long-run 
average or the expected total discounted costs. 

The second problem is to seek the optimal ordering time and the optimal order quantity 
jointly minimizing the expected costs. In order to do it, the cumulative demand process 
must be specified. In this paper, Poisson and Brownian motion processes are assumed as the 
cumulative demand processes. The former is often used in the context of inventory theory. 
On the other hand, the latter corresponds to the assumption that the cumulative demand 
process obeys a normal distribution. In fact, the normal distribution is assumed in many 
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static inventory models. Bather [4J and Puterman [14J have developed the (s, S) inventory 
models in the same assumption. Dohi et al. [6J have discussed a two-bin inventory system 
under the assumption that the cumulative demand follows a reflecting Brownian motion 
process. We give explicit formulae of the expected costs under the two kinds of demand 
processes above. 

Finally, we numerically calculate the optimal ordering time and the optimal order quan­
tity so as to minimize the expected costs. Also, we numerically refer to the sensitivity of 
model parameters for the optimal policy. The mathematical techniques used in this pa­
per are similar to those often used in reliability theory. In fact, the cyclic inventory models 
considered here generalize some elementary order-replacement models for a one-unit system. 

2. Model Description 
2.1 Notation and assumption 

Let us consider a continuous review single-product inventory system. The inventory level 
is decreased by the satisfaction of a demand. Without loss of generality, the inventory level 
is initially set to Cc' (> 0). Let {N(t), t ~ 0 I N(O) = O} be a cumulative demand at time t 
and be a stochastic process with an absorbing boundary at N(t) = Q. The inventory level 
process without jump (delivering items), {X(t), t ~ O}, is defined as follows: 

X(t) = Q - N(t), (0:::; t :::; T), (1) 

where 

T = inf {t ~ 0; X (t) = 0 I X (0) = Q}. (2) 

The inventory management begins operating at time 0, and the planning horizori is 
infinite. If the stock is depleted up to a prespecified time to E (0,00], the emergency order 
is placed at the time when the stock is depleted and after a lead time L1 (> 0), the amount 
Q of an item is delivered. We call to ordering time in this paper. On the other hand, if the 
stock is not depleted before the time to, the regular order is immediately made at the time 
to, and the amount Q is delivered after a lead time L 2(> 0). In this situation, Q items are 
delivered at the time to + L 2 • The one cycle is defined as the time period from time 0 to 
the time when the inventory level becomes Q next, and repeats itself continually. 

Define the indicator function I{A} for the event {A}. Fig. 1 shows the schematic il­
lustration of the inventory model under consideration, where the events {Ad, {A2 } and 
{A3} indicate {millo::;t::;to X(t) = O}, {minto<t::;to+L2 X(t) = 0 and mino::;t::;to X(t) > O} and 
{mino<t<to+L2 X(t) > O}, respectively. By taking account of the delivery scheduling men­
tioned-above, the net inventory level for one cycle, {XN(t), t ~ O}, is the following: (i) In 
the event {Ad, XN(t) = X(t) and 0 when 0 :::; t < T and T :::; t < T + L1 . (ii) In the event 
{A2 }, XN(t) = X(t) and 0 when 0 :::; t < T and T :::; t < to + L2 • (iii) In the event {A3 }, 

XN(t) = X(t) and X(t) + Q when 0 :::; t < to + £2 and to + L2 :::; t < T. 

Suppose that the time when {X(t), t ~ O} becomes 0 for the first time, i.e. the stock runs 
out, obeys a probability distribution function Pr{T :::; t} = F(t) with density function f(t). 
Of course, specifying the cumulative demand process N(t) determines F(t) and f(t). The 
costs considered here are the following; a cost k per unit time is incurred for the shortage 
period; a cost h is an inventory holding cost per unit product and unit time; and costs Cl and 
C2 per unit product are fixed ordering costs for expedited and regular orders, respectively. 
These assumptions on costs are rather standard in the context of inventory theory. Under 
the assumptions, we formulate two expected cost criteria. 
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Fig. 1. State diagram for one cycle. 

2.2 Long-run average cost 
The long-run average cost (the expected cost per unit time in the steady-state) is, from 

the well-known result (e.g. 116]), 

C(to, Q) 1
. E[the total cost on (0, tll 
lm ~------------~~ 

t--+oo t 

c/J(to, Q)/T(to, Q), (3) 

where E is the mathematical expectation operator. The function c/J(to, Q) is the expected 
cost for one cycle as 

c/J(to, Q) = 

(4) 

where, in general, 

w(.) = 1 - w(·). (5) 

The function T(to, Q) is the mean time of one cycle as 

l
t
o Ito+L2 100 T(to, Q) = (t + LddF(t) + (to + L2 )dF(t) + tdF(t). 

