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Abstract We will propose a mean-variance-skewness(MVS) portfolio optimization model, a direct exten­
sion of the classical mean-variance model to the situation where the skewness of the rate of return of assets 
and the third order derivative of a utility function play significant roles in choosing an optimal portfolio. 
The MVS model enables one to calculate an approximate mean-variance-skewness efficient surface, by which 
one can compute a portfolio with maximal expected utility for any decreasingly risk averse utility functions. 
Also, we propose three computational schemes for solving an associated nonconcave maximization problem, 
and some preliminary computational results will be reported. 

1. Introduction 
In [12], the authors proposed a mean-absolute deviation-skewness (MADS) portfolio opti­
mization model, in which the lower semi-third moment of the rate of return of a portfolio 
is maximized subject to constraints on the mean and the absolute deviation of the rate of 
return. This model is an extension of the standard Mean-Variance (MV) model developed 
by H. Markowitz [18J, and is motivated by observations on the distribution of stock data in 
the market and on the practitioners' perception against risk. 

The standard MV model is based upon the assumptions that an investor is risk averse 
and that either (i) the distribution of the rate of return is multi-variate normal, or (ii) the 
utility of the investor is a quadratic function of the rate of return. Unfortunately however, 
neither (i) nor (ii) holds in practice. It is now widely recognized that the real stock data do 
not follow a multi-variate normal distribution. To the contrary, detailed analysis of historical 
data observed in the Tokyo Stock Exchange (TSE) shows that the majority of them follow 
positively skewed distributions (See [1, 12, 17J for details). Also, many investors prefer a 
positively skewed distributions to a negative one, if the expected value and variance are the 
same. Furthermore, some investors prefer a distribution with larger skewness at the expense 
of larger variance. This means that utility functions of investors are not quadratic. 1 

The importance of the third order moment in portfolio optimization has been suggested 
by P. Samuelson [24J in the late 50's. However, quantitative treatments of the third order 
moment were neglected until late 80's due to several reasons. First it is very difficult to 
estimate the third order moment when n, the number of assets is over a few hundred. To 
set up an optimization model, we have to estimate nC3 ~ n3 correlation coefficients among 
three individual assets, in addition to nC2 ~ n 2 covariance coefficients, which is very time 
consuming, if not impossible. 

lIn [17], Maghrebi tested the skewness preference and persistence hypothesis based on the extended 
CAPM which incorporate the effect of the third moment of rate of return using the data of TSE:. He 
reported that the investors have a preference for positive skewness in their portfolios, and that it is not 
rejected that positively skewed assets in one period are likely to remain positively skewed in the next period. 
Similar results are also stated in [21]. 
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174 H. Konno & K Suzuki 

Second, the third order moment is not a concave function and hence it looked difficult to 
solve the resulting optimization problem by using standard computational methodologies. 
Let us note that it was not until late 80's when a large scale mean· variance model became 
solvable on a real time basis. 

Third, as shown by Merton [20], the mean-variance framework is sufficient (i.e., higher 
order moments can be ignored) if we allow continuous trading in the frictionless market. 
This assumption is obviously invalid in practice, but it provided a good reason for researchers 
to ignore the weary effects of higher order moments. Also, Kroll, Levy and Markowitz [15] 
states that the numerical comparison of the MY approach and the direct utility maximiza­
tion approach using the historical data of up to 20 stocks led to almost the same result, so 
that the criticism against the MY model cannot be authorized. However their claim may 
not by valid when the number of stocks is over a few hundred. In fact, our computational 
studies [11] show that the behavior of a model with a small number of assets is often quite 
different from that with a large universe. 

Meanwhile, the computational breakthrough of the last decade enabled one to solve a 
large scale MY model within a practical amount of time [13, 19, 22,23,25]. We are now able 
to draw an efficient frontier in the mean-variance plane very cheaply. These computational 
studies revealed several unexpected facts about the capital market. Of particular interest is 
that the market portfolio is located deep in the interior of the MY feasible set, contrary to 
the theoretical conclusion of the MY model. In fact, it sits so far from the mean-variance 
efficient frontier that it cannot be attributed to statistical errors or to the difference of the 
risk sensitivity of individual investors. We belive that this is another evidence that the MY 
model needs a modification to meet the reality of the capital market. Fortunately, the recent 
breakthrough in th computational aspects of financial optimization encourages us to pursue 
one step further. Several authors already tried to improve the MY model. Among them are 
the use of asymmetric risk functions [7, 9], and axiomatic treatment of risk [8] as well as a 
direct utility maximization approach [16). 