° ~ ~+~ 
(6) 

2.3 Expected total discounted cost 
Next let us consider the expected total discounted cost for an infinite time span. Let f3 

(> 0) be the discount factor. Then the expected total discounted cost for one cycle is 

71'(to, Q) = h{ E[ r exp( -f3t)X(t)dt] + Q roo rt exp( -f3s)dsdF(t)} 
lo lto+L2 lto+L2 
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l
to It+L1 lto+L21to+L2 ) 

+k{ exp(-f3s)dsdF(t) + exp(-f3s)dsdF(t)J 
o t to t 

1~ 100 +Cl Qexp(-f3(t+ Lt})dF(t) +C2 Qexp(-f3(to + L2))dF(t). 
o ~ 

(7) 

Just after one cycle, a unit of cost is discounted as 

c5(to,Q) = l
to lto+L2 

exp( -f3(t + Lt})dF(t) + exp( -f3(to + L2))dF(t) 
o ~ 

+ [00 exp( -f3t)dF(t). 
i to+L2 

(8) 

Thus, when the operation starts at time 0, the expected total discounted cost over an infinite 
time span is 

00 
V(to, Q) L 7r(to, Q)c5(to, Qr 

n=O 

7r(to, Q)/8(to, Q). (9) 

The well-known relationship between the long-run average and the expected total discounted 
costs is as follows: 

C(to, Q) = lim f3V(to, Q). 
(3 ..... 0 

(10) 

3. Optimal Ordering Policies 
For an arbitrary stochastic process {X(t), t .~ O}, we obtain the optimal ordering policy 

which minimizes the expected costs formulated in the previous section. 
First let us consider the case of long-run average cost. Define the numerator of the 

derivative of C(to, Q) with respect to to, divided by F(to), as qc(to), i.e. 

where 

and 

qc(to) = {hQ(R(to) - 1) + [(Cl - C2)Q + k(Ll - L2)]r(tO) + kR(to) }T(to, Q) 

-[(Ll - L2)r(tO) + R(to)]4>(to, Q), 

r(to) = f(t o)/ F(to) 

(11) 

(12) 

(13) 

are assumed to be differentiable, called hazard rates and have the same monotone properties 
(e.g. see [13]). Two special cases in the expected cost, to = ° and to --t 00, are the following; 

C(O, Q) = 4>(0, Q)/T(O, Q), (14) 

where 

1>(0, Q) hE[1o
T 

X(t)dt] + hQE[r] + hQ 1o
L2 

F(t)dt 
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{L2 
T(O, Q) = E[T] + 10 F(t)dt; 

and 

C(oo,Q) = rf;(oo,Q)/T(oo,Q), 

where 

T(oo,Q) = E[T] + L l . 

Moreover, we assume: 

(A-1) kLz + czQ < kLl + ClQ 
(A-2) 0 < Ll S; Lz 
(A-3) C(to, Q) < k. 

(15) 

(16) 

(17) 

(18) 

(19) 

The assumption (A-I) means that the cost for the expedited order should be larger than that 
for the regular order, which seems to be plausible. The assumption (A-2) is also needed since 
the expedited order must be made quickly. The final assumption implies that the expected 
cost per unit time in the steady-state is less than the shortage cost per unit time, and is 
often used in the context of reliability theory (see [9, 13]). If C(to, Q) ;:::: k, for sufficiently 
small ordering and inventory holding costs, the shortage always occurs in the steady-state. 
This fact tells us that the assumption (A-3) should be adopted to avoid a trivial case. 

The sufficient condition for the existence of optimal ordering policy is presented as 
follows. 

Theorem 3.1 For an arbitrary distribution F(t), if qc(oo) > 0 or qc(O) < 0, then there 
exists at least one optimal ordering time to' (0 S; to' < 00 or 0 < to' S; (Xl) mini mizing the 
expected cost C(to, Q). 

Proof is omitted for brevity. Thus, we have the following theorem on the optimal ordering 
time to * which minimizes the expected cost C( to, Q) by using the monotone properties of 
the hazard rate 1·(t). 

Theorem 3.2 (1) Suppose that F(t) has a strictly IHR (increasing hazard rate) property 
and that the assumptions from (A-I) to (A-3) are satisfied. Then: 

(i) If %( 00) > 0 and qc(O) < 0, there exists a finite and unique optimal ordering time to' 
(0 < to' < 00) satisfying qc(to) = 0 and the corresponding expected cost is 

(ii) If qc(O) ;:::: 0, to' = 0, i.e. the regular order is made at the same time instant as the 
beginning of the operation and the corresponding expected cost is given in Eq.(14). 
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(iii) If qc(oo) :S 0, 10* -+ 00, i.e. the regular order is not made and the expedited one is only 
done at the same time instant as stock-exhaustion and the corresponding expected cost is 
given in Eq.(17). 

(2) Suppose that F(t) is DHR (decreasing hazard rate) and that the assumptions from (A-I) 
to (A-3) are satisfied. Then, if rfJ(O,Q)/T(O,Q) < rfJ(oo,Q)/T(oo,Q), to* = 0, otherwise, 
to* -+ 00. 

Proof. Differentiating C(to, Q) with respect to to and setting it equal to zero implies the 
equation qc(to) = o. Further, with respect to to, we have 

q~(to) = {hQR'(to) + r'(tO)[(CI - C2)Q + k(LI - L2)J}T(to, Q) 

+R'(to)[kT(to, Q) - rfJ(to, Q)] + r'(tO)(L2 - LdrfJ(to, Q), (21) 

where the 'prime' denotes the symbol of the differentiation with respect to to. Since the 
hazard rate is strictly increasing, from (A-l) to (A-3), we have q~(to) > 0, i.e. qc(lo) is 
strictly increasing. If qc( 00) > ° and qc(O) < 0, then there exists a finite and unique optimal 
ordering time to* (0 < to* < 00) satisfying qc(to) = 0, since qc(to) is strictly increasing and 
continuous. Substituting the relation of qc(to*) == ° into C(to*, Q) in Eq.(3) yields Eq.(20). 
If qc(O) ;::: 0, the expected cost C(to, Q) is strictly increasing and the optimal ordering time 
is to* = 0. If qc(oo) :S 0, the expected cost C(to, q) is strictly decreasing and to* -+ 00. The 
case of a decreasing hazard rate is also similar. Thus, the proof is completed. D 

Next we shall consider the case of expected total discounted cost. In the similar fashion 
to the long-run average cost, define the numerator of the derivative of V(to, Q) with respect 
to to, divided by exp( -f3to)F(to), as qv(to), i.e. 

qv(to) = {(k + hQ) exp( -f3L2)R(to) - (h + f3C2)Q exp( -f3L2) 

+[(k/ f3 - C2Q) exp( -f3L2) - (k/ f3 - CIQ) exp( -f3Ld]r(to) }8(to, Q) 

--{f3exp( -f3L2)R(to) + (exp( --f3L2) - exp( -f3LI))r(tO) };r(to, Q). (22) 

Two special cases, to = ° and to -+ 00, are the following: 

where 

;r(0, Q) 

and 

V(O, Q) = ;r(0, Q)/8(0, Q), 

hEr r exp(-f3t)X(t)dt] + hQexp(-f3L2)/f3 - hQ [00 exp(-f3t)F(t)dt h l~ 
[L2 

+k la exp( -f3t)F(t)dt + C2Q exp( -f3L2), 

8(0, Q) = 1 - f3 (oo exp( -f3t)F(t)dtj 
lL2 

V( 00, Q) = ;r( 00, Q)/8( 00, Q), 

(23) 

(24) 

(25) 

(26) 
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where 

7r(oo,Q) hE[lT exp( -,8t)X(t)dt] + k(1 - exp( -,8L1)) l"" exp( -,8t)F(t)dt 

+CIQ LX) exp( -,8(t + Lt))dF(t), (27) 

c5(oo,Q):=:: 1- ,8exp(-,8Ld lX) exp(-,8t)F(t)dt. 

Instead of (A-I) - (A-3), we make the following assumptions: 

CB-I) k JOL2 e-{3tdt + c2Qe-pL2 < k JOLI e-{3tdt + cIQe-{3LI 

(B-2) 0 < L1 S L2 
CB-3) ,8V(to, Q) < k. 

(28) 

The assumption (B-1) corresponds to (A-I) in the case of long-run average cost. The 
assumption (B-3) is a weak one comparing with (A-3), since it is common that the discount 
factor ,8 is assumed to be less than one. 

Similar to Theorems 3.1 and 3.2, we have the following results for the expected total 
discounted cost criterion, where the proofs are omitted. 

Theorem 3.3 For an arbitrary distribution F(t), if qv(oo) > 0 or qv(O) < 0, then there 
exists at least one optimal ordering time to * (0 S to * < 00 or 0 < to * S (0) minimizing the 
expected cost Veto, Q). 