The purpose of this paper is to introduce a mean-variance-skewness (MYS) model, in 
which the third order moment of the rate of return is maximized subject to constraints on 
the mean and variance of the rate of return. By this, we can draw an efficient surface in 
the mean-variance-skewness space. The advantage of this approach is that it enables us 
to maximize the third order approximation of the expected utility for any decreasingly risk 
averse utility functions. This model is an outgrowth of an effort to relate the mean-absolute 
deviation-skewness (MADS) model developed earlier by the authors to the framework of 
expected utility maximization paradigm. In fact, MADS model can now be interpreted as 
one practical approximation scheme for solving an MYS model. 

In Section 2, we will formulate the MYS model and relate it to the theory of expected 
utility maximization. Section 3 will be devoted to some discussions about the properties 
of utility functions and the statistical properties of the stock data. In section 4 and 5, we 
will discuss computational schemes to solve the MYS· model, and show some preliminary 
computational results of the MYS model using historical data in Section 6. 

2. Utility Functions and the Distribution of Stock Data 
Let Rj(j = 1, ... , n) be a random variable representing the rate of return (per period) of 
the asset Sj(j = 1, ... , n). Also, let x = (Xl,···, xn) be a portfolio where Xj is the rate of 
investment into Sj. We will denote 

x = {x E n n : Ax = b, x 2:> O} (2.1 ) 

where A E nmxn,b E nm and call X an investable set. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Mean-Variance-Skewness Model 175 

The rate of return R(x) of a portfolio x E X is given by 

(2.2) 

Let U(x) be a utility of an lnvestor associ,Lted with x. We will assume that U is a, 
function of R(x), i.e., 

U(x) = u( R(x)) (2.3) 
where u(·) satisfies the following assumption. 

Assumption 1. u(·) is a decreasingly risk averse function, namely u(·) satisfies u'(·) > 0, 
U(2l (.) < 0, U(3 l (.) > 0 over the domain of R(x), ;7: E X. I 

Let rj be the expected value of Rj and let ]'(x) be the expected value of R(x). Also, let 

rmin = min{r(x) : x E X} 
rmax = max{r(x) : x E X} 

(2.4) 

Let us consider the Taylor's series expansion of u(R(x)) around the expected value r(x) of 
R(x): 

u(R(x)) = u(r(x)) + L::k:l u(kl(r(x))(R(x) - r(x)l jk! 

Then we have 

E[u(R(x))] = u(r(x)) + L::k:lu(kl(r(x))E[(R(x) - r(x))kjk!] 

This expression leads us to select an optimal portfolio by means of the moment analysis. 
However, it is pointed out in [2] that the analysis based upon the first I moments of the 
underlying distribution may lead to an erratic conclusion, i.e., the portfolio derived through 
this approach is not necessarily optimal from the viewpoint of expected utility maximization. 
In fact, if 1+ 1 st order moment of the distribution is large compared to the first I moments, 
then this approach is not valid. However we can safely use the first three moment approach 
since moment of order higher than four are negligible for the problems of our interest as will 
be discussed shortly. Further, let us note that, the validity of the MVS model is guaranteed if 
we assume the well known third-order stochastic dominance about the preference structure 
of investors [4]. 

Thus we will use the following third order approximation of the expected utility 

where 

E[u(R(x))] = u(r(x)) + u(2l (r(x))v(x)j2 + u(3l(r(x))k(x)j6 

v(x) 

k(x) 
E[(R(:r) - r(x)?] 
E[(R(:r) - r(x))3] 

(2.5) 

(2.6) 

(2.7) 

In case the third term of the right hand side of (2.5) is small compared to the first and the 
second, maximal value of the expected utility ca,n be obtained by solving 

I 
maximize u(r) + u(2l (r)v(x)j2 
subjectto r(x)=r, xEX 

(2.8) 

for all achievable values of r. By Assumption 1, u(2l(-) < 0, so that this problem reduces to 
Markowitz's mean variance model: 

I 
maximize v(x) 
subject to r(x) == r, x E X (2.9) 
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Let x*(r) and v(x*(r)) be an optimal solution and an optimal value of this quadratic 
programming problem, respectively. Then the best portfolio can be obtained by solving 

I 
ma~imize u(r) + u(2)(r)v(x*(r))/2 
subject to rmin:S: r :s: rmax 

(2.10) 

If, however, the third term of (2.5) is not negligible, we have to solve the following problem: 

I 
maximize u(r) + u(2)(r)v(x)/2 + u(3)(r)k(x)/6 
subject to r(x) = r, x E X 

(2.11 ) 

We will argue in the sequel that the third order term of the Taylor's series expansion 
(2.5) is in fact not negligible, but that the higher order term is negligible. 

First our previous work [12] revealed that the skewness 

K = k(R)/{v(R)}3/2 

of the monthly rate of return R of a majority of stocks in Tokyo Stock Exchange are 
positive. In fact, more than 60% of the 1118 stocks have large skewness which would reject 
the normality hypothesis at 5% significance level. Also, the average magnitude of skewness 
for 1118 stocks is 1.75. Thus we find that the magnitude of k(R) is about the same as 
2{ V(R)}3/2, which in turn implies roughly that the ratio Cl' of the third order term over the 
second order term is given by 

Cl'''' 
2u(3)(r)vt(x) 

3u(2)(r) 

Also, we know from [11] that the standard deviation of portfolios on the efficient frontier 
ranges from 0.02 to 0.06. Thus if u(3)(r)/u(2)(r) is greater than, say 5, then the third order 
term would not be negligible. 

Let us now consider the magnitude of 

A(r) = u(3)(r)/u(2)(r) 

for three popular classes 2 of risk averse utility functions [6]: 

(a) HARA (hyperbolic absolute risk aversion) 
u(r) = (ar + b)C (a, b > 0, c < 1) 

(b) Negative Exponential 
u(r) = _e-a(l+r) (a> 0) 

(c) Power 
u(r)=(l+r)C (c<l) 

Table 1 shows A(r) for each type of utility functions and a typical value of parameters 
for which the third order term is not negligible. 

Also, it is easy to check that the third order derivatives U(3) (r) are positive for all three 
type of utility functions except when 1 :s: c :s: 2 for the HARA class. 

Next, let us check that the fourth order term is negligible compared to the second. 
According to our calculation, fourth order moments of the monthly rate of return of the 
NIKKEI 225 stocks range between 5 to 10 times v 2

• Therefore the fourth order term is 
negligible if u(4)(r)/u(2)(r) is less than 100, which is the case for all utility functions with 
very rare exceptions. 

2Note that the utility function of HARA (a) constitutes a very wide class and both (b) and (c) are special 
cases of (a). 
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I utility function A( r) Not negligible when 

HARA arc - 2)/(ar + b) b = 1, a = 1, c < -3 
Negative Exponential a a>5 
Power (2 - c)/(l + r) c <-3 .. 

Table 1: A( r) of utlhty functIons 

3. A Mean-Variance-Skewness Model 
Let us now consider the problem (2.11) in detail. We observed in the previous section that 
the third order derivatives of utility functions are usually positive, i.e., decreasingly risk 
averse. 

Let us define the following maximization problem 

maximize k(x) 
subject to v(x):= s2 

r( x) := r, x E X 
(3.1 ) 

and let x*(r,s) and f(r,s) be its optimal solution and optimal value, respectively and let 

F(r,s) = u(r) + u(2}(r)s2/2 + u(3}(r)f(r,s)/6 (3.2) 

Then the optimal solution of (2.11) will be obtained by finding the global maximum of 
F(r, s) for all values of (r, s) achievable over X. Note that if we have f( r, s), then we would 
be able to solve (2.11) for any decreasingly risk averse class of utility functions. 

Let 

min{v(x) : r(x) = r, x E X} 
= max{v(x) : r(x) = r, x E X} 

Then the achievable set S of (r, s) is given by 

S = ((r,s) : ql(r) ~ S2 ~ q2(r), rmin ~ r ~ rmax , s ~ O} 

(3.3) 
(3.4) 

(3.5 ) 

The lower boundary of S, i.e., the function of ql (r) is the so-called efficient frontier, which 
can be calculated by several algorithms [13, 19,25]. Also, the upper boundary, q2(r) can be 
calculated by the enumerative algorithm developed by the authors [12]. 