Theorem 3.4 (1) Suppose that F(t) has a strictly IHR property and that the assumptions 
from (B-1) to (B-3) are satisfied. Then: 

(i) If qv(oo) > 0 and qv(O) < 0, there exists a finite and unique optimal ordering time to* 
(0 < to* < (0) satisfying qv(to) = 0 and the corresponding expected cost is 

Veto * Q) = (k + hQ)e-{3L2 R(to*) + e1'(to*) - (h + ,8c2)Qe-{3L2 

, (e-{3L2 - e-{3LI )1'(to*) + ,8e-{3L2R(to*) , (29) 

where 

(30) 

(ii) If qv(O) ~ 0, then to· = 0 and the corresponding expected cost is given in Eq.(23). 

(iii) If qv(oo) SO, then to* ---;. 00 and the corresponding expected cost is given in Eq.(26). 

(2) Suppose that F(t) is DHR and that the assumptions from (B-1) to (B-3) are satisfied. 
Then, if 7r(O,Q)/c5(O,Q) < 7r(oo,Q)/c5(oo,Q), to* = 0, otherwise, to* --t 00. 

Remark 3.5 When h = 0, these inventory models for respective expected costs are essen­
tially reduced to the order-replacement models discussed by Kaio and Osaki [8, 9]. In other 
words, the inventory models under consideration are generalizations to the replacement sys­
tems with delay, since the corresponding expected costs in Eqs.(3) and (9) include the state 
variable, i.e. X(t). 
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4. Inventory Control 
In this section, we discuss the procedure to obtain the optimal ordering time and the 

optimal order quantity which jointly minimizes the expected costs. Then we must concretely 
specify the cumulative demand process {N(t), t ~ O}. Throughout this paper, we assume 
Poisson and Brownian motion processes as cumulative demand processes. In fact, we would 
expect that most real systems could be accurately described by either Poisson or Gaussian 
demand pattern, which are common assumptions in the inventory theory. 
4.1 Poisson process model 

The cumulative demand process {N(t), t 2: O} is a Poisson process with rate lA> 0), 
where . 

P(3.: It) = Pr{N(t) :::; x I N(O) = O} = E (p,t)k e~~( -p,t). (31 ) 

Since T is the time required for Q demands to occur, it follows that the distribution of 
stock-exhaustion time is the Erlang distribution with parameters p, and Q; 

(32) 

where f1 (.) is the gamma function. It is well known that the Erlang distribution is strictly 
IHR for Q > 1. Without loss of generality, we assume Q > 1. Then, we have the following 
theorems. 

Theorem 4.1 The long-run average cost as a function of the ordering time and the order 
quantity is given by Eq.(3) and the corresponding expected cost for one cycle and the mean 
time of one cycle under the assumption of Poisson cumulative demand are 

T(to, Q) 

<f;(to, Q) = hQ(~p, + 1) + C1Q + kL1 

-(hQ + k)(to + L2)I'2(Q,P,(to + L2))/f1(Q) 

+{(C1 - C2)Q + k(to + L2 - L1)}f2(Q,p,to)/f1(Q) 

+(hQ + k)f2(Q + 1,p,(to + L2))/(p,f1(Q)) 

-kf2(Q + 1,p,to)/(p,r1(Q)), 

{f1(Q + 1) - f 2(Q + 1, p,to)} /(P,I'1(Q)) 

+L1 {f1(Q) - f 2(Q, p,to) }/f1(Q)+ f 2(Q + 1, p,(to + L2))/(p,f1(Q)) 

+( to + L2){ I' 2( Q, p,to) - I' 2( Q, p,(to + L2))} /f l( Q), 

where I' 2(-, .) is the incomplete gamma function defined by 

f 2 (a, b) = [XJ t a- 1 exp( -t)dt. 

(33) 

(34) 

(35) 
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Theorem 4.2 The expected total discounted cost as a function of the ordering time and 
the order quantity is given by Eq.(9). Then, we have 

(36) 

where 

(38) 

and 

Proofs of Theorems 4.1 and 4.2 are given in Appendix. 
Note that H,,(to, Q), O,,(to, Q) and S,,(to, Q) are the holding, ordering and shortage costs, 

respectively. Since the hazard rate is strictly increasing, we can directly apply Theorems 
3.2 and 3.4 to obtain the optimal ordering time. It is, however, difficult to obtain the 
optimal order quantity Q* analytically. Therefore, we numerically examine the behavior of 
C(to, Q) and V(to, Q) for the order quantity. Figures 2 and 3 illustrate the convexity of the 
expected costs for the order quantity. Thus, if the expected costs are strictly convex in the 
order quantity, we can numerically obtain the optimal inventory policy (to*, Q*) satisfying 
(fJ2C(to, Q)/atoaQ)Z-a2C(to, Q)/ato2·a2C(to, Q)/aQ2 < 0 and aC(to, Q)/aQ = qc(to) = o. 
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4.2 Brownian motion model 
If the cumulative demand obeys a Gaussian process, then 