The problem in the right hand side of (3.1) is an non-concave maximization problem 
over a non-convex set. However, the non-convex constraint can be replaced by a convex 
constraint. To see this, let 

g(r,s) = max{k(x) : r(x) == r, v(x) ~ S2, X E X} 

and let h2(s) be the value of v(x) corresponding to g(r,s). Also, let 

G(r,s) = u(r) + u(2}(r)h2(.s)/2 + u(3}(r)g(r,s)/6 

Theorem 1. 

max{G(r,.s) (r,s) E S} = max{F(r,s) (r,s) E S} 

(3.6) 

(3.7) 

(3.8) 
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g(r,s) / g(r,s) 

s 
/ / 

~~-.~~----~/----~/~.------~~ 

o r min rmax 
------------~=-------~ 

Figure 1: f(r,s) and g(r,s) 

proof. 
By definition, g( r, s) 2:: f(r, s) for all (r, s) E S. Also, since u(2)( r) < 0 for all r E [rmin, rmax], 
we have G(r,s) 2:: F(r,s) for all (r,s) E S. Therefore 

max{G(r,s) : (r,s) E S} 2:: max{F(r,s) : (r,s) E S} (3.9) 

Let (r*,s*) = argmax{G(r,s) : (r,s) E S}. Then it is easy to see that g(r*,s*) = 
f(r*,h(s*)), which in turn implies that 

G(r*,s*) = F(r*,h(s*)). (3.10) 

Relations (3.9) and (3.10) prove (3.8). I 

Figure 1 illustrates the behavior of g(r, s). Also, Figure 2 shows the relationship between 
f(r,s) and g(r,s). 

4. Computational Schemes to Solve an MVS Model 
Let us now consider an algorithm for obtaining an approximate optimal solution of the 
problem. 

maximize k (x) 
subject to v(x) ~ S2 

r(x) = r, x E X 
(4.1 ) 

We will assume that (RI, ... , Rn) is distributed over a discrete sample space and that 

ft = Pr{(RI"",Rn) = (rlt,···,rnt)}, t = 1, ... ,T ( 4.2) 

is known. Then 
(4.3) 

Also, 

n n 

E[R(x)] = E[ERjxj] = Erjxj ( 4.4) 
j=I j=l 
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g(r,s) , : 

.... -1', : 
, ' ,~ 

V[R(x)] 

, , , 

fer,s) 

Figure 2: f(r,s) and g(r,s) 

n 

E[(~)Rj - rj)xj?] 
j=l 

n n 

1 , 

= E[L:2:)Rj - rJ)(Rk - rk)XjXk] 
j=lk=l 

T n n 

= L:ftLL(rjt - rj)(rkt - rk)XjXk 
t=l j=lk=l 
T n 

= L:ft(L:(rjt - rj)xj)2 
t=l j=l 

n 

k[R(x)] = E[(L:(Rj - rj)xj)3J 
j=l 

n n n 

s 

= E[L:L:L:(Rj - rJ(Rk - rk)(Rh - rh)XjXkXh] 
j=lk=lh=l 

T n n n 

= LftLLL(rjt - ril(rkt - rk)(rht - rh)XjXkXh 
t=l j=lk=lh=l 

T n 
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(4.5) 

= Lft(L:(rjt-rj)xJ)3 (4.6) 
t=l j=l 
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Therefore the problem (4.1) can be written as follows: 

T 

maxnnlze LItzt 
t=! 
T 

subject to LItZ;::; S2 

t=l 
T 

LItZt = r 
t=1 

n 

-Zt + Lrjtxj = 0, t = 1, ... ,T, x E X 
j=1 

(a) Piecewise Linear Approximation of the Quadratic Constraint 
In [11], we approximate z; by IZtl/(71"/2)t by noting the relation 

o z 

Figure 3~a Figure 3~b 

when R is normally distributed (Fig. 3-a). 

(4.7) 

z 

Instead, we may employ a.least square piecewise linear convex approximation (Fig. 3-b) 
over the interval [,8, a] by solving a convex quadratic programing problem: 

mInImIZe 
subject to 

Jq
Q

(X2 - alX - bl )2dx + JJ(x 2 - a2X - b2)2dx 
al ~ a2 

ql q + bl = a2q + b2 

(4.8) 

where q is usually taken as the mid~point of a and,8. In particular, if a > 0 and ,8 = -a 
then the optimal solution is given by 

al = -a2 = a, bl = b2 = -a2/6 

(b) Piecewise Linear Approximation of the Cubic Objective Function (i) 
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In MADS model [11], we replaced the cubic function zl by a lower semi-cubic func­
tion (Fig. 4-a) and employed piecewise linear approximation. Though naive, this scheme 
successfully generated portfolio with large skewness. 