[
X-/-d] 

P(x It) = Pr{N(t) ::; x I N(O) = O} = <1> O"vt ' (41 ) 

where /1(> 0) and 0"(> 0) are the instantaneous mean and standard deviation and where <1>[.] 

is a standard normal distribution function. The cumulative demand process is the following 
(/1,0")- Brownian motion process: 

N(t) = Jlt + O"B(t), ( 42) 

where the stochastic process {B(t), t ~ O} is the one-dimensional standard Brownian motion 
process. It should be noted that Poisson distribution can be approximated by the normal 
one if 0" /2/1 ~ 1. Furthermore, the corresponding distribution of stock-exhaustion time is 
the following inverse Gaussian distribution: 

(43) 

Unfortunately, since the hazard rate for the inverse Gaussian distribution is not always 
a monotone function of t, we can not directly apply Theorems 3.2 and 3.4 to obtain the 
optimal ordering time. Following Chhikara and Folks [5], we have the following result for 
the Brownian motion demand. 

Lemma 4.3 For the inverse Gaussian distribution FI (t;/1) given in Eq.(43), define 

and 

Then: 

(i) FI(t; Jl) is IHR if 0::; t ::; tm. 

(ii) FI(tiJl) is DHR iftn < t. 
(iii) The hazard rate for FI (t: /1) is unimodal if tm < t ::; tn. 

(44) 

( 45) 

Since tm is the point at which the mode of FI (t; /1) occurs, it is clear that the hazard rate 
is increasing for 0::; t ::; tm. Also, by calculating d(logr(t))/dt, we obtain that the hazard 
rate is decreasing for t > tn. For the case of (iii), the equation d(logr(t))/dt = 0 can have 
at most one root for t > tm and r(t) attains its maximum value at te satisfying the following 
equation: 

( 46) 

Thus, if there exists te E (tm, tn], the distribution function FI(t; /1) is IHR for 0 ::; t ::; te, 
otherwise, for 0 ::; t ::; tm- For details, see Chhikara and Folks [5]. 
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Now we define te satisfying qe(tO) = O. Unifying Lemma 4.3 and Theorem 3.2 generates 
the following result for the optimal ordering time under the Gaussian cumulative demand. 

Corollary 4.4 (1) Suppose that there exists a unique te E (tm' tn]under the assumption 
from (A-1) to (A-3). (i) If qe(t e ) > 0 and qc(O) < 0, then the optimal ordering time is 
to* = te or to* -+ CoO. (ii) If qc(O) 2: 0, then to* = 0 or to' -+ 00. (iii) If qc(te) :::; 0, then 
to* -+ 00. 

(2) Suppose that there does not exist te E (tm' tn] under the assumption from (A-1) to (A-3). 
(i) If qe(tn ) > 0 and qe(O) < 0, then the optimal ordering time is to* = te or to* -+ 00. (ii) If 
qc(O) 2: 0, then to* := 0 or to* -+ 00. (iii) If qe(tn ) :::; 0, then to* -+ 00. 

The case of expected total discounted cost is omitted for brevity. Notice that the procedure 
to calculate the optimal ordering time for the Gaussian cumulative demand process may be 
heuristic. However, it is easy to seek the optimal solution by using computers. 

Next, in order to obtain the optimal order quantity, we have following theorems. 

Theorem 4.5 The long-run average cost as a function of the ordering time and the order 
quantity is given by Eq.(3) and the corresponding expected cost for one cycle and the mean 
time of one cycle under the assumption of the Brownian motion demand are 

where 

cjJ(to, Q) = 
Q2 (T2Q _ hQ2 

h(- + -2 ) - hQ(to + L2)FI(tO + L2; /1) + -F2(tO + L2; /1) 
2/1 2/1 /1 

+C2Q + {(Cl - C2)Q + k(Ll -- L2 - to)}Fl(tO; /1) 

+k(to + L2)FI(tO + L2; /1) + kQ {F2(tO + L2; /1) - F2(tO; /1)}, (47) 
/1 

T(to. Q) (LI - L2 - to)FI(tO; /1) + (to + L2)FI(to + L2; /1) 

+ Q {F2(to + L2; /1) + F2(to; /1)}, 
/1 

( 48) 

( 49) 

Theorem 4.6 The expected total discounted cost as a function of the ordering time and 
the order quantity is given by Eq.(9). Then, we have 

7r(to,Q) = h~ {(1- eQA ) + e-{3(to+L2)Fl (to + L2;/1) - eQAFl(to + L2;B)} 

-~{/1(1 - eQA )/ f3 - QeQA } + Cl QeQA-{3L, Fl (to; B) + C2Qe-{3(to+L2) FI (to; /1) 

+~( 1 - e-{3L, )eQA Fl (to; B) + ~eQ;\{ FI (to + L2; B) - FI (to; B)}, (50) 

b(to, Q) 
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_eQA-i3(tO+L2){F (t + L . 0) - F (t . O)} 1 0 2, 1 0, , 

f1-0 
A=--

2 ' a 

(51 ) 

(52) 

(53) 

Proofs of Theorems 4.5 and 4.6 are also presented in Appendix. The behavior of the expected 
costs above for the order quantity under the condition of the Brownian motion demand is 
also shown in Figs. 2 and 3. We can graphically recognize for various parameters that the 
expected cost functions are strictly convex in Q. 

In the following section, we numerically calculate the optimal inventory policy (to * , Q*) 
for the Brownian motion demand and examine its sensitivity for some model parameter.s. 

5. Numerical Examples 
The optimal control policies for joint optimization of ordering time and order quantity 

for the expected cost criteria are numerically discussed. Especially, we focus on the case of 
Brownian motion demand since the Poisson process is approximated by a Brownian motion 
process for sufficiently large intensity parameters. 

Table 1. Dependence of the optimal inventory policy on f1 and a: 
the long-run average cost C(to, Q). 

[k = $30.h = $7,Cl = $2,C2 = $1,Ll = 2,L2 = 5,] 

a = 0.5 a = 0.8 

f1 Q* t* 0 C(t~, Q*) Q* t* 0 C(t~, Q*) 
0.4 1.810 38.158 15.660 1.657 104.810 17.995 
0.6 2.089 25.973 17.278 1.968 43.051 18.707 
0.8 2.278 11.557 18.643 2.177 31.334 19.636 
1.0 2.416 10.855 19.786 2.327 17.676 20.527 
1.2 2.518 10.188 20.754 2.438 16.161 21.332 

First, we examine the numerical characteristics of optimal inventory policy when the 
drift and variance parameters are changed. Tables 1 and 2 show the dependence of the 
optimal inventory control policy (to*, Q*) and its associated expected cost on the infinites­
imal parameters. Numerical examples illustrate that the optimal order quantity increases 
as the drift parameter and the variance parameter become larger and smaller, respectively. 
In addition, both expected costs, C(to*, Q*) and V(to*, Q*), increase as the drift and vari­
ance parameters become larger. The increasing drift parameter implies a rise of the average 
demand, and the increasing variance parameter means that an uncertainty on demand is 
more remarkable. If the demand for items increases, one should make a more satisfactory 
order quantity ready, and larger ordering and inventory holding costs will be anticipated. 
The increasing variance parameter gives a rise to the increase of costs and has an effect to 
order moderately. Thus, the results will satisfy our intuition. 
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Table 2. Dependence of the optimal inventory policy on f.1 and iT: 

the expected total discounted cost V(to, Q). 

[k := $30, h = $7, Cl = $2, C2 = $1, L1 = 2, L2 = 5, (3 = 0.05] 

iT = 0.5 iT = 0.8 
f.1 Q* t* ° V(to, Q*) Q* t* ° V(to, Q*) 

0.4 1.776 40.652 302.901 1.676 71.452 350.313 
0.6 2.052 19.349 334.579 1.958 42.554 365.111 
0.8 2.248 18.193 361.768 2.162 27.612 383.320 
1.0 2.393 17.183 384.743 2.314 17.650 400.908 
1.2 2.504 43.262 404.325 2.431 17.182 416.968 
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Second, the sensitivity analyses are carried out for the lead time parameters. In Tables 
3 and 4, the optimal order quantity and the minimum expected costs increase, as the lead 
time for expedited order becomes larger. It seems to be natural that the required time to 
deliver items influences the order quantities and the corresponding costs. It is, however, 
really surprising that the lead time for regular order exerts hardly influence the optimal 
order quantity and the expected costs. This fact. tells us that the lead time for expedited 
order is a governing factor for the optimal inventory policies. 

Table 3. Dependence of the optimal inventory policy on the lead times: 
the long-run average cost C(to, Q). 