To obtain a better approximation, we employ the least square piecewise linear convex 
approximation (Fig. 4-b.) by minimizing the following expressions. 

k 

mlmmlze L Jq,,/+l (x3 - ajx - bj )2dx 
j=l 

subject to ajqj+1 + bj = aj+lqJ-I-l + bj +1, j = 1, ... , k - 1 
a1 ~ a2'" ~ ak 

which is again a convex quadratic programming problem. 

(4.9) 

By these approximations, problem (4.7) is converted to a maximization of a piecewise 
linear concave function subject to piecewise linear convex constraints, which in turn can be 
converted to a linear programming problem [3, 5]. 

I , , 
I , ., , 

Z Z 
0 a. J3 

Figure 4-a Figure 4-b 

(c) Piecewise Linear Approximation of the Cubic Objective Function (ii) 
The following is the another approximation of the objective function. Replacing the 

objective function by the sum of a lower semi-cubic function and an upper semi-cubic 
function, (4.7) can be written as follows: 

where 

T T 

maXlmlze Lftlztl: + Lftlztl! 
t=l t=l 

subject to (Zt, Xt) E Y 

T T 
Y = {(Zt,Xt): LftZ; ~ S2, "LftZt = r, 

t=l t=l 
n 

Zt - LrjtXj = 0, t = 1, ... , T, x E X} 
j=l 

lel+ = max{O,e}, lel- = -min{O,e}. 

(4.10) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



182 H. Konno & K Suzuki 

By applying a standard technique, (4.10) can be converted to the following: 

T T 
maXImIze Lft Wt + Lft I Zt I~ 

t=1 t=I 
subject to Wt - IZtl~ ~ 0, t = 1, ... , T 

(4.11 ) 

(Zt,Xt) E Y, t = 1, ... ,T. 

This problem is a maximization of a convex function over a convex set. Among the several 
possible methods, we employ a piecewise linear approximation (Fig. 5) and a mixed integer 
programming approach. In particular, we approximate the upper semi-cubic function IZtl~ 

by a piecewise linear convex function j(Zt) by introducing K auxiliary variables Atk: 

( 4.12) 

where "itk are K mesh points. We introduce K -1 0-1 variables corresponding to the mesh 
points and impose following constraints so that Zt is expressed by a convex combination of 
at most two nearest mesh points 3. 

Atl ~ htl 
At2 ~ htl + ht2 

AtK ~ htK- 1 
K-l 

Lhtk = 1,htk E [0,1] 
k=1 

5. Direct Maximization of the Expected Utility 

(4.13) 

If one is only interested in obtaining a portfolio with maximal expected utility for a given 
risk averse utility function, one can use the direct utility maximization approach below. 

As before, let us assume that 

ft = Pr{{R I ,···, Rn) = (r]t,···, rnt)} , t = 1, ... , T 

is known. Then the expected utility is represented as follows. 

Therefore we have the following problem: 

T 

maXImIze LftU(Yt) 
t=1 

n 

subject to Yt - Lrjtxj = 0, t = 1, ... , T 
j=1 

X E X 

3We can reduce the number of integer variable Ojk by elimination of last equation of (4.13). 

(5.1 ) 

(5.2) 

(5.3) 
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____________ ~~--c~--~--~----_. 4 

ZtK 

Figure 5: piecewise linear approximation 

Since u(·) in concave, this problem can be solved by either one of the standard nonlinear 
programming algorithms or by the following piecewise linear approximation scheme. 

Let us introduce auxiliary variables Atk'S (t := 1, ... , T; k = 1, ... , K) which satisfy the 
following conditions 

K 

l:Atk = 1, Atk2::0, k==l, ... ,K, t=l ... ,T 
k=1 

where Uk = U(~k)' k = 1, ... , K. 
The piecewise linear approximation of (5.3) ;IS therefore 

T K 

maximize l:ftl:AtkUk 
t=1 k=l 
K n 

subject to l:Atk~k -l:rjtxj =: 0, t = 1, ... , T 
k=1 j=1 
K 

l:Atk = 1, Atk 2:: 0, k = 1, ... , K, t = 1, ... , T 
k=1 
X E X 

(5.4) 

(5.5) 

This is a linear programming problem with n + T K variables and T + K + 1 constraints 
and thus can be solved cheaply. 