[k = $30, h = $7, Cl = $2, C2 == $1, f.1 = 1.2, iT = 0.5] 

L2 = 5 L2 = 7 
L1 Q* t* 

° C(to, Q*) Q* t* 
° C(to, Q*) 

0.8 1.920 10.042 16.566 1.920 10.051 16.566 
1.6 2.373 10.275 19.738 2.373 10.303 19.738 
2.4 2.634 10.063 21.568 2.634 10.123 21.568 
3.2 2.810 9.935 22.801 2.810 9.974 22.801 
4.0 2.939 8.645 23.702 2.938 9.244 23.702 

Next, we consider the sensitivity for the cost parameters. Tables 5-8 demonstrate the 
dependence of the optimal inventory policy on cost parameters. From Tables 5 and 6, the 
increase of ordering cost for expedited order makes the order quantity and the expected 
costs decrease and increase, respectively. On the other hand, one observes that the change 
of ordering cost for a regular order does not influence both the optimal order quantity and 
the expected costs. This also shows that only the cost parameter for expedited order is 
sensitive to the optimal policy. The results for the inventory holding and the shortage 
costs are straightforward. The increase of holding cost gives the effect of making the order 
quantity decrease, and the increasing shortage cost gives a quite contrary tendency. It is 
intuitively obvious that the expected costs increase as these cost parameters become larger. 

Finally, the dependence of the optimal inventory policy on the discount factor is pre­
sented in Table 9. The decrease of order quantity for the increasing discount factor is 
contrary to the earlier results on the optimal stock level in Dohi et al. [6]. This clearly 
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results from the difference of model structure. 

Table 4. Dependence of the optimal inventory policy on the lead times: 
the expected total discounted cost V(to, Q). 

[k = $30, h := $7, Cl = $2, C2 = $1, I" = 1.2, (j = 0.5, f3 = 0.05] 

L2 = 5 L2 = 7 
LI Q* t* ° V(t~, Q*) Q* t* ° V(t~, Q*) 
0.8 1.913 10.481 325.169 1.913 11.152 325.169 
1.6 2.360 10.268 385.270 2.360 10.268 385.270 
2.4 2.619 9.862 419.487 2.619 9.156 419.487 
3.2 2.794 13.726 442.320 2.794 9.350 442.320 
4.0 2.924 13.761 458.847 2.924 9.062 458.847 

Table 5. Dependence of the optimal inventory policy on the ordering costs: 
the long-run average cost C(to, Q). 

[k = $30,h = $7,L I = 2,L2 = 5,1" = 1.2,(j = 0.5] 

C2 = 5 C2 = 7 
Cl Q* t* 

° C(t~, Q*) Q* t* 
° 

C(t~, Q*) 
5 2.260 9.151 22.550 2.260 9.325 22.550 
6 2.171 8.827 23.126 2.171 9.013 23.126 
7 2.080 8.635 23.690 2.080 8.777 23.690 
8 1.987 8.570 24.240 1.987 8.631 24.240 
9 1.893 8.614 24.777 1.893 8.606 24.777 

Table 6. Dependence of the optimal inventory policy on the ordering costs: 
the expected total discounted cost V(to, Q). 

[k = $30, h = $7, Ll = 2, L2 = 5, I" = 1.2, (j = 0.5, f3 = 0.05] 

C2 = 5 C2 = 7 
Cl Q* t* ° V(t~, Q*) Q* t* ° V(t~, Q*) 
5 2.310 10.370 436.966 2.310 10.370 436.966 
6 2.242 10.507 447.570 2.242 15.605 447.570 
7 2.171 10.266 458.022 2.171 10.266 458.022 
8 2.099 10.115 468.310 2.099 10.790 468.310 
9 2.024 10.557 478.424 2.024 10.557 478.424 

Throughout the numerical experiments, we could observe no monotone tendencies for 
the optimal ordering time. In fact, the optimal ordering time shows a complex behavior for 
each model parameter. For a fixed order quantity, we obtained the optimal ordering time 
in Section 3. The analytical properties of optimal ordering time for the joint optimization 
problems are not simple as the case of fixed order quantity any longer. 

6. Conclusion 
We have integrated the sophisticated techniques used in reliability theory into the cyclic 

inventory control problem with an emergency order. We have analyzed properties of the 
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Table 7. Dependence of the optimal inventory policy on the inventory holding 
cost. 

[k = $30, Cl = $2, C2 = $1, L1 = 2, L2 = 5, {L = 1.2, a = 0.5,,8 = 0.05] 

[h I Q* I 
;3 3.993 
4 3.787 
;) 3.235 
6 2.829 
'7 2.518 

t* o 
5.607 
6.591 

12.746 
11.315 
10.188 

I C(t~, Q*) I Q* I to* I V(t~, Q*) I 
16.722 4.570 61.947 316.499 
17.997 3.755 56.966 346.059 
19.097 3.208 14.329 369.319 
19.998 2.809 9.318 388.345 
20.754 2.503 9.064 404.325 

Table 8. Dependence of the optimal inventory policy on the shortage cost .. 

[h = $7,C1 = $2,C2 = $1,L1 = 2,L2 = 5,{L = 1.2, a = 0.5,,8 = 0.05] 

[k I Q* I 
15 1.328 
20 1.763 
25 2.156 
30 2.518 
35 2.855 

t* o 
8.601 
8.553 
9.047 

10.188 
11.428 

I C(t~, Q*) I Q* I 
12.427 1.347 
15.469 1.771 
18.221 2.154 
20.754 2.503 
23.114 2.828 

t* o 
10.043 
10.668 
10.683 
9.064 
9.277 

I V(t~, Q*) I 
244.310 
303.053 
355.921 
404.325 
449.191 

Table 9. Dependence of the optimal inventory policy on the discount factor. 

[k = $30,h = $7,C1 = $2,C2 = $1,L1 = 2,L2 = 5,{L = 1.2, a = 0.5] 

I ,8 I Q* I 
0.01 2.516 
0.05 2.503 
0.10 2.480 
0.15 2.450 
0.20 2.414 

t* o 

10.120 
43.262 
37.378 
17.944 
15.829 

I V(t~, Q*) I 
2064.530 
404.325 
196.973 
127.989 
93.597 

optimal ordering time, and derived the expected cost criteria with respect to two types of 
demand processes. In addition, it has been numerically examined that the optimal control 
policy, which includes the optimal ordering time and the optimal order quantity, minimizing 
the expected cost criteria, were uniquely obtained for various model parameters. 

In Section 3, the main reason why the optimal ordering time has a relatively simple form 
results from the assumption that the expedited order point is zero. In fact, it is noted that a 
general reorder point - reorder quantity policy in [11] could not be analytically derived. This 
problem remains to be solved. The results of this paper will, however, give an alternative 
direction to the inventory model with an emergency as well as a theoretical support to the 
practitioner. 

Appendix 
In this appendix, we derive the long-run average cost and the expected total discounted 

cost over an infinite time horizon for the Poisson process demand and the Brownian motion 
demand. Given the distribution functions of the stock-exhaustion time in Eqs.(32) and 
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(43), it is easy to calculate the other parts of the expected costs except for E[f; X(t)dt] and 
E[J; exp( - ,Bt)X (t)dt]. Therefore, we give analytical expressions for two different demand 
distribu tions. 

To deal with this problem we apply the first Dynkin formula (e.g. see [10, p. 297]. 
For an alternative derivation, see [14].). The first Dynkin formula provides the following 
expression: 

E[io
T 

exp( -,Bt)X(t)dt] = QE[io
T 

exp( -,Bt)dt]- E[io
T 

exp( -,Bt)N(t)dt]. (54) 

For a bounded and well-defined function gO and a complex number ,B, we have 

E[io
T 

exp( -,Bt)g(N(t))dt] = U(O) - U(Q)E[exp( -,Br)], (55) 

where 

U(X) = (Rf3g)(x) = i: Gf3(x, y)g(y)dy. (56) 

Rf3 and Gf3(x, y) are called the resolvent operator and its kernel of N(t), respectively, given 
N(O) = x. Note that the kernel Gf3(x,y) is equivalent to the Laplace-Stieltjes transform of 
the distribution function of N(t). 

When the demand process follows the Poisson process, we have 

U(X) = t g(y) (_/1_)y-x. 
y=x /1 +,B /1 + ,B 

Thus, by putting g(y) = y, we have 

where 

Finally, we have 

and 

E[io
T 

exp( -,Bt)N(t)dt] = Up(l) - Up(Q)E[exp( -,Br)], 

E[exp( -,Br)] = (_/1_)Q 
/1+,B 

E[ r N(t)dt] = Q(Q - 1), 
la 2/1 

by applying the l'Hospital's theorem. 

(57) 

(58) 

(59) 

(60) 

(61 ) 

Next, let us consider the case of Brownian motion process. Applying the result in [10] 
gives 

(62) 

and 

r Q2 (j2Q 
E[lo N(t)dt] = 2/1 - 2/12 . (63) 

By partially using the results above, we obtain Eqs.(33), (36), (47) and (50). 
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