This is perhaps the easiest way to obtain a portfolio with maximal expected utility. 
However, it is not necessarily the best approach from the practitioner's point of view. In 
fact, it is not easy for a fund manager to specify an exact form of his utility function. In 
such cases, a lot of sensitivity analysis would have to be performed. The MVS model would 
be very helpful in such situations. 
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~1 ~2 
Figure 6 

Let us point out that a utility maximization approach described above may be used to 
calculate the function f( r, s) by solving the following problem: 

T 

maXImIze 'Lftu(Zt) 
t=I 
T 

subject to 'Lft(Yt - r)2 = S2 

t=I 
T 

'LftYt = r 
t=l 

n 

Yt - I:rjtxj = 0, t = 1, .. . ,T, x EX 
j=l 

Note that this problem is equivalent to 

maximize E[u(R(x))] 
subject to V[R(x)] = s2 

E[R(x)] = r, x E X 

(5.6) 

(5.7) 

Hence the optimal value v* of this problem gives a third order approximation of F( r, s) 
defined in (3.2). Therefore, we have 

f(r,s) = 6{u* - u(r) - u<2l(r)s2/2}/u<3l(r) 

where x* is an optimal solution of (5.6). Thus an exact optimal solution of (4.1) can be 
obtained by solving (5.6) for a cubic utility function which is decreasingly risk averse in the 
interval [rmin, rmax]. 

Note however, that (5.6) is a concave maximization problem over a nonconvex set, for 
which an efficient algorithm has yet to be developed. 

6. Computational Experiments 
In this section, we will report some results of preliminary numerical experiments on the 
MVS model. We solved four problems using the same data set. One is the MAD model, 
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and the remainder are three variants of the MVS model which we denote MYS1, MVS2 and 
MYS3, corresponding to section 3.-(a),3.-(b) and 3.-(c), respectively. We used three sets of 
historical data D 1 (from January '8.5 through December '86), D 2 (from January '86 through 
December '87) and D3(from January '89 through December '90) which consist of 24 monthly 
rate of return of the NIKKEI 22.5 stocks. The algorithm was coded in C language with the 
optimization library CPLEX which can handle both linear programs and the mixed integer 
programs, and was tested on SUN SPARCStation/1+. First we solved the MAD model at 
the rate of return p. Then we set the constrain! on the standard deviation (s.d.) so that it 
does not exceed the level of 1 . .5 times of the s.d .. calculated by using MAD model. 

Dl (,8.5/1 ~'86/12) p:4.0 % 

model skewness 
Standard 

t CPU time(sec) 
deviation 

MAD 0.643 5.13 e-:3 
MVSl 0.315 7.70 e-:3 17 4 
MVS2 3.951 7.70 e-:3 19 2 
MVS3 6.988 7.70 e-:3 20 31403 

D2('87/1-'88/12) p:4.0 % 
MAD 1.827 4.64 e-:3 
MVSl 6.734 6.97 e-:3 19 2 
MVS2 -5.620 6.97 e-:3 19 2 
MVS3 9.412 6.97 e-:3 18 18502 

D3('89/1-'90/12) p:4.0 % 
MAD -38.284 60.2 e-:3 
MVSl 70.961 65.7 e-:3 5 3 
MVS2 109.904 90.:3 e-:3 7 2 
MVS3 168.064 90.3 e-:3 6 6618 .. t: number of assets wIth posItive weIghts 

Table 2: result with n = 22.5 

Table 2 shows the skewness, the standard deviation and the number of non zero stocks of 
an optimal portfolio, as well as the CPU time for solving the problem. We see from this table 
that the MVS models generate a portfolio with larger skewness than MAD model in most 
cases, and that MVS3 model tends to achieve largest skewness. This is quite reasonable 
since the MVS3 model is the most precise approximation among the three. Unfortunately, 
however, it requires significantly more computational time compared with another three 
models because it is formulated as a mixed integer problem. In our experiments, we fixed 
the tolerance of MIP algorithm at (; = 10-4, so that the optimal solution should be very 
exact. It is certainly possible to reduce computational time by somewhat relaxing this 
tolerance. 

7. Concluding Remarks 
We proposed an MYS portfolio optimization model which is a natural extension of the 
classical MV model to the situation where the third order term is not negligible. 

One advantage of our approach is that it enables us to maximize the third order approx­
imation of the expected utility for any decreasingly risk averse utility functions. It is not 
clear however, whether the MVS model is in fact better than MY model or MADS model. 
Also, we have to compare the relative advantage of computational schemes present.ed in 
Section 4 and 5. In any case, we have to conduct a lot of simulation to derive definite 
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conclusions. More extensive numerical simulation is now under way, whose results will be 
reported subsequently. 
